3,544 research outputs found

    Publishing an E-journal on a shoe string: Is it a sustainaible project?.

    Get PDF
    The aim of this article is to report on an experiment in publishing an open access journal and learn from it about the larger field of open access publishing. The experiment is the launch of the European Journal of Comparative Economics (EJCE), an on-line refereed and open access journal, founded in 2004 by the European Association for Comparative Economic Studies and LIUC University in Italy. They embarked upon this project in part to respond to the rising concentration in the market for scientific publishing and the resulting use of market power to raise subscription prices and restrict access to scientific output. We had hoped that open access journals could provide some countervailing power and increase competition in the field. Our experience running a poorly endowed journal has shown that entry to the field may be easy, yet that making it a sustainable enterprise is not straightforward.Open-access publishing, online journals, scientific publication

    Inequalities for quantum channels assisted by limited resources

    Full text link
    The information capacities and ``distillability'' of a quantum channel are studied in the presence of auxiliary resources. These include prior entanglement shared between the sender and receiver and free classical bits of forward and backward communication. Inequalities and trade-off curves are derived. In particular an alternative proof is given that in the absence of feedback and shared entanglement, forward classical communication does not increase the quantum capacity of a channel.Comment: 8 pages, 4 figures (references updated, minor changes

    Rashba effect induced localization in quantum networks

    Get PDF
    We study a quantum network extending in one-dimension (chain of square loops connected at one vertex) made up of quantum wires with Rashba spin-orbit coupling. We show that the Rashba effect may give rise to an electron localization phenomenon similar to the one induced by magnetic field. This localization effect can be attributed to the spin precession due to the Rashba effect. We present results both for the spectral properties of the infinite chain, and for linear transport through a finite-size chain connected to leads. Furthermore, we study the effect of disorder on the transport properties of this network.Comment: To appear in Phys. Rev. Let

    Normal form decomposition for Gaussian-to-Gaussian superoperators

    Full text link
    In this paper we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms of their action on the characteristic function of the inputs. For the special case of one-mode mappings we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix

    Testing the assumptions for the analysis of survival data arising from a prevalent cohort study with follow-up

    Get PDF
    In a prevalent cohort study with follow-up subjects identified as prevalent cases are followed until failure (defined suitably) or censoring. When the dates of the initiating events of these prevalent cases are ascertainable, each observed datum point consists of a backward recurrence time and a possibly censored forward recurrence time. Their sum is well known to be the left truncated lifetime. It is common to term these left truncated lifetimes "length biased" if the initiating event times of all the incident cases (including those not observed through the prevalent sampling scheme) follow a stationary Poisson process. Statistical inference is then said to be carried out under stationarity. Whether or not stationarity holds, a further assumption needed for estimation of the incident survivor function is the independence of the lifetimes and their accompanying truncation times. That is, it must be assumed that survival does not depend on the calendar date of the initiating event. We show how this assumption may be checked under stationarity, even though only the backward recurrence times and their associated (possibly censored) forward recurrence times are\ud observed. We prove that independence of the lifetimes and truncation times is equivalent to equality in distribution of the backward and forward recurrence times, and exploit this equivalence as a means of testing the former hypothesis. A simulation study is conducted to investigate the power and Type 1 error rate of our proposed tests, which include a bootstrap procedure that takes into account the pairwise dependence between the forward and backward recurrence times, as well as the potential censoring of only one of the members of each pair. We illustrate our methods using data from the Canadian Study of Health and Aging. We also point out an equivalence of the\ud problem presented here to a non-standard changepoint problem

    Rashba effect in quantum networks

    Get PDF
    We present a formalism to study quantum networks made up by single-channel quantum wires in the presence of Rashba spin-orbit coupling and magnetic field. In particular, linear transport through one-dimensional and two-dimensional finite-size networks is studied by means of the scattering formalism. In some particular quantum networks, the action of the magnetic field or of the Rashba spin-orbit coupling induces localization of the electron wave function. This phenomenon, which relies on both the quantum-mechanical interference and the geometry of the network, is manifested through the suppression of the conductance for specific values of the spin-orbit-coupling strength or of the magnetic field. Furthermore, the interplay of the Aharonov-Bohm phases and of the non-Abelian phases introduced by spin-orbit coupling, is discussed in a number of cases.Comment: 8 pages and 6 figure

    Sources of H0 -tension in dark energy scenarios

    Get PDF
    By focusing on a simple extension of Lambda cold dark matter (ΛCDM) in which the dark energy equation of state is allowed to vary, we assess which epoch(s) possibly source the H0-tension. We consider cosmic microwave background (CMB) data in three possible ways: (i) complete CMB data; (ii) excluding the low-l+lowE (l<30 temperature and polarization) likelihoods; (iii) imposing early Universe priors, which allow us to disentangle early- and late-time physics. Through a joint analysis with low-redshift supernovae type-Ia and gravitationally lensed time delay datasets, and neglecting galaxy clustering baryonic acoustic oscillation (BAO) data, we find that the inclusion of early Universe CMB priors is consistent with local estimate of H0, while excluding the low-l+lowE likelihoods mildly relaxes the tension. This is in contrast to joint analyses with the complete CMB data. Our simple implementation of contrasting the effect of different CMB priors on the H0 estimate shows that the early Universe information from the CMB data when decoupled from late-time physics could be in agreement with a higher value of H0, even for ΛCDM model with no necessary modification. We also find no evidence for the early dark energy model using only the early Universe physics within the CMB data. Finally, using the BAO data in different redshift ranges to perform inverse distance ladder analysis, we find that the early Universe modifications, while perfectly capable of alleviating the H0-tension when including the BAO galaxy clustering data, would be at odds with the Ly-α BAO data due to the difference in rd vs H0 correlation between the two BAO datasets. We therefore infer and speculate that source for the H0-tension between CMB and local estimates could possibly originate in the modeling of late-time physics within the CMB analysis. This in turn recasts the H0-tension as an effect of late-time physics in CMB, instead of the current early-time CMB vs local late-time physics perspective

    The Planck Surveyor mission: astrophysical prospects

    Get PDF
    Although the Planck Surveyor mission is optimized to map the cosmic microwave background anisotropies, it will also provide extremely valuable information on astrophysical phenomena. We review our present understanding of Galactic and extragalactic foregrounds relevant to the mission and discuss on one side, Planck's impact on the study of their properties and, on the other side, to what extent foreground contamination may affect Planck's ability to accurately determine cosmological parameters. Planck's multifrequency surveys will be unique in their coverage of large areas of the sky (actually, of the full sky); this will extend by two or more orders of magnitude the flux density interval over which mm/sub-mm counts of extragalactic sources can be determined by instruments already available (like SCUBA) or planned for the next decade (like the LSA-MMA or the space mission FIRST), which go much deeper but over very limited areas. Planck will thus provide essential complementary information on the epoch-dependent luminosity functions. Bright radio sources will be studied over a poorly explored frequency range where spectral signatures, essential to understand the physical processes that are going on, show up. The Sunyaev-Zeldovich effect, with its extremely rich information content, will be observed in the direction of a large number of rich clusters of Galaxies. Thanks again to its all sky coverage, Planck will provide unique information on the structure and on the emission properties of the interstellar medium in the Galaxy. At the same time, the foregrounds are unlikely to substantially limit Planck's ability to measure the cosmological signals. Even measurements of polarization of the primordial Cosmic Microwave background fluctuations appear to be feasible.Comment: 20 pages, Latex (use aipproc2.sty, aipproc2.cls, epsfig.sty), 10 PostScript figures; invited review talk, Proc. of the Conference: "3 K Cosmology", Roma, Italy, 5-10 October 1998, AIP Conference Proc, in press Note: Figures 6 and 7 have been replaced by new and correct version
    • 

    corecore