649 research outputs found

    Comment on ``Spin Polarization and Magnetic Circular Dichroism in Photoemission from the 2p Core Level of Ferromagnetic Ni''

    Full text link
    Although the Ni_4 cluster includes more information regarding the Ni band structure with respect to the Anderson impurity model, it also favors very peculiar ground states which are incompatible with a coherent picture of all dichroism experiments.Comment: 1 page, RevTeX, 1 epsf figur

    Magnetic x‐ray dichroism of rare‐earth materials

    Get PDF
    We discuss recent developments in the magnetic x‐ray dichroism of rare‐earth materials. The application of this technique to the study of magnetic materials is discussed. Also, other work on magneto‐optical effects in the x‐ray range is reviewed

    Magnetic circular dichroism of x-ray absorption spectroscopy at rare-earth L2,3 edges in RE2Fe14B compounds (RE = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)

    Full text link
    Magnetic circular dichroism (MCD) in the x-ray absorption spectroscopy (XAS) at the L2,3 edges for almost entire series of rare-earth (RE) elements in RE2Fe14B, is studied experimentally and theoretically. By a quantitative comparison of the complicated MCD spectral shapes, we find that (i) the 4f-5d intra-atomic exchange interaction not only induces the spin and orbital polarization of the 5d states, which is vital for the MCD spectra of the electric dipole transition from the 2p core states to the empty 5d conduction band, but also it accompanies a contraction of the radial part of the 5d wave function depending on its spin and orbital state, which results in the enhancement of the 2p-5d dipole matrix element, (ii) there are cases where the spin polarization of the 5d states due to the hybridization with the spin polarized 3d states of surrounding irons plays important roles, and (iii) the electric quadrupole transition from the 2p core states to the magnetic vale! nce 4f states is appreciable at the pre-edge region of the dipole spectrum. Especially, our results evidence that it is important to include the enhancement effect of the dipole matrix element in the correct interpretation of the MCD spectra at the RE L2,3 edges.Comment: 9 pages, 5 figures, 1 table, REVTe

    Band-theoretical prediction of magnetic anisotropy in uranium monochalcogenides

    Full text link
    Magnetic anisotropy of uranium monochalcogenides, US, USe and UTe, is studied by means of fully-relativistic spin-polarized band structure calculations within the local spin-density approximation. It is found that the size of the magnetic anisotropy is fairly large (about 10 meV/unit formula), which is comparable with experiment. This strong anisotropy is discussed in view of a pseudo-gap formation, of which crucial ingredients are the exchange splitting of U 5f states and their hybridization with chalcogen p states (f-p hybridization). An anomalous trend in the anisotropy is found in the series (US>>USe<UTe) and interpreted in terms of competition between localization of the U 5f states and the f-p hybridization. It is the spin-orbit interaction on the chalcogen p states that plays an essential role in enlarging the strength of the f-p hybridization in UTe, leading to an anomalous systematic trend in the magnetic anisotropy.Comment: 4 pages, 5 figure

    Observation of magnetic circular dichroism in Fe L_{2,3} x-ray-fluorescence spectra

    Get PDF
    We report experiments demonstrating circular dichroism in the x-ray-fluorescence spectra of magnetic systems, as predicted by a recent theory. The data, on the L_{2,3} edges of ferromagnetic iron, are compared with fully relativistic local spin density functional calculations, and the relationship between the dichroic spectra and the spin-resolved local density of occupied states is discussed

    Electronic and Magnetic Structures of Sr2FeMoO6

    Get PDF
    We have investigated the electronic and magnetic structures of Sr2FeMoO6 employing site-specific direct probes, namely x-ray absorption spectroscopy with linearly and circularly polarized photons. In contrast to some previous suggestions, the results clearly establish that Fe is in the formal trivalent state in this compound. With the help of circularly polarized light, it is unambiguously shown that the moment at the Mo sites is below the limit of detection (< 0.25mu_B), resolving a previous controversy. We also show that the decrease of the observed moment in magnetization measurements from the theoretically expected value is driven by the presence of mis-site disorder between Fe and Mo sites.Comment: To appear in Physical Review Letter

    Satellite holmium M-edge spectra from the magnetic phase via resonant x-ray scattering

    Full text link
    Developing an expression of resonant x-ray scattering (RXS) amplitude which is convenient for investigating the contributions from the higher rank tensor on the basis of a localized electron picture, we analyze the RXS spectra from the magnetic phases of Ho near the M4,5M_{4,5} absorption edges. At the M5M_5 edge in the uniform helical phase, the calculated spectra of the absorption coefficient, the RXS intensities at the first and second satellite spots capture the properties the experimental data possess, such as the spectral shapes and the peak positions. This demonstrates the plausibility of the adoption of the localized picture in this material and the effectiveness of the spectral shape analysis. The latter point is markedly valuable since the azimuthal angle dependence, which is one of the most useful informations RXS can provides, is lacking in the experimental conditions. Then, by focusing on the temperature dependence of the spectral shape at the second satellite spot, we expect that the spectrum is the contribution of the pure rank two profile in the uniform helical and the conical phases while that is dominated by the rank one profile in the intermediate temperature phase, so-called spin slip phase. The change of the spectral shape as a function of temperature indicates a direct evidence of the change of magnetic structures undergoing. Furthermore, we predict that the intensity, which is the same order observed at the second satellite spot, is expected at the fourth satellite spot from the conical phase in the electric dipolar transition.Comment: 24 pages, 5 figure

    Rare earth contributions to the X-ray magnetic circular dichroism at the Co K edge in rare earth-cobalt compounds investigated by multiple-scattering calculations

    Full text link
    The X-ray magnetic circular dichroism (XMCD) has been measured at the Co K edge in Co-hcp and R-Co compounds (R=La, Tb, Dy). The structure of the experimental XMCD spectra in the near-edge region has been observed to be highly sensitive to the magnetic environment of the absorbing site. Calculations of the XMCD have been carried out at the Co K edge in Co metal, LaCo5_5 and TbCo5_5 within the multiple-scattering framework including the spin-orbit coupling. In the three systems, the XMCD spectra in the near-edge region are well reproduced. The possibility to separate and quantitatively estimate the local effects from those due to the neighboring atoms in the XMCD cross section makes possible a more physical understanding of the spectra. The present results emphasize the major role played by the dd states of the Tb ions in the XMCD spectrum at the Co K edge in the TbCo5_5 compound.Comment: 34 pages, revtex, 10 eps figures included with epsf, after referee revie

    Direct observation of electron doping in La0.7Ce0.3MnO3 using x-ray absorption spectroscopy

    Full text link
    We report on a X-ray absorption spectroscopic (XAS) study on a thin film of La0.7Ce0.3MnO3, a manganite which was previously only speculated to be an electron doped system. The measurements clearly show that the cerium is in the Ce(IV) valence state and that the manganese is present in a mixture of Mn2+ and Mn3+ valence states. These data unambiguously demonstrate that La0.7Ce0.3MnO3 is an electron doped colossal magnetoresistive manganite, a finding that may open up new opportunities both for device applications as well as for further basic research towards a better modelling of the colossal magnetoresistance phenomenon in these materials.Comment: 4 pages, 3 figures, revised versio
    corecore