200 research outputs found

    Experimental study of factors influencing the risk of drift from field sprayers Part 2: Spray application technique.

    Get PDF
    Recently, spray drift and its effects have become an important aspect of risk assessment in the registration process of pesticides in Belgium. In this regulation, drift reducing spray application techniques can be used to reduce buffer zones. The purpose of this research is to measure and compare the amount of drift sediment for different spray application techniques under field conditions. A drift prediction equation for the reference spraying was used to compare other spraying techniques with the reference spraying, under different weather conditions. Drift measurements were performed for several combinations of nozzle type (flat fan, low-drift, air injection) and size (ISO 02, 03, 04 and 06), spray pressure (2, 3 and 4 bar), driving speed (4, 6, 8 and 10 km.h-1) and spray boom height (0.3, 0.5 and 0.75 m). Nozzle type as well as spray pressure, driving speed and spray boom height, have an important effect on the amount of spray drift. Larger nozzle sizes, lower spray pressures and driving speeds and lower spray boom heights generally reduce spray drift. Concerning nozzle types, air injection nozzles have the highest drift reduction potential followed by the low-drift nozzles and the standard flat fan nozzles

    Experimental study of factors influencing the risk of drift from field sprayers, Part 1: Meteorological conditions

    Get PDF
    Spray drift can be defined as the quantity of plant protection product that is carried out of the sprayed (treated) area by the action of air currents during the application process. This continues to be a major problem in applying agricultural pesticides. The purpose of this research is to measure and compare the amount of drift for different climatological conditions under field conditions. Sedimenting spray drift was determined by sampling in a defined downwind area at different positions in a flat meadow using horizontal drift collectors for a reference spraying. Meteorological conditions were monitored during each experiment. A drift prediction equation for the reference spraying was set up to predict the expected magnitude of sedimenting at various drift distances and atmospheric conditions. The measurements proved the important effect of weather conditions (temperature, relative humidity and wind speed) on the amount of spray drift. A lower wind speed or a higher relative humidity decreases the amount of spray drift. Taking into account the correlation between temperature and relative humidity, a lower temperature will also result in lower drift values due to the cumulative effect of relative humidity. This equation can be used to quantify the effect of meteorological conditions, to compare measurements using other spraying techniques under different weather conditions to the reference spraying and to perform spray drift risk assessments

    Mismatch between morphological and functional assessment of the length of coronary artery disease

    Get PDF
    Background: Morphological evaluation of coronary lesion length is a paramount step during invasive assessment of coronary artery disease. Likewise, the extent of epicardial pressure losses can be measured using longitudinal vessel interrogation with fractional flow reserve (FFR) pullbacks. We aimed to quantify the mismatch in lesion length between morphological (based on quantitative coronary angiography, QCA, and optical coherence tomography, OCT) and functional evaluations. Methods: This is a prospective and multicenter study of patients evaluated by QCA, OCT and motorized fractional flow reserve pullbacks (mFFR). The difference in lesion length between the functional and anatomical evaluations was referred to as FAM. Results: 117 patients (131 vessels) were included. Median lesion length derived from angiography was 16.05 mm [11.40–22.05], from OCT was 28.00 mm [16.63–38.00] and from mFFR 67.12 mm [25.38–91.37]. There was no correlation between QCA and mFFR lesion length (r = 0.124, 95% CI -0.168-0.396, p = 0.390). OCT lesion length did correlate with mFFR (r = 0.469, 95% CI 0.156–0.696, p = 0.004). FAM was strongly associated with the improvement in vessel conductance with percutaneous coronary intervention (PCI), higher mismatch was associated with lower post-PCI FFR. Conclusions: Lesion length assessment differs between morphological and functional evaluations. The morphological-functional mismatch in lesion length is frequent, and influences the results of PCI in terms of post-PCI FFR. Integration of the extent of pressure losses provides clinically relevant information that may be useful for clinical decision-making concerning revascularization strategy

    Head-to-head comparison of two angiography-derived fractional flow reserve techniques in patients with high-risk acute coronary syndrome: A multicenter prospective study.

    Get PDF
    FFRangio and QFR are angiography-based technologies that have been validated in patients with stable coronary artery disease. No head-to-head comparison to invasive fractional flow reserve (FFR) has been reported to date in patients with acute coronary syndromes (ACS). This study is a subset of a larger prospective multicenter, single-arm study that involved patients diagnosed with high-risk ACS in whom 30-70% stenosis was evaluated by FFR. FFRangio and QFR - both calculated offline by 2 different and blinded operators - were calculated and compared to FFR. The two co-primary endpoints were the comparison of the Pearson correlation coefficient between FFRangio and QFR with FFR and the comparison of their inter-observer variability. Among 134 high-risk ACS screened patients, 59 patients with 84 vessels underwent FFR measurements and were included in this study. The mean FFR value was 0.82 ± 0.40 with 32 (38%) being ≤0.80. The mean FFRangio was 0.82 ± 0.20 and the mean QFR was 0.82 ± 0.30, with 27 (32%) and 25 (29%) being ≤0.80, respectively. The Pearson correlation coefficient was significantly better for FFRangio compared to QFR, with R values of 0.76 and 0.61, respectively (p = 0.01). The inter-observer agreement was also significantly better for FFRangio compared to QFR (0.86 vs 0.79, p < 0.05). FFRangio had 91% sensitivity, 100% specificity, and 96.8% accuracy, while QFR exhibited 86.4% sensitivity, 98.4% specificity, and 93.7% accuracy. In patients with high-risk ACS, FFRangio and QFR demonstrated excellent diagnostic performance. FFRangio seems to have better correlation to invasive FFR compared to QFR but further larger validation studies are required

    Validation of coronary angiography-derived vessel fractional flow reserve in heart transplant patients with suspected graft vasculopathy

    Get PDF
    Cardiac transplant-related vasculopathy remains a leading cause of morbidity and mortality in heart transplant (HTx) recipients. Recently, coronary angiography-derived vessel fractional flow reserve (vFFR) has emerged as a new diagnostic computational tool to functionally evaluate the severity of coronary artery disease. Although vFFR estimates have been shown to perform well against invasive FFR in atherosclerotic coronary artery disease, data on the use of vFFR in heart transplant recipients suffering from cardiac transplant-related arteriopathy are lacking. The aim of the presented study was to validate coronary angiography-derived vessel fractional flow reserve to calculate fractional flow reserve in HTx patients with and without cardiac transplant-related vasculopathy. A prospective, single center study of HTx patients referred for annual check-up, undergoing surveillance coronarography was conducted. Invasive FFR was measured using a motorized device at the speed of 1.0 mm/s in all three major coronary arteries. Angiography-derived pullback FFR was derived from the angiogram and compared with invasive FFR pullback curve. Overall, 18,059 FFR values were extracted from the FFR pullback curves from 23 HTx patients. The mean age was 59.3 ± 9.7 years, the mean time after transplantation was 5.24 years [IQR 1.20, 11.25]. A total of 39 vessels from 23 patients (24 LAD, 11 LCX, 4 RCA) were analyzed. Mean distal vFFR was 0.87 ± 0.14 whereas invasive distal FFR was 0.88 ± 0.17. An excellent correlation was found between invasive distal FFR and vFFR (r = 0.92; p < 0.001). The correlation of the pullback tracing was high, with a correlation coefficient between vFFR and invasive FFR pullback values of 0.72 (95% CI 0.71 to 0.73, p < 0.001). The mean difference between vFFR and invasive FFR pullback values was −0.01 with 0.06 of SD (limits of agreements −0.12 to 0.13). In HTx patients, coronary angiography-derived FFR correlates excellently with invasively measured wire-derived FFR. Therefore, angiography derived FFR could be used as a novel diagnostic tool to quantify the functional severity of graft vasculopathy

    Rationale and design of the precise percutaneous coronary intervention plan (P3) study. Prospective evaluation of a virtual computed tomography-based percutaneous intervention planner

    Get PDF
    Introduction: Fractional flow reserve (FFR) measured after percutaneous coronary intervention (PCI) has been identified as a surrogate marker for vessel related adverse events. FFR can be derived from standard coronary computed tomography angiography (CTA). Moreover, the FFR derived from coronary CTA (FFRCT) Planner is a tool that simulates PCI providing modeled FFRCT values after stenosis opening. Aim: To validate the accuracy of the FFRCT Planner in predicting FFR after PCI with invasive FFR as a reference standard. Methods: Prospective, international and multicenter study of patients with chronic coronary syndromes undergoing PCI. Patients will undergo coronary CTA with FFRCT prior to PCI. Combined morphological and functional evaluations with motorized FFR hyperemic pullbacks, and optical coherence tomography (OCT) will be performed before and after PCI. The FFRCT Planner will be applied by an independent core laboratory blinded to invasive data, replicating the invasive procedure. The primary objective is to assess the agreement between the predicted FFRCT post-PCI derived from the Planner and invasive FFR. A total of 127 patients will be included in the study. Results: Patient enrollment started in February 2019. Until December 2020, 100 patients have been included. Mean age was 64.1 ± 9.03, 76% were males and 24% diabetics. The target vessels for PCI were LAD 83%, LCX 6%, and RCA 11%. The final results are expected in 2021. Conclusion: This study will determine the accuracy and precision of the FFRCT Planner to predict post-PCI FFR in patients with chronic coronary syndromes undergoing percutaneous revascularization

    Simplified Assessment of the Index of Microvascular Resistance

    Get PDF
    Background. To validate a simplified invasive method for the calculation of the index of microvascular resistance (IMR). Methods. This is a prospective, single-center study of patients with chronic coronary syndromes presenting with nonobstructive coronary artery disease. IMR was obtained using both intravenous (IV) adenosine and intracoronary (IC) papaverine. Each IMR measurement was obtained in duplicate. The primary objective was the agreement between IMR acquired using adenosine and papaverine. Secondary objectives include reproducibility of IMR and time required for the IMR measurement. Results. One hundred and sixteen IMR measurements were performed in 29 patients. The mean age was 68.8 ± 7.24 years, and 27.6% was diabetics. IMR values were similar between papaverine and adenosine (17.7 ± 7.26 and 20.1 ± 8.6, p=0.25; Passing-Bablok coefficient A 0.58, 95% CI -2.42 to 3.53; coefficient B 0.90, 95% CI -0.74 to 1.07). The reproducibility of IMR was excellent with both adenosine and papaverine (ICC 0.78, 95% CI 0.63 to 0.88 and ICC 0.93, 95% CI 0.87 to 0.97). The time needed for microvascular assessment was significantly shortened by the use of IC papaverine (3.23 (2.84, 3.78) mins vs. 5.48 (4.94, 7.09) mins, p<0.0001). Conclusion. IMR can be reliably measured using IC papaverine with similar results compared to intravenous infusion of adenosine with increased reproducibility and reduced procedural time. This approach simplifies the invasive assessment of the coronary microcirculation in the catheterization laboratory

    Coronary Atherosclerosis Phenotypes in Focal and Diffuse Disease.

    Get PDF
    The interplay between coronary hemodynamics and plaque characteristics remains poorly understood. The aim of this study was to compare atherosclerotic plaque phenotypes between focal and diffuse coronary artery disease (CAD) defined by coronary hemodynamics. This multicenter, prospective, single-arm study was conducted in 5 countries. Patients with functionally significant lesions based on an invasive fractional flow reserve ≤0.80 were included. Plaque analysis was performed by using coronary computed tomography angiography and optical coherence tomography. CAD patterns were assessed using motorized fractional flow reserve pullbacks and quantified by pullback pressure gradient (PPG). Focal and diffuse CAD was defined according to the median PPG value. A total of 117 patients (120 vessels) were included. The median PPG was 0.66 (IQR: 0.54-0.75). According to coronary computed tomography angiography analysis, plaque burden was higher in patients with focal CAD (87% ± 8% focal vs 82% ± 10% diffuse; P = 0.003). Calcifications were significantly more prevalent in patients with diffuse CAD (Agatston score per vessel: 51 [IQR: 11-204] focal vs 158 [IQR: 52-341] diffuse; P = 0.024). According to optical coherence tomography analysis, patients with focal CAD had a significantly higher prevalence of circumferential lipid-rich plaque (37% focal vs 4% diffuse; P = 0.001) and thin-cap fibroatheroma (TCFA) (47% focal vs 10% diffuse; P = 0.002). Focal disease defined by PPG predicted the presence of TCFA with an area under the curve of 0.73 (95% CI: 0.58-0.87). Atherosclerotic plaque phenotypes associate with intracoronary hemodynamics. Focal CAD had a higher plaque burden and was predominantly lipid-rich with a high prevalence of TCFA, whereas calcifications were more prevalent in diffuse CAD. (Precise Percutaneous Coronary Intervention Plan [P3]; NCT03782688)
    corecore