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Rashba effect induced localization in quantum networks
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Abstract

We study a quantum network extending in one-dimension (chain of square loops connected at

one vertex) made up of quantum wires with Rashba spin-orbit coupling. We show that the Rashba

effect may give rise to an electron localization phenomenon similar to the one induced by magnetic

field. This localization effect can be attributed to the spin precession due to the Rashba effect.

We present results both for the spectral properties of the infinite chain, and for linear transport

through a finite-size chain connected to leads. Furthermore, we study the effect of disorder on the

transport properties of this network.
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Introduction. It has been recently shown that in a particular class of two-dimensional

lattices quantum interference due to the the Aharonov-Bohm effect and to the geometry of

the network can induce strong electron localization [1, 2]. In such systems when localization

occurs particle motion is confined by destructive interference inside a small portion of the

network which is called Aharonov-Bohm (AB) cage. This kind of localization does not rely

on disorder[3] but only on quantum-interference and on the geometry of the lattice. There

have been several theoretical works addressing different aspects of AB cages as the effect

of disorder and electron-electron interaction [4], interaction induced delocalization[2], and

transport [5]. From the experimental side, the AB-cage effect has been demonstrated for

superconducting[6] and metallic networks[7] in the so called T3 lattice.

As already stated before, in the AB cages localization is due to interference stemming from

the fact that an electron traveling along different paths acquire different phases. It is known

that the wavefunction of an electron moving in the presence of Spin-Orbit (SO) coupling

acquires quantum phases due to the Aharonov-Casher effect [8, 9, 10, 11, 12, 13]. We now

focus on the Rashba SO coupling [14], which is present in semiconductor heterostructures

due to lack of inversion symmetry in growth direction. It is usually important in small-gap

zinc–blende–type semiconductors, and its strength can be tuned by external gate voltages,

as it has been demonstrated experimentally[15, 16, 17].

The question we address in this Letter is whether it is possible to have localization in

quantum lattices induced only by the SO coupling without magnetic fields. To answer this

question we study the minimal model of a bipartite structure containing nodes with different

coordination numbers that with magnetic field exhibits electron localization. This model

structure is a linear chain of square loops connected at one vertex (see Fig. 1), which we term

diamond chain. We have in mind a realization in a semiconductor heterostructure where

the bonds are single-channel quantum wires of length L with Rashba SO coupling. External

gates should be present to tune the strength of the SO coupling. This one-dimensional

lattice retains the essential features of the more complex T3 networks, allowing for simple

(even analytical for the spectrum) solutions.

Model and formalism. Neglecting subband hybridization due to the Rashba effect[18, 19],

the Hamiltonian for a single-channel wire along a generic direction γ̂ in the x–y plane reads

H =
p2γ
2m

− ~kSO
m

pγ (~σ × ẑ) · γ̂, (1)
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FIG. 1: Schematic view of the diamond chain. The bonds are single-channel quantum wires with

SO coupling. In the ideal case all bonds have the same length L. The unitary cell contain three

nodes (4 wires): one with coordination number 4 and two with coordination number 2.

where kSO is the SO coupling strength, and ~σ the vector of the Pauli matrices. The SO

coupling strength kSO is related to the spin precession length LSO by LSO = π/kSO. For

InAs quantum wells the spin-precession length ranges from 0.2 to 1 µm [15, 16, 17]. These

are the characteristic length scales required for the bonds of the network for spin precession

to be effective. In order to calculate spectral and transport properties of the network we

need to write the wavefunction on a bond (quantum wire) connecting the nodes α and β,

along the direction γ̂αβ

Ψαβ(r) =
1

sin(klαβ)

{

sin [k(lαβ − r)] ei(~σ×ẑ)·γ̂αβ kSOrΨα

+ sin(kr)ei(~σ×ẑ)·γ̂αβ kSO(r−lαβ)Ψβ

}

(2)

where k is related to the eigen energy by ǫ = ~2

2m
(k2 − k2

SO)[20], r is the coordinate along

the bond, and lαβ the length of the bond. The spinors Ψα and Ψβ are the values of the

wavefunction at the nodes α and β respectively. The spin precession due to the Rashba

effect is described by the exponentials containing Pauli matrices in Eq. (2).

Eq. (2) is the key step to generalize the existing methods to study quantum networks

[5, 21] in the presence of Rashba SO coupling. The wavefunction of the whole network is

obtained by imposing the continuity of probability current at the nodes. For a generic node

α it reads:

MααΨα +
∑

〈α,β〉
MαβΨβ = 0, (3)

where

Mαα =
∑

〈α,β〉
cot klαβ (4a)

Mαβ = −exp [−i(~σ × ẑ) · γ̂αβ kSOlαβ ]

sin klαβ
. (4b)
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FIG. 2: Spectrum of the diamond chain for different values of the strength of the spin-orbit coupling:

a) kSOL = 0; b) kSOL = 0.5; c) kSOL = 1.0; and d) kSOL = π/2.

In Eqs. (3,4) the sum
∑

〈α,β〉 runs over all nodes β which are connected by a bond to the

node α.

Spectral properties. Now, we apply the method presented above to calculate the spectral

properties of the diamond lattice. For an infinite lattice this can be done imposing the Bloch

condition on the wavefuction in the unit cell. This straightforward procedure yields for the

spectrum the following analytical expressions

ε(0)n (k) =
(π

2
+ nπ

)2
(5)

ε(±)
n (k) =

{

nπ + arccos

[

1

2

(

2 + 2 cos(
√
2kL) cos(kSOL)

2

±
√
2 sin(

√
2kL) sin(2kSOL)

)
1

2

]}2

. (6)

The momentum k is defined in the first Brillouin zone
[

− π√
2L

, π√
2L

]

(notice that the lattice

constant is
√
2L). The spectrum is composed by three kinds of bands. The first one is
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non dispersive: this is a characteristic of every bipartite structures containing nodes with

different coordination numbers. The bands ± are degenerate for zero SO coupling, and

are split by it. From Eq. (6) it is apparent that these bands become nondispersive for

kSOL = (n+ 1
2
)π, being n an integer. This condition can be recast using the spin-precession

length as L = (n+ 1
2
)LSO. For these value of the SO coupling strength the system becomes

localized (as it is indicated by the diverging effective mass). A portion of the spectrum Eqs.

(5, 6) is shown in Fig. (2) for increasing values of the SO coupling strength. For zero SO

coupling there are no gaps in the spectrum. For finite values of the Rashba coupling the

spin degeneracy of the ± bands is lifted and gaps open in the spectrum. When the SO

coupling strength approaches the value kSOL = π/2 the spectrum collapses to a series of

non dispersive bands.

The localization for the diamond chain can be understood in terms of interference effects

in analogy to the AB cages. In the case of the AB effect the phase difference between

different paths is due to the enclosed magnetic flux. In the present case the Rashba effect is

responsible for it. Consider an electron with spin |σ〉 in A (see Fig. 1). It can reach point

B either via the upper or the lower path. When traveling along the upper path, the spin

undergoes a precession first around ẑ × γ̂1 and then around ẑ × γ̂2. Hence, the final state

in B is given by Rγ̂2Rγ̂1 |σ〉, where Rγ̂ = exp [−i~σ · (ẑ × γ̂)kSOL]. Similarly for propagation

along the lower path, the state in B is Rγ̂1Rγ̂2 |σ〉. Destructive interference occurs when

{Rγ̂1 ,Rγ̂2} = 0, being {. . .} the anticommutator. For our setup with γ̂1 · γ̂2 = 0 this

condition is fulfilled if kSOL = (n + 1/2)π. A similar analysis can be carried out for more

complex structures. In particular, it can be shown that there are bipartite linear chains with

a more complex unit cell than the diamond chain that exhibit localization. In analogy to

the AB cages, we call the elementary square loop in our structure a Rashba cage.

Transport properties: clean case. In experiments the onset of localization in a quantum

network is usually detected by transport measurements. For example, for the AB cages the

conductance is suppressed for special values of the magnetic field. To propose a possible

experimental verifications of the Rashba-cage effect we now evaluate the linear conductance

for a diamond chain of finite length. Furthermore, to show that this localization effect

is due to the peculiar geometry of the lattice (bipartite containing nodes with different

coordination numbers), we contrast the diamond chain with square ladder, i.e. a chain of

square loops connected at two vertices, (see inset of Fig. 3). In the following, we will also
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refer to the latter geometry simply as ladder. We evaluate the conductance making use of

the Landauer–Büttiker formalism [22, 23]. We consider a finite piece of lattice connected

to semi-infinite leads (with no SO coupling) modeling reservoirs (see inset of Fig. 3). To

compute the transmission coefficients we proceed along the lines of Ref. [5]. We inject from

the left wire an electron with spin σ = ± along a generic direction, whose corresponding

spinors are χσ. The wavefunctions on the external leads are simply

Ψleft(r) = eikinrχσ +
∑

σ′

rσ′σe
−ikinrχσ′ (7)

Ψright(r) =
∑

σ′

tσ′σe
ikinrχσ′ , (8)

where r is the coordinate on the semi-infinite input/output lead, with the origin fixed at the

position of the input/output node.

The transmission and reflection coefficients (tσ′σ and rσ′σ, respectively) can be obtained

by solving the linear system of equations arising from the continuity of the probability

current at all nodes in the network and of the wavefunction at the input and output nodes.

The conditions for the continuity of the probability current at internal nodes are given in

Eq. (3). For the external nodes they read

M00Ψ0 +
∑

〈0,β〉
M0βΨβ = −i(χσ −

∑

σ′

rσ′σχσ′) (9)

MNNΨN +
∑

〈N,β〉
MNβΨβ = i

∑

σ′

tσ′σχσ′ , (10)

where the injection node is labeled as “0” and the output node as “N”. The total trans-

mission coefficient is then simply |t|2 =
∑

σ,σ′ |tσ′σ|2. As it can be seen by inspection of the

terms Eq. (4) appearing in the continuity equations (setting lαβ = L), all the properties are

periodic in k with a periodicity 2π/L. Furthermore, for the total conductance the period in

k is halved, i.e. it is π/L. Finite temperature or finite voltage will introduce in a natural way

an average over kin. For Max[KBT, eV ] ≥ KBT
∗ = ~2

m
kF

π
L
, the result of a transport mea-

surement will be the conductance integrated over kin ∈ [0, π/L], indicated as 〈G(kSO L)〉kin.
Taking for the Fermi energy of the single-channel wires 10 meV, m/me = 0.042 for the

effective mass (InAs), and L = 1µm, yields T ∗ ≈ 7 K.

For a given kin, the conductance has a rich structure that takes into account the com-

plexity of the associate energy spectrum. In particular increasing kSO gaps open and the
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FIG. 3: Panel a): Conductance (averaged over kin as a function of the spin-orbit coupling strength

for the diamond chain (continuous line) and for the ladder (dashed line). The two finite-size systems

connected to input/output leads are shown in the inset. The parameters used for the calculation

are: 50 elementary loops, kin uniformly distributed in [0, π/L].

Panel b): Conductance as a function of the spin-orbit coupling strength for the diamond chain

(continuous line) and for the ladder (dashed line) for a fixed value of kin = kF. The parameters

used for the calculation are: 50 elementary loops, kFL = nπ + 2, being n an integer.

energy of the incoming electrons (ǫin =
~2k2

in

2m
) can enter one of these gaps leading to a van-

ishing conductance but not to localization [see panel b) of Fig. 3]. In fact, in this case

the insulating behavior is due to the absence of available states at the injection energy and

not to the localization in space of the electron wavefunction[24]. This effects is not present

in 〈G(kSO L)〉kin, as the integration over kin is equivalent to an average over energy. The

dependence of the average conductance 〈G(kSO L)〉kin on kSO is shown in panel a) of Fig.

(3) for both the diamond chain and the square ladder. The conductance for both kind of

chains has a minimum for kSO L = π/2 due to interference caused by the phase differences

induced by the Rashba effect. But due to the existence of the Rashba cages, this minimum

reaches zero only for the diamond chain. In panel b) of Fig (3) the conductance for fixed

kin for the two chains is shown: for this choice of parameters, the gap opens only for the

diamond chain, while for the ladder a rich interference pattern is present[25].

Transport properties: disordered case. From the studies on the AB cages, we expect the

localization induced by the Rashba effect to be robust against disorder only in the bipartite

structure containing nodes with different coordination numbers (diamond chain). There
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FIG. 4: Conductance (averaged over disorder configurations and over kin) plotted as a function

of the spin-orbit coupling strength for the diamond chain [panel a)] and the ladder [panel b)].

The two values of the disorder strength used in the calculation are: ∆L = 0.01L (solid line) and

∆L = 0.02L (dashed line). Disorder averaging is done over 50 configurations, and kin is uniformly

distributed in [kF −π/2, kF +π/2], with kFL = 100. Both systems are composed by 50 elementary

loops.

are several kind of disorder that can be considered. Potential disorder along the wires (for

example randomly located point-like scatterers) does not lead, in this purely one-dimensional

model, to a modification of the phases acquired on a bond by spin-precession but only to

a renormalization of the bond transmission. The disorder that is more dangerous for the

Rashba-cage effect is a random fluctuation of the length of the bonds (see Ref. [5]), as such

length fluctuations induce fluctuations of the phase shifts due to spin-precession. Hence,

we consider a model where the length of each bond is randomly distributed in the interval

[L−∆L, L+∆L]. The half width of the distribution ∆L gives the strength of the disorder. In

order to clarify if disorder affects the conductance, we average over disorder configurations.

This is relevant to experiments, as in a real sample averaging is introduced by the finite

phase-coherence length. For intermediate values of disorder (kF∆L ≈ 1) we find that the

Rashba-cage effect is still present for the diamond chain, while the periodicity in kSO is

halved for the ladder, as shown in Fig. (4). This latter result can be interpreted as the

analogous of the Altshuler-Aharonov-Spivak (AAS) [26] effect induced by the SO coupling.

The halving of the oscillation period is due to the enhancement of back-reflection due to

interference of pair of paths traveling clockwise and counter-clockwise along a square of the

chain (according to weak localization picture). At higher values of disorder the AAS effect
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prevails also in the diamond chain.

Finally, we expect that the results concerning the Rashba-cage effect will not change

qualitatively when the wires are multimode if subband hybridization can be neglected, i.e. if

the spin-precession length is much larger than the width of the wires. However, quantitative

changes can occur due to scattering between the different modes at the vertices of the

network.

Conclusions. We have shown that in quantum network with a particular bipartite ge-

ometry (diamond chain) is possible to obtain localization of the electron wavefunction by

means of the Rashba effect. This localization shows up both in the spectrum of the infinite

chain which becomes nondispersive, and in the transport properties of a finite-size chain

connected to leads. Furthermore, transport calculations in the presence of disorder show

that in bipartite structure containing nodes with different connectivity this Rashba-cage

effect is robust against disorder.

We gratefully acknowledge helpful discussions with G. De Filippis, R. Fazio, D. Frustaglia

and A.C. Perroni.
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[16] T. Schäpers, J. Engels, T. Klocke, M. Hollfelder, and H. Lüth, J. Appl. Phys. 83, 4324 (1998).
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