1,599 research outputs found
Information embedding meets distributed control
We consider the problem of information embedding where the encoder modifies a
white Gaussian host signal in a power-constrained manner to encode the message,
and the decoder recovers both the embedded message and the modified host
signal. This extends the recent work of Sumszyk and Steinberg to the
continuous-alphabet Gaussian setting. We show that a dirty-paper-coding based
strategy achieves the optimal rate for perfect recovery of the modified host
and the message. We also provide bounds for the extension wherein the modified
host signal is recovered only to within a specified distortion. When
specialized to the zero-rate case, our results provide the tightest known lower
bounds on the asymptotic costs for the vector version of a famous open problem
in distributed control -- the Witsenhausen counterexample. Using this bound, we
characterize the asymptotically optimal costs for the vector Witsenhausen
problem numerically to within a factor of 1.3 for all problem parameters,
improving on the earlier best known bound of 2.Comment: 19 pages, 7 figures. Presented at ITW'10. Submitted to IEEE
Transactions on Information Theor
Attribute-Based Encryption Optimized for Cloud Computing
Abstract. In this work, we aim to make attribute-based encryption (ABE) more suitable for access control to data stored in the cloud. For this purpose, we concentrate on giving to the encryptor full control over the access rights, providing feasible key management even in case of multiple independent authorities, and enabling viable user revocation, which is essential in practice. Our main result is an extension of the decentralized CP-ABE scheme of Lewko and Waters [LW11] with identity-based user revocation. Our revocation system is made feasible by removing the computational burden of a revocation event from the cloud service provider, at the expense of some permanent, yet acceptable overhead of the encryption and decryption algorithms run by the users. Thus, the computation overhead is distributed over a potentially large number of users, instead of putting it on a single party (e.g., a proxy server), which would easily lead to a performance bottleneck. Besides describing our scheme, we also give a formal proof of its security in the generic bilinear group and random oracle models.
Spectroscopic confirmation of the planetary nebula nature of PM1-242, PM1-318 and PM1-333 and morphological analysis of the nebulae
We present intermediate resolution long-slit spectra and narrow-band Halpha,
[NII] and [OIII] images of PM1-242, PM318 and PM1-333, three IRAS sources
classified as possible planetary nebulae. The spectra show that the three
objects are true planetary nebulae and allow us to study their physical
properties; the images provide a detailed view of their morphology. PM1-242 is
a medium-to-high-excitation (e.g., HeII4686/Hbeta ~0.4; [NII]6584/Halpha ~0.3)
planetary nebula with an elliptical shape containing [NII] enhanced
point-symmetric arcs. An electron temperature [Te([SIII])] of ~10250 K and an
electron density [Ne([SII])] of ~2300 cm-3 are derived for PM1-242. Abundance
calculations suggest a large helium abundance (He/H ~0.29) in PM1-242. PM1-318
is a high-excitation (HeII4686/Hbeta ~1) planetary nebula with a ring-like
inner shell containing two enhanced opposite regions, surrounded by a fainter
round attached shell brighter in the light of [OIII]. PM1-333 is an extended
planetary nebula with a high-excitation (HeII4686/Hbeta up to ~0.9) patchy
circular main body containing two low-excitation knotty arcs. A low Ne([SII])
of ~450 cm-3 and Te([OIII]) of ~15000 K are derived for this nebula. Abundance
calculations suggest that PM1-333 is a type I planetary nebula. The lack of a
sharp shell morphology, low electron density, and high-excitation strongly
suggest that PM1-333 is an evolved planetary nebula. PM1-333 also shows two
low-ionization polar structures whose morphology and emission properties are
reminiscent of collimated outflows. We compare PM1-333 with other evolved
planetary nebulae with collimated outflows and find that outflows among evolved
planetary nebulae exhibit a large variety of properties, in accordance with
these observed in younger planetary nebula.Comment: Accepted in The Astronomical Journal, 23 pages, 6 figure
A close look into the carbon disk at the core of the planetary nebula CPD-568032
We present high spatial resolution observations of the dusty core of the
Planetary Nebula with Wolf-Rayet central star CPD-568032. These observations
were taken with the mid-infrared interferometer VLTI/MIDI in imaging mode
providing a typical 300 mas resolution and in interferometric mode using
UT2-UT3 47m baseline providing a typical spatial resolution of 20 mas. The
visible HST images exhibit a complex multilobal geometry dominated by faint
lobes. The farthest structures are located at 7" from the star. The mid-IR
environment of CPD-568032 is dominated by a compact source, barely resolved by
a single UT telescope in a 8.7 micron filter. The infrared core is almost fully
resolved with the three 40-45m projected baselines ranging from -5 to 51 degree
but smooth oscillating fringes at low level have been detected in spectrally
dispersed visibilities. This clear signal is interpreted in terms of a ring
structure which would define the bright inner rim of the equatorial disk.
Geometric models allowed us to derive the main geometrical parameters of the
disk. For instance, a reasonably good fit is reached with an achromatic and
elliptical truncated Gaussian with a radius of 97+/-11 AU, an inclination of
28+/-7 degree and a PA for the major axis at 345+/-7 degree. Furthermore, we
performed some radiative transfer modeling aimed at further constraining the
geometry and mass content of the disk, by taking into account the MIDI
dispersed visibilities, spectra, and the large aperture SED of the source.
These models show that the disk is mostly optically thin in the N band and
highly flared.Comment: Paper accepted in A&
Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models
Even though multi-model prediction systems may have better skill in predicting the interannual variability (IAV) of Indian summer monsoon (ISM), the overall performance of the system is limited by the skill of individual models (single model ensembles). The DEMETER project aimed at seasonal-to-interannual prediction is not an exception to this case. The reasons for the poor skill of the DEMETER individual models in predicting the IAV of monsoon is examined in the context of the influence of external and internal components and the interaction between intraseasonal variability (ISV) and IAV. Recently it has been shown that the ISV influences the IAV through very long breaks (VLBs; breaks with duration of more than 10 days) by generating droughts. Further, all VLBs are associated with an eastward propagating Madden-Julian Oscillation (MJO) in the equatorial region, facilitated by air-sea interaction on intraseasonal timescales. This VLB-drought-MJO relationship is analyzed here in detail in the DEMETER models. Analyses indicate that the VLB-drought relationship is poorly captured by almost all the models. VLBs in observations are generated through air-sea interaction on intraseasonal time scale and the models' inability to simulate VLB-drought relationship is shown to be linked to the models' inability to represent the air-sea interaction on intraseasonal time scale. Identification of this particular deficiency of the models provides a direction for improvement of the model for monsoon prediction
Equatorial ozone characteristics as measured at Natal (5.9 deg S, 35.2 deg W)
Ozone density profiles obtained through electrochemical concentration cell (ECC) sonde measurements at Natal were analyzed. Time variations, as expected, are small. Outstanding features of the data are tropospheric densities substantially higher than those measured at other stations, and also a total ozone content that is higher than the averages given by satellite measurements
- …