49 research outputs found

    Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae

    Get PDF
    Lesion and transplantation studies in the cockroach, Leucophaea maderae, have located its bilaterally symmetric circadian pacemakers necessary for driving circadian locomotor activity rhythms to the accessory medulla of the optic lobes. The accessory medulla comprises a network of peptidergic neurons, including pigment-dispersing factor (PDF)-expressing presumptive circadian pacemaker cells. At least three of the PDF-expressing neurons directly connect the two accessory medullae, apparently as a circadian coupling pathway. Here, the PDF-expressing circadian coupling pathways were examined for peptide colocalization by tracer experiments and double-label immunohistochemistry with antisera against PDF, FMRFamide, and Asn13-orcokinin. A fourth group of contralaterally projecting medulla neurons was identified, additional to the three known groups. Group one of the contralaterally projecting medulla neurons contained up to four PDF-expressing cells. Of these, three medium-sized PDF-immunoreactive neurons coexpressed FMRFamide and Asn13-orcokinin immunoreactivity. However, the contralaterally projecting largest PDF neuron showed no further peptide colocalization, as was also the case for the other large PDF-expressing medulla cells, allowing the easy identification of this cell group. Although two-thirds of all PDF-expressing medulla neurons coexpressed FMRFamide and orcokinin immunoreactivity in their somata, colocalization of PDF and FMRFamide immunoreactivity was observed in only a few termination sites. Colocalization of PDF and orcokinin immunoreactivity was never observed in any of the terminals or optic commissures. We suggest that circadian pacemaker cells employ axonal peptide sorting to phase-control physiological processes at specific times of the day

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    Get PDF
    We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05-1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4-7 days or ≥ 8 days of 1.25 (1.04-1.48), p = 0.015 and 1.31 (1.11-1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care

    Multi criteria optimisation using analytic hierarchy process in turning operation

    Full text link

    Experimental investigation on cutting forces, specific cutting pressure, co-efficient of friction and shear energy in turning of HSLA steel

    No full text
    Machinability study of a material is used to find the ease and difficulty during machining operation. High Strength Low Alloy (HSLA) medium carbon steel (EN25 steel) is considered to possess better mechanical properties than carbon steel. In this work, an attempt is made to experimentally investigate and realize the machinability of EN25 steel during turning with coated carbide tools. The effects of machining parameters on cutting force components, Specific Cutting Pressure (SCP), co-efficient of friction and shear energy are analysed during the investigation. The results of the investigation revealed that the mentioned machinability characteristics are necessary and essential to evaluate the machinability of HSLA steel effectively

    Multi criteria optimisation using analytic hierarchy process in turning operation

    No full text

    Analysis of the Effect of Process Parameters for Circularity and Cylindricity Errors in Turning Process

    Full text link
    Turning is one of the fundamental machining operations and its process parameters leads to better machining performance. The economic benefit of turning operation is providing components with appropriate dimensional accuracy. In this work, the effects of process parameters on dimensional accuracy (circularity and cylindricity) parameters are analyzed in turning of EN25 steel. The process parameters considered are cutting speed, feed rate and depth of cut in order to minimize circularity and cylindricity. The result revealed that the minimum dimensional accuracy error values such as circularity and cylindricity are obtained in the combination of higher value of cutting speed and lower value of feed rate and depth of cut. This analysis is used to meet the machined work piece within the tolerance limit and improve the quality criteria.</jats:p

    Micro Textured Cutting Inserts with Solid Lubrication as Alternative Coolant to Mineral Oil-Based Cutting Fluid in Turning Operation

    No full text
    Turning process is a primary process in engineering industries and optimization of process parameters enhance the machining performance. Inconel 718 is a nickel-based superalloy, widely found applications in the manufacturing of blades, sheets and discs in aircraft engines and rocket engines. It provides toughness at low temperature, with stand high mechanical stresses at elevated temperature and creep resistance. In this work, turning process is carried out on Inconel 718 with micro whole textured cutting inserts filled with solid lubricants. Three different solid lubricants are used namely molybdenum-di-sulfide (MoS2), tungsten-di-sulfide (WS2) and calcium-di-fluoride (CaF2). Experiments are performed as per L9 orthogonal array. Statistical approaches such as orthogonal array, Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) are used to find the importance and effects of machining parameters. In this study, input parameters included are feed, cutting speed and depth of cut and output parameter includes surface roughness. Optimization of process parameters is carried out and the significance is estimated. The result suggested that WS2 followed by MoS2 and CaF2 given good surface finish value. Also, solid lubricant in machining enhances the sustainability in manufacturing. </jats:p

    Application of TOPSIS Method for Prediction of Optimum Design Parameters of Micro Hole Textured Cutting Inserts in Turning of Al-MMC

    No full text
    Metal Matrix Composite (MMC) has better mechanical properties and it is possible to produce near net shape. Aluminum-based MMC (Al-MMC) has challenges in terms of machinability studies and estimation of its optimum process parameters. Alternative cutting fluid research is a challenging area in machining. To avoid, existing hydrocarbon oil-based cutting fluid, textured inserts embedded with a solid lubricant are one of the alternative solutions. Micro hole textured inserts make a hole on the rake face of the cutting tool inserts. Texture includes various important design parameters namely hole diameter, hole depth and pitch between the holes. These optimum parameters influence the machining process. In this work, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used to find the optimum design parameters (hole diameter, hole depth and pitch between holes) during turning of Al- MMC. The objective parameters considered are minimization of surface roughness, power consumption and tool flank wear. The optimum combination of these design parameters is obtained by the higher relative closeness value of the TOPSIS method. The result of the investigation revealed that these design parameters are important to obtain improved machining performance. Also, it is understood that the TOPSIS method has an appropriate procedure to solve multiple objective optimization problems in manufacturing industries.</jats:p
    corecore