3,859 research outputs found

    Support Vector Machine classification of strong gravitational lenses

    Full text link
    The imminent advent of very large-scale optical sky surveys, such as Euclid and LSST, makes it important to find efficient ways of discovering rare objects such as strong gravitational lens systems, where a background object is multiply gravitationally imaged by a foreground mass. As well as finding the lens systems, it is important to reject false positives due to intrinsic structure in galaxies, and much work is in progress with machine learning algorithms such as neural networks in order to achieve both these aims. We present and discuss a Support Vector Machine (SVM) algorithm which makes use of a Gabor filterbank in order to provide learning criteria for separation of lenses and non-lenses, and demonstrate using blind challenges that under certain circumstances it is a particularly efficient algorithm for rejecting false positives. We compare the SVM engine with a large-scale human examination of 100000 simulated lenses in a challenge dataset, and also apply the SVM method to survey images from the Kilo-Degree Survey.Comment: Accepted by MNRA

    Probing nn-Spin Correlations in Optical Lattices

    Full text link
    We propose a technique to measure multi-spin correlation functions of arbitrary range as determined by the ground states of spinful cold atoms in optical lattices. We show that an observation of the atomic version of the Stokes parameters, using focused lasers and microwave pulsing, can be related to nn-spin correlators. We discuss the possibility of detecting not only ground state static spin correlations, but also time-dependent spin wave dynamics as a demonstrative example using our proposed technique.Comment: 7 pages, 4 figure

    Resonant enhancement of ultracold photoassociation rate by electric field induced anisotropic interaction

    Full text link
    We study the effects of a static electric field on the photoassociation of a heteronuclear atom-pair into a polar molecule. The interaction of permanent dipole moment with a static electric field largely affects the ground state continuum wave function of the atom-pair at short separations where photoassociation transitions occur according to Franck-Condon principle. Electric field induced anisotropic interaction between two heteronuclear ground state atoms leads to scattering resonances at some specific electric fields. Near such resonances the amplitude of scattering wave function at short separation increases by several orders of magnitude. As a result, photoaasociation rate is enhanced by several orders of magnitude near the resonances. We discuss in detail electric field modified atom-atom scattering properties and resonances. We calculate photoassociation rate that shows giant enhancement due to electric field tunable anisotropic resonances. We present selected results among which particularly important are the excitations of higher rotational levels in ultracold photoassociation due to electric field tunable resonances.Comment: 14 pages,9 figure

    Dispersive Optical Interface Based on Nanofiber-Trapped Atoms

    Full text link
    We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of \sim\,1\,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.Comment: 4 pages, 4 figure

    Fermi Surface of Metallic V2_2O3_3 from Angle-Resolved Photoemission: Mid-level Filling of egπe_g^{\pi} Bands

    Get PDF
    Using angle resolved photoemission spectroscopy (ARPES) we report the first band dispersions and distinct features of the bulk Fermi surface (FS) in the paramagnetic metallic phase of the prototypical metal-insulator transition material V2_2O3_3. Along the cc-axis we observe both an electron pocket and a triangular hole-like FS topology, showing that both V 3dd a1ga_{1g} and egπe_g^{\pi} states contribute to the FS. These results challenge the existing correlation-enhanced crystal field splitting theoretical explanation for the transition mechanism and pave the way for the solution of this mystery.Comment: 5 pages, 4 figures plus supplement 12 pages, 3 figures, 1 tabl

    Weak gravitational lensing with the Square Kilometre Array

    Get PDF
    We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.Comment: 19 pages, 6 figures. Cosmology Chapter, Advancing Astrophysics with the SKA (AASKA14) Conference, Giardini Naxos (Italy), June 9th-13th 201

    Using Absorption Imaging to Study Ion Dynamics in an Ultracold Neutral Plasma

    Full text link
    We report optical absorption imaging of ultracold neutral plasmas.Images are used to measure the ion absorption spectrum, which is Doppler-broadened. Through the spectral width, we monitor ion equilibration in the first 250ns after plasma formation. The equilibration leaves ions on the border between the weakly coupled gaseous and strongly coupled liquid states. On a longer timescale of microseconds, we observe radial acceleration of ions resulting from pressure exerted by the trapped electron gas.Comment: 4 pages, 4 figure

    Electromagnetically induced transparency in cold 85Rb atoms trapped in the ground hyperfine F = 2 state

    Full text link
    We report electromagnetically induced transparency (EIT) in cold 85Rb atoms, trapped in the lower hyperfine level F = 2, of the ground state 52S1/2^{2}S_{1/2} (Tiwari V B \textit{et al} 2008 {\it Phys. Rev.} A {\bf 78} 063421). Two steady state Λ\Lambda-type systems of hyperfine energy levels are investigated using probe transitions into the levels F^{\prime} = 2 and F^{\prime} = 3 of the excited state 52P3/2^{2}P_{3/2} in the presence of coupling transitions F = 3 \to F^{\prime} = 2 and F = 3 \to F^{\prime} = 3, respectively. The effects of uncoupled magnetic sublevel transitions and coupling field's Rabi frequency on the EIT signal from these systems are studied using a simple theoretical model.Comment: 12 pages, 7 figure
    corecore