370 research outputs found

    Mechanocatalytic Depolymerization of Cellulose With Perfluorinated Sulfonic Acid Ionomers

    Get PDF
    Here, we investigated that the mechanocatalytic depolymerization of cellulose in the presence of Aquivion, a sulfonated perfluorinated ionomer. Under optimized conditions, yields of water soluble sugars of 90-97% were obtained using Aquivion PW98 and PW66, respectively, as a solid acid catalyst. The detailed characterization of the water soluble fraction revealed (i) the selective formation of oligosaccharides with a DP up to 11 and (ii) that depolymerization and reversion reactions concomitantly occurred during the mechanocatalytic process, although the first largely predominated. More importantly, we discussed on the critical role of water contained in Aquivion and cellulose on the efficiency of the mechanocatalytic process.CNRS Centre National de la Recherche ScientifiqueUniversity of PoitiersSpanish Ministerio de Economía y Competitividad (MINECO, CTQ2015-64425-C2-1-R)Junta de Andalucía ( FQM2012-1467

    Synthesis and characterization of nanocrystalline U1x_{1-x}Pux_{x}O2(+y)_{2(+y)} mixed oxides

    Get PDF
    We report here the first synthesis of mixed oxide U1x_{1-x}Pux_{x}O2(+y)_{2(+y)} nanoparticles. The obtained nanopowders were characterized by X-ray diffraction, thermal ionization mass spectrometry, transmission electron microscopy, Raman spectroscopy, and U M4_{4} edge high-energy-resolution X-ray absorption near edge structure (HR-XANES). The HR-XANES spectra give evidence for the partial oxidation of UIV^{IV} to UV^{V}. This novel route toward the formation of actinide–actinide solid solution opens research opportunities that are not accessible using bulk materials. We give details on the X-ray diffraction study on plutonium oxalate hexahydrate, as a reagent for the synthesis of such nanoparticles

    Acute Community-Acquired Diarrhea Requiring Hospital Admission in Swiss Children

    Get PDF
    In order to ascertain the prevalence of agents that cause childhood diarrheal illness, stool specimens of 312 consecutive children with community-acquired diarrhea requiring admission were evaluated. Pathogens were detected in 166 (53%) of the 312 children (≥2 pathogens in 28 children): Rotavirus (n=75), Salmonella spp. (n=37), Campylobacter spp. (n=24), Shigella spp. (n=5), Giardia spp. (n=4), Yersinia spp. (n=2), Aeromonas spp. (n=15), Cryptosporidium (n=15), enteropathogenic Escherichia coli (n=13), enterotoxigenic E. coli (n=7), and enterohemorrhagic E. coli (n=5). In conclusion, acute childhood diarrheal illness pathogens, such as Aeromonas, Cryptosporidium, and diarrheagenic E. coli, account for a large proportion of patients with a microbiologically positive stool specime

    Time-like flows of energy-momentum and particle trajectories for the Klein-Gordon equation

    Get PDF
    The Klein-Gordon equation is interpreted in the de Broglie-Bohm manner as a single-particle relativistic quantum mechanical equation that defines unique time-like particle trajectories. The particle trajectories are determined by the conserved flow of the intrinsic energy density which can be derived from the specification of the Klein-Gordon energy-momentum tensor in an Einstein-Riemann space. The approach is illustrated by application to the simple single-particle phenomena associated with square potentials.Comment: 14 pages, 11 figure

    The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation, in a self-consistently relativistic way, of the Sagnac effect. Sakurai's result is recovered in the first order approximation.Comment: 18 pages, LaTeX, 2 EPS figures. To appear in General Relativity and Gravitatio

    The relativistic Sagnac Effect: two derivations

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter and electromagnetic beams, counter-propagating in a rotating interferometer, is deduced using two different approaches. From one hand, we show that the relativistic law of velocity addition leads to the well known Sagnac time difference, which is the same independently of the physical nature of the interfering beams, evidencing in this way the universality of the effect. Another derivation is based on a formal analogy with the phase shift induced by the magnetic potential for charged particles travelling in a region where a constant vector potential is present: this is the so called Aharonov-Bohm effect. Both derivations are carried out in a fully relativistic context, using a suitable 1+3 splitting that allows us to recognize and define the space where electromagnetic and matter waves propagate: this is an extended 3-space, which we call "relative space". It is recognized as the only space having an actual physical meaning from an operational point of view, and it is identified as the 'physical space of the rotating platform': the geometry of this space turns out to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also http://digilander.libero.it/solciclo

    Direct 17O Isotopic Labeling of Oxides Using Mechanochemistry

    Get PDF
    While 17O NMR is increasingly being used for elucidating the structure and reactivity of complex molecular and materials systems, much effort is still required for it to become a routine analytical technique. One of the main difficulties for its development comes from the very low natural abundance of 17O (0.04%), which implies that isotopic labeling is generally needed prior to NMR analyses. However, 17O-enrichment protocols are often unattractive in terms of cost, safety, and/or practicality, even for compounds as simple as metal oxides. Here, we demonstrate how mechanochemistry can be used in a highly efficient way for the direct 17O isotopic labeling of a variety of s-, p-, and d-block oxides, which are of major interest for the preparation of functional ceramics and glasses: Li2O, CaO, Al2O3, SiO2, TiO2, and ZrO2. For each oxide, the enrichment step was performed under ambient conditions in less than 1 h and at low cost, which makes these synthetic approaches highly appealing in comparison to the existing literature. Using high-resolution solid-state 17O NMR and dynamic nuclear polarization, atomic-level insight into the enrichment process is achieved, especially for titania and alumina. Indeed, it was possible to demonstrate that enriched oxygen sites are present not only at the surface but also within the oxide particles. Moreover, information on the actual reactions occurring during the milling step could be obtained by 17O NMR, in terms of both their kinetics and the nature of the reactive species. Finally, it was demonstrated how high-resolution 17O NMR can be used for studying the reactivity at the interfaces between different oxide particles during ball-milling, especially in cases when X-ray diffraction techniques are uninformative. More generally, such investigations will be useful not only for producing 17O-enriched precursors efficiently but also for understanding better mechanisms of mechanochemical processes themselves
    corecore