770 research outputs found

    Automation of NLO processes and decays and POWHEG matching in WHIZARD

    Get PDF
    We give a status report on the automation of next-to-leading order processes within the Monte Carlo event generator WHIZARD, using GoSam and OpenLoops as provider for one-loop matrix elements. To deal with divergences, WHIZARD uses automated FKS subtraction, and the phase space for singular regions is generated automatically. NLO examples for both scattering and decay processes with a focus on e+e- processes are shown. Also, first NLO-studies of observables for collisions of polarized leptons beams, e.g. at the ILC, will be presented. Furthermore, the automatic matching of the fixed-order NLO amplitudes with emissions from the parton shower within the POWHEG formalism inside WHIZARD will be discussed. We also present results for top pairs at threshold in lepton collisions, including matching between a resummed threshold calculation and fixed-order NLO. This allows the investigation of more exclusive differential observables.Comment: 5 pages, 3 figures, Talk presented at ACAT 2016 at UTFSM, Valpara\'iso, Chil

    Top Physics in WHIZARD

    Get PDF
    In this talk we summarize the top physics setup in the event generator WHIZARD with a main focus on lepton colliders. This includes full six-, eight- and ten-fermion processes, factorized processes and spin correlations. For lepton colliders, QCD NLO processes for top quark physics are available and will be discussed. A special focus is on the top-quark pair threshold, where a special implementation combines a non-relativistic effective field theory calculation augmented by a next-to-leading threshold logarithm resummation with a continuum relativistic fixed-order QCD NLO simulation.Comment: 6 pages, 2 figures, Talk presented at the International Workshop on Future Linear Colliders (LCWS15), Whistler, Canada, 2-6 November 201

    Light dark forces at flavor factories

    Full text link
    SuperB experiment could represent an ideal environment to test a new U (1) symmetry related to light dark forces candidates. A promising discovery channel is represented by the resonant production of a boson U, followed by its decay into lepton pairs. Beyond approximations adopted in the literature, an exact tree level calculation of the radiative processes e+eγ,Uμ+μγ,e+eγe+ e- \rightarrow \gamma, U \rightarrow \mu^+ \mu^- \gamma, e^+ e^- \gamma and corresponding QED backgrounds is performed, including also the most important higher-order corrections. The calculation is implemented in a release of the generator BabaYaga@NLO useful for data analysis and interpretation. The distinct features of U boson production are shown and the statistical significance is analysed

    Status of KLOE-2

    Full text link
    In a few months the KLOE-2 detector is expected to start data taking at the upgraded DAΦ\rm{\Phi}NE ϕ\phi-factory of INFN Laboratori Nazionali di Frascati. It aims to collect 25 fb1^{-1} at the ϕ(1020)\phi(1020) peak, and about 5 fb1^{-1} in the energy region between 1 and 2.5 GeV. We review the status and physics program of the projectComment: 6 pages, 5 figures, to appear in the Proceedings of the PHIPSI09 Workshop, Oct 13-16, 2009, Beijing, Chin

    Hadronic light-by-light scattering contribution to the muon g-2

    Full text link
    We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contribution to the g-2. We then reevaluate the numerically dominant pion-exchange contribution in the framework of large-N_C QCD, using an off-shell pion-photon-photon form factor which fulfills all QCD short-distance constraints, in particular, a new short-distance constraint on the off-shell form factor at the external vertex in g-2, which relates the form factor to the quark condensate magnetic susceptibility in QCD. Combined with available evaluations of the other contributions to hadronic light-by-light scattering this leads to the new result a_{\mu}(LbyL; had) = (116 \pm 40) x 10^{-11}, with a conservative error estimate in view of the many still unsolved problems. Some potential ways for further improvements are briefly discussed as well. For the electron we obtain the new estimate a_{e}(LbyL; had) = (3.9 \pm 1.3) x 10^{-14}.Comment: 6 pages, 1 figure, to be published in the proceedings of the PhiPsi09 workshop, Oct. 13-16, 2009, Beijing, Chin

    Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation

    Get PDF
    We investigate the effective conductivity (σe\sigma_e) of a class of amorphous media defined by the level-cut of a Gaussian random field. The three point solid-solid correlation function is derived and utilised in the evaluation of the Beran-Milton bounds. Simulations are used to calculate σe\sigma_e for a variety of fields and volume fractions at several different conductivity contrasts. Relatively large differences in σe\sigma_e are observed between the Gaussian media and the identical overlapping sphere model used previously as a `model' amorphous medium. In contrast σe\sigma_e shows little variability between different Gaussian media.Comment: 15 pages, 14 figure

    Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses

    Get PDF
    Indium islands on molybdenum coated glass can be grown in ordered arrays by surface structuring using a femtosecond laser. The effect of varying the molybdenum coated glass substrate temperature and the indium deposition rate on island areal density, volume and geometry is investigated and evaluated in a physical vapor deposition (PVD) process. The joined impact of growth conditions and spacing of the femtosecond laser structured spots on the arrangement and morphology of indium islands is demonstrated. The results yield a deeper understanding of the island growth and its precise adjustment to industrial requirements, which is indispensable for a technological application of such structures at a high throughput, for instance as precursors for the preparation of Cu(In,Ga)Se2 micro concentrator solar cells

    Constraining the Hadronic Contributions to the Muon Anomalous Magnetic Moment

    Full text link
    The mini-proceedings of the Workshop on "Constraining the hadronic contributions to the muon anomalous magnetic moment" which included the "13th meeting of the Radio MonteCarLow WG" and the "Satellite meeting R-Measurements at BES-III" held in Trento from April 10th to 12th, 2013, are presented. This collaboration meeting aims to bring together the experimental e+e- collider communities from BaBar, Belle, BESIII, CMD2, KLOE, and SND, with theorists working in the fields of meson transitions form factors, hadronic contributions to (g-2)_\mu and effective fine structure constant, and development of Monte Carlo generator and Radiative Corrections for precision e+e- and tau physics.Comment: 45 pages, 17 contributions. Editors: P. Masjuan and G. Venanzon

    Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Get PDF
    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenumfilm or direct laser processing of the molybdenumfilm both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition(PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenumsurface, leading to randomly grown indium islands after PVD

    Steady State of microemulsions in shear flow

    Full text link
    Steady-state properties of microemulsions in shear flow are studied in the context of a Ginzburg-Landau free-energy approach. Explicit expressions are given for the structure factor and the time correlation function at the one loop level of approximation. Our results predict a four-peak pattern for the structure factor, implying the simultaneous presence of interfaces aligned with two different orientations. Due to the peculiar interface structure a non-monotonous relaxation of the time correlator is also found.Comment: 5 pages, 3 figure
    corecore