

environmental microbiology	<u>s/am</u>
environmental microbiology reports	s/am

The effects of host age and spatial location on bacterial community composition in the English Oak tree (Quercus robur)

Journal:	Environmental Microbiology and Environmental Microbiology Reports
Manuscript ID	EMI-2016-0277.R1
Manuscript Type:	EMIR - Brief report
Journal:	Environmental Microbiology Reports
Date Submitted by the Author:	06-Apr-2016
Complete List of Authors:	Meaden, Sean; University of Exeter, College of Life and Environmental Sciences Metcalf, C.Jessica; Princeton University, Department of Ecology and Evolutionary Biology; National Institute of Health, USA Fogarty International Center Koskella, Britt; University of California, Berkeley, Department of Integrative Biology
Keywords:	microbial ecology, functional diversity, microbe:higher organism interactions, microbial communities

SCHOLARONE[™] Manuscripts

Wiley-Blackwell and Society for Applied Microbiology

1	The effects of host age and spatial location on bacterial community
2	composition in the English Oak tree (Quercus robur)
3	
4	Meaden, S. ¹ *, Metcalf, C.J.E. ^{2,3} and Koskella, B. ⁴
5 6 7 8 9 10 11 12 13 14	 Affiliations College of Life and Environmental Sciences, University of Exeter, Penryn Campus, TR109FE, United Kingdom Department of Ecology and Evolutionary Biology, Princeton University, Princeton, USA Fogarty International Center, National Institute of Health, Bethesda, Maryland, USA Department of Integrative Biology, University of California, Berkeley, 94720, USA * Corresponding author: s.meaden@exeter.ac.uk
15 16	
17	
18 19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	

31 Summary

32	Drivers of bacterial community assemblages associated with plants are
33	diverse and include biotic factors, such as competitors and host traits, and
34	abiotic factors, including environmental conditions and dispersal mechanisms.
35	We examine the roles of spatial distribution and host size, as an
36	approximation for age, in shaping the microbiome associated with Quercus
37	robur woody tissue using culture-independent 16S rRNA gene amplicon
38	sequencing. In addition to providing a baseline survey of the <i>Q. robur</i>
39	microbiome, we screened for the pathogen of acute oak decline. Our results
40	suggest that age is a predictor of bacterial community composition,
41	demonstrating a surprising negative correlation between tree age and alpha
42	diversity. We find no signature of dispersal limitation within the Wytham
43	Woods plot sampled. Together, these results provide evidence for niche-
44	based hypotheses of community assembly and the importance of tree age in
45	bacterial community structure, as well as highlighting that caution must be
46	applied when diagnosing dysbiosis in a long-lived plant host.
47	
48	
49	
50	
51	
52	
53	
54	
55	

56	Introduction
57	Many lines of evidence suggest that microbes are crucial for plant health and
58	function (Kim et al., 2011; Berendsen et al., 2012), and yet we have a
59	relatively poor understanding of which mechanisms shape the plant-
60	associated microbial community or how this might in-turn influence host traits.
61	Furthermore, although plant microbiome research has primarily focused on
62	the below ground portion of the plant (the rhizosphere), knowledge of the
63	phylloplane (the microbial composition of leaves) is increasing (Lindow and
64	Brandl, 2003; Vorholt, 2012), demonstrating an equally important role in
65	shaping plant phenotype. Still less is known regarding the microbial
66	composition of other organs, with distinct communities reported across tissues
67	within the host, often playing a more important role than biogeography
68	(Ottesen et al., 2013; Leff et al., 2014; Coleman-Derr et al., 2016). For tree
69	species in particular, the dermosphere (bark associated microbial community,
70	(Lambais et al., 2014) may be particularly important given that bacterial
71	pathogens often invade the host through wounds in the bark (Tattar, 2012;
72	Misas-Villamil et al., 2013). This variation among tissues mirrors what is
73	observed in other long-lived hosts, including humans, where data is most
74	abundant; distinct bacterial communities have been isolated from different
75	skin sites (Grice et al., 2009) and these differences appear stable over time
76	(Costello et al., 2009). Such variation is also likely to exist across individual
77	plant microbiomes given that they can be heritable (Peiffer et al., 2013),
78	shaped by host genetics (Bodenhausen et al., 2014; Beckers et al., 2016),
79	and play functional roles that include sensitizing the plant immune system
80	(Pieterse <i>et al.</i> , 2014).

Page 4 of 29

81

82	The root-associated microbiomes of healthy Arabidopsis plants are arguably
83	the best understood plant microbiome (Lundberg et al., 2012) with the
84	mechanisms behind host regulation recently coming to light (Lebeis et al.,
85	2015). However, many more non-model plant species have had their
86	microbiomes characterized. For example, a number of studies have explored
87	the nature of tree microbiomes, providing baseline taxonomic surveys and
88	assessing the drivers of community composition, typically contrasting host
89	traits with climatic or geographic variables. Many of these studies find a strong
90	effect of host phylogeny on the bacterial community, with a greater effect of
91	tree species than geographic distance, even across continents (Redford et al.,
92	2010; Lambais <i>et al.</i> , 2014). Similarly, in a tropical environment in Malaysia,
93	Kim et al. (Kim et al., 2012) found a strong signal of host phylogeny on
94	bacterial community composition. Functional host traits such as growth rate
95	and leaf mass have also been demonstrated as key drivers of composition,
96	alongside phylogeny (Kembel <i>et al.</i> , 2014). In contrast, Finkel et al. (Finkel <i>et</i>
97	al., 2012) found trees of the same species in a different desert locations host
98	distinct microbial communities. Given these conflicting results across the
99	scales examined, it is unclear whether phylloplane microbiomes are subject to
100	niche-based or neutral models of community assembly.
101	
102	Specifically, the roles of dispersal and immigration, in combination with
103	ecological selection and drift (Vellend, 2010), have been the focus of a
104	number of theoretical models of community assembly, many of which are
105	applicable to microbes (Sloan et al., 2006; Nemergut et al., 2013). The niche

106	assembly model states that the dispersal of bacteria is unhindered by physical
107	constraints, and all organisms can be found anywhere but it is the
108	environment which selects for their persistence (de Wit and Bouvier, 2006).
109	Conversely, the dispersal assembly hypothesis states that the biodiversity we
110	observe can largely be explained by stochastic local extinctions and dispersal-
111	limitation, typified by the idea of island biogeography (Hubbell, 2001; Volkov
112	et al., 2003). Whilst this is essentially the "niche vs. neutral" debate, Fierer
113	(Fierer, 2008) provides the nuances of the microbial context including the
114	much higher species richness and evenness, and the rapidity of species
115	turnover typical of most bacterial communities.
116	
117	The English oak tree, Quercus robur, study system provides an opportunity to
118	test these competing hypotheses. If microbial community assembly is purely a
119	dispersal-driven process, we would predict a positive relationship between
120	tree age and diversity, as older organisms will have experienced more
121	colonization events. Such a positive relationship has been demonstrated for
122	trees and their plant epiphytes and lichens (Flores-Palacios and Garcia-
123	Franco, 2006; Johansson <i>et al.</i> , 2007), but has not been shown before in tree-
124	associated bacterial communities. Alternatively, if the process is strictly niche-
125	driven, older trees could represent an alternative environment to smaller
126	trees, favoring proliferation of particular species but not necessarily harboring
127	a greater diversity.
128	
129	As well as dispersal, host traits are likely to govern the microbes present.

130 Among the host factors known to influence microbial diversity, host age is

Page 6 of 29

131	often a key predictor. Data from humans suggests diversity consistently
132	increases with age from birth across populations (Yatsunenko et al., 2012). In
133	insects, honey bee queens undergo massive compositional shifts in their
134	microbiome as they age (Tarpy et al., 2015) and in a wild bird, Rissa
135	tridactyla, chicks harbor a greater diversity of bacteria than adults (van
136	Dongen et al., 2013). In plants, bacterial diversity can be highest on younger
137	leaves in lettuces (Dees et al., 2015), however the evidence is mixed as tree-
138	associated bacterial communities can be strongly influenced by season
139	(Peñuelas <i>et al.</i> , 2012).
140	
141	In this study we describe and explore the bacterial composition of Q.robur tree
142	cores in a well-studied UK forest, Wytham Woods, in order to answer three
143	key questions: firstly, what are the typical bacterial taxa associated with this
144	Woodland site; secondly, does geographic distance affect dispersal, such that
145	there is a spatial pattern of community composition and distance between
146	trees; and thirdly, is Q. robur host age or location important in structuring
147	bacterial communities. To answer these questions, we first describe the tree-
148	associated microbiota using amplicon sequencing of the 16S rDNA gene of 64
149	trees. Using a long-term woodland census we then assess correlations
150	between alpha and beta diversity and factors such as age and spatial
151	location. Additionally, we use these data to compare the predicted metabolic
152	functionality and screen our dataset for the pathogenic clade Brenneria, the
153	causative agent of acute oak decline, from which the UK Q. robur population
154	is currently experiencing an epidemic (Denman et al., 2012). This survey
155	presents a unique opportunity to assess the practicality of high throughout

155 presents a unique opportunity to assess the practicality of high throughput

sequencing in environmental monitoring. Given the critical importance of
detecting and preventing the emergence of tree diseases before large-scale
spread, a better understanding of tree microbiomes offers additional value in
surveillance.

160

161

162 **Experimental Procedures**

163 Study System

164 Wytham Woods is one of the most intensively studied tree populations in 165 Europe and undergoes extensive surveys every 2 years. As such, it provides 166 a practical system for correlating a vast number of ecological variables and 167 demographic traits and has been the source of numerous important papers 168 (Hunter et al., 1997; Morecroft et al., 2003; Butt et al., 2009). The UK Q. robur 169 population is suffering a number of infectious diseases, collectively known as 170 oak decline. This comprises chronic oak decline, sudden oak decline and 171 acute oak decline (AOD) (Denman and Webber, 2009). Symptoms, such as 172 stem bleeding, are strikingly similar, which makes misdiagnosis with 173 Phytophthora or bupestrid beetles possible. A number of bacterial species 174 from the Brenneria genus have been isolated from Q. robur trees suffering 175 from AOD and it is likely that this species is the causal agent (Denman et al., 176 2012). The disease has not yet been reported in Wytham Woods (Kirby et al., 177 2014) so the absence of *Brenneria* species on healthy trees would buttress 178 the existing evidence that *Brenneria* is the primary pathogen. 179

180 Site sampling

Page 8 of 29

181	We sampled 64 Q. robur trees in a single hectare, collecting 192 samples in
182	over 3 days in September, 2013. Tree diameter at breast height (DBH) was
183	recorded as a proxy for tree age. This method is endorsed by the UK forestry
184	commission as a non-destructive mode of estimating tree age (Commission,
185	1998). Whilst comparisons among trees at different sites due to crowding may
186	be inaccurate, comparisons of the same species at the same site provides
187	reliable estimates of tree age. Further, using trees from our dataset that had
188	known planting dates, we observe a linear relationship between diameter and
189	age, reinforcing the view that DBH is a good proxy for age (SI, Figure 1).
190	
191	Core tissue samples were obtained using the Trephor tool (Rossi et al., 2006),
192	allowing for three small (approximately 3 cm) microcore samples to be taken
193	at breast height at three separate sites (North, Southwest, and Southeast).
194	The tool was sterilized and wiped thoroughly using 70% ethanol in between
195	each sample extraction. Samples were flash frozen in the field for
196	transportation back to the laboratory. Upon return to the laboratory, samples
197	were homogenized using a Fast-Prep 24 instrument (MP Biomedicals) for five
198	minutes with the addition of two 0.5cm steel beads. Total DNA was then
199	extracted from the resulting homogenate using a Qiagen DNeasy Plant Mini
200	Kit, following the protocol provided. For amplification of the V4 region of the
201	16S rDNA gene, the universal primer set GTGCCAGCMGCCGCGGTAA (5'
202	- 3') and GGACTACHVGGGTWTCTAAT (5' 3') was used.
203	
204	Brannavia amplification

204 Brenneria amplification

205 To demonstrate that the primers used in our study could amplify *Brenneria*

206 goodwinii we cultured strain 931-23 (provided by R. Jackson, University of

207 Reading) and chose a random subset of 5 of the primers used to amplify the

208 V4 region to test for amplification in these positive controls.

209

210 Bioinformatic analysis

211 Illumina MiSeq 250bp paired-end reads were demultiplexed and de-barcoded 212 at the sequencing centre (Source Biosciences, Oxford). Sequences have 213 been deposited in the NCBI short-read archive (accession PRJNA 298668). 214 Quality filtering of reads was conducted using the Qiime (1.9.0) pipeline 215 (Caporaso et al., 2010). Reads were joined and filtered with the default 216 settings (Bokulich et al., 2013). Briefly, a maximum of 3 consecutive low 217 quality base calls was allowed before truncating the read, phred-score 218 threshold was set at 30 (which provides a 99.9% accuracy of base call), 75% 219 of the read was required to consist of high-quality, consecutive base call and 220 all reads with N character base calls were dropped. Open reference OTU 221 picking was conducted using the Uclust algorithm and the Silva 111 16S 222 rDNA database at the 97% identity level (Pruesse et al., 2007; Edgar, 2010). 223 Chimera removal was performed with Chimera Slayer (Haas et al., 2011); 224 OTUs present at abundances less than 0.005% of the dataset were removed 225 as were OTUs observed in only a single instance, as both are known to inflate 226 diversity estimates (Bokulich et al., 2013). Mitochondrial and chloroplast 227 sequences were also removed. This left a remaining dataset with a total of 228 1013881 sequences spread across 115 samples, containing a median count 229 of 1830 sequences per sample (mean 8816, length: 251.8 bp). Using the

Page 10 of 29

same trimmed sequence files, closed-reference OTU picking was performed
against the GreenGenes (1.5) (DeSantis *et al.*, 2006) database (as required
by Picrust) using the uclust algorithm implemented in Qiime (1.9). Functional
predictions of observed taxa was made using the Picrust program (Langille *et al.*, 2013) using the Kegg orthology database (Kanehisa *et al.*, 2014).

- 235
- 236

237 Statistical analysis

238 Rarefaction was performed for diversity analyses to a depth of 500 sequences

per sample. Whilst this is relatively low for microbiome studies, we aimed to

240 maintain high levels of biological replication at the cost of sampling depth

241 within individual samples. Pseudo R^2 values were calculated using the

residual and null deviance from model outputs as described in Faraway

243 (2006). UniFrac scores were generated in Qiime and statistical analyses were

244 performed in R (R Core Team, 2015) using the packages 'vegan' (Oksanen et

245 *al.*, 2016) and 'cluster' (Maechler *et al.*, 2015).

246

247 **Results**

248

249 Baseline survey of the Quercus robur microbiome

250 The most abundant bacterial class observed within our samples was the

alphaproteobacteria, with a mean relative abundance of 26% (+/- 12 S.D.),

followed by the thermoleophilia with 22% (+/- 15 S.D.), and the

betaproteobacteria, contributing a mean of 13% (+/- 15 S.D.). Overall,

acidobacteria, actinobacteria and proteobacteria were the three most

abundant phyla, making up over 80% of OTUs (Figure 1).

256	
257	Age related decline in microbial diversity
258	We identified a weak negative correlation between tree size and species
259	richness (using observed OTUs) when controlling for uneven sampling of
260	individual trees (GLM, F _{1,87} =4.13, p=0.0453, pseudo R ² =0.048) (Figure 2.).
261	Observed OTU count was used as the measure of species richness, however
262	the result was non-significant when Faith's phylogenetic distance or Chao 1
263	estimator (Chao et al., 2004) was used (p=0.12 and 0.16 respectively). There
264	was no effect of sample orientation (cardinal direction), and this factor was
265	therefore excluded from the model during stepwise model simplification.
266	Interestingly, these correlations strengthened when sample size was
267	increased to 110 samples by using a lower rarefaction depth (100 sequences,
268	data not shown). A similar result was mirrored by beta-diversity, where tree
269	size was a significant predictor of microbial community composition using both
270	abundance weighted UniFrac scores (PERMANOVA, F _{1,87} =4.63, p=0.0036,
271	R ² =0.052, permutations=9999) and unweighted UniFrac scores
272	(PERMANOVA, F _{1,87} =2.93, p=0.027, R ² =0.033, permutations=9999) when
273	tree ID was controlled for.
274	
275	Taxa correlations
276	To investigate changes in composition further we performed Spearman rank
277	correlations against tree size for each OTU in the dataset, and found no
278	significant associations following correction for multiple testing. To further
279	assess whether there were higher taxonomic level associations between
280	specific bacterial clades and tree size we selected the three most abundant

281 phyla. Collectively, the Proteobacteria, Actinobacteria and Acidobacteria 282 made up over 80% of our sequences. We found a significant decrease in the 283 relative abundance of Proteobacteria with tree size (Kendall's rank correlation, 284 τ =-0.22, z=-3.39, p=0.0007), a significant increase in the relative abundance 285 of Actinobacteria (τ =0.19, z=3.04, p=0.0023) and a non-significant decrease 286 in Acidobacteria (τ =-0.14, z=-2.13, p=0.033) following Bonferroni correction 287 (Figure 3).

- 288
- 289 Functional predictions
- 290 In order to predict how the function of communities associated with our Q.

robur trees changed as they aged we created a predicted metagenome using

the Picrust program (Langille *et al.*, 2013). However, we found no correlation

293 between any of the predicted individual genes or functional pathways

associated with our observed microbiome and tree size, perhaps indicating

high functional redundancy of the more diverse microbiota of smaller trees.

296

297 Assessing spatial patterns

298 Finally, to look for patterns of biogeography, or dispersal limitation, we

299 performed Mantel correlations between a spatial matrix from the Euclidean

300 distances between trees and the UniFrac scores that measure bacterial

301 community composition. A correlation would be indicative that the spatial

302 distribution of trees does indeed affect the bacterial composition of the

303 community. There was no effect of abundance for either weighted (Mantel r =

304 0.0009, p=0.47, permutations=9999) or unweighted UniFrac scores (r=0.002,

305 p=0.46, permutations=9999), suggesting an absence of dispersal limitation.

306	
307	Brenneria
308	Reassuringly, we found no sequences identified as Brenneria in our dataset
309	(prior to rarefaction), despite confirming that all our tested primers could
310	successfully amplify this species following culture in vitro.
311	
312	Discussion
313	Our study of the bacterial microbiomes of 64 English oak trees (Quercus
314	robur) in a single woodland provides a number of insights into the drivers of
315	bacterial community structure and dispersal. Firstly, our census of the
316	microbiome of <i>Q. robur</i> tissue is consistent with a previous report that found
317	the same 3 most dominant phyla in the roots of oak trees: Actinobacter,
318	Proteobacteria and Acidobacter (Uroz et al., 2010). The high abundance of
319	Acidobacter is also consistent with other culture-independent studies of the
320	phyllospheric microbiota from tropical trees (Kim et al., 2012).
321	
322	By comparing tree size with species richness, we found no sign of an increase
323	in bacterial diversity as trees age. This is of particular interest as it suggests
324	factors other than dispersal affect microbiome structure, as would be
325	expected by an increase in microbial diversity with growth as a result of
326	species accumulation. When observed OTUs was used as the measure of
327	alpha diversity we found a weak but significant decline in species richness
328	with tree age. Furthermore, negative correlations between tree age and
329	species richness were significant when the sample size was increased by
330	reducing rarefaction depth (and therefore excluding fewer samples). Detecting
331	subtle changes in species diversity require maximal statistical power, and

Page 14 of 29

332 there is clearly a trade-off between sampling depth and statistical power. 333 Exploring this trade-off in regard to microbial community sampling clearly 334 warrants further study as alternative approaches have yet to be widely 335 adopted (McMurdie and Holmes, 2014). Moreover, quantifying the shape of 336 the age-diversity relationship through the tree lifetime requires longitudinal 337 studies to build on cross-sectional studies like the data presented here. One 338 suggestion for observed age-related differences is variation in the chemical 339 and physiological state of the host tissue (van Dongen *et al.*, 2013) and this 340 could be the case between younger and older *Q.robur* tree tissues.

341

342

343 A flat or negative correlation between tree age and bacterial alpha diversity 344 contrasts the positive association found between epiphytic plants and lichens 345 and tree host age (Flores-Palacios and Garcia-Franco, 2006; Johansson et 346 al., 2007) perhaps suggesting that bacteria are less dispersal-limited than 347 other tree-associated organisms. To explore these ideas further, and based 348 on the conflicting niche assembly and dispersal assembly hypotheses 349 (Hubbell, 2001; de Wit and Bouvier, 2006), we predicted that if microbiome 350 structure is purely a function of dispersal, such that communities are 351 assembled by stochastic dispersal events and local extinctions, we would find 352 a correlation between spatial distance among trees and community 353 dissimilarity scores (beta diversity). Conversely, if microbes have unlimited 354 dispersal within the forest, as is often assumed, one would expect no 355 correlation with beta diversity. Our results suggest that latter models are most 356 informative, whereby we find no signature of dispersal limitation (i.e. the

community composition of our samples are not influenced by the proximity of
others). There is the potential for microbes to disperse at global scales (Morris *et al.*, 2008), however evidence for true cosmopolitan distribution has been
mixed to date (Caporaso *et al.*, 2012; Finkel *et al.*, 2012; Sul *et al.*, 2013) and,
as demonstrated by Bell (Bell, 2010) also in Wytham Woods, microbial
dispersal limitation may be more important over short time scales.

363 364

365 We also found an increase in the relative abundance of Actinobacter and a 366 decrease in Proteobacter and Acidobacter (although the latter was only 367 nearing significance) with tree size. Mechanistically, it is hard to ascribe 368 functions to whole phyla as they encompass a range of morphologies, 369 metabolic diversity and pathogenicity (Dworkin et al., 2006). The Acidobacter 370 are, however, reported to be slow growing with low metabolic rates (Ward et 371 al., 2009), sometimes referred to as k-selection strategists due to their higher 372 abundances in soils with lower resource availability (Fierer et al., 2008). 373 Carbon mineralization rate can also be a good predictor of Acidobacter soil 374 abundance, but how well these finding translates to an alternative niche, such 375 as tree cores, remains unknown (Fierer et al., 2008). If this were the case in 376 our system we would expect Acidobacter and Proteobacteria to be inversely 377 correlated; but we find the opposite. Maignien et al. (Maignien et al., 2014) 378 have also suggested that phyllosphere communities are first colonized by r-379 strategists (such as Acinetobacter and Pseudomonas). Moreover, when 380 multiple OTUs of the same species are present in the source community, for 381 example rainfall, only one becomes established in the phyllosphere

Page 16 of 29

382	community, indicative of niche competition (Maignien et al., 2014). Given that
383	the Acidobacter are consistently isolated at high relative abundances from soil
384	it seems likely that the soil is the major contributing source for the interior
385	microbiota of oak trees. Acidobacter have also been detected at high relative
386	abundances in the trunk of Gingko bilbao trees but not in the leaves of the
387	same trees, again suggesting soil derived rather than phyllospheric dispersal
388	(Leff et al., 2014). Whether this is through transport of microbes through the
389	phloem or a function of early, seedling colonization remains undetermined.
390	Interestingly, and as a word of caution, we identified the presence of Ralstonia
391	in our negative sequencing controls, which has been identified by Salter et al.
392	(Salter <i>et al.</i> , 2014) as a common kit contaminant. However this group also
393	includes many plant pathogens and wouldn't be unexpected in our
394	environmental samples, highlighting the difficulty in identifying contaminant
395	sequences from environmental samples and the need for negative controls.
396	
397	Whilst we have described a shift in bacterial community structure with age,
398	the correlations between specific taxa and age are only present at the phylum
399	level and not at the OTU level. The variability in genomic content, even
400	among closely related bacteria (Perna <i>et al.</i> , 2001; Guidot <i>et al.</i> , 2007), is
401	often used to justify a lack of ecological or metabolic similarity among hosts.
402	However there is evidence for functional convergence at higher taxonomic
403	ranks (Philippot et al., 2010), including trophic and biogeographic differences
404	(Fierer et al., 2008; Philippot et al., 2009). One mechanism for our observation
405	of size-based differences could be that the age of a plant is the most
406	important factor in determining its induced defenses (Quintero and Bowers,

2011). Indeed, the complex interactions between host immune systems and
commensal bacteria are coming to light in different systems (Brestoff and
Artis, 2013; Franzenburg *et al.*, 2013). For example, the presence of
commensal microbes is non-random in a tropical tree host and has been
demonstrated to prevent pathogen success, particularly in fungal endophytes
(Arnold *et al.*, 2003).

413

414 Despite being present at low numbers, many species could collectively play a 415 role in microbial community function. To explore this idea further we used 416 metagenomic predictions based on our 16S sequences to assess functional 417 diversity. Given that we found a significant shift in the microbial composition 418 (at the Phylum level) with tree age, we expected to find a similar effect of 419 functional traits. We found no such trend, as no individual genes or functional 420 pathways were over or under represented in older tree samples. This lack of 421 functional correlation, despite a taxonomic correlation implies a level of 422 redundancy in gene pathways among bacterial phyla, or lack of sensitivity in 423 the methods used to predict a metagenome. If the latter is true, and the 424 limitation is the quality of annotation in metagenomic databases then 425 ultimately, more metagenomic sequencing may not yield more insight into 426 community function.

427

A focus on *Q. robur* allows us to answer some important applied questions: A
reassuring outcome of this analysis was that we failed to identify a single
sequence from *Brenneria* species. The UK oak population is undergoing an
epidemic of acute oak decline (AOD) and the *Brenneria* clade of bacteria have

Page 18 of 29

432 been isolated from oaks experiencing the disease (Denman et al., 2012). 433 Koch's postulates have also been reported in the Spanish oak (Quercus ilex) 434 (Poza-Carrión et al., 2008). However acute oak decline was not found to be 435 present in Wytham in 2014 (Kirby *et al.*, 2014) and our data supports that 436 conclusion. This further strengthens the inference that *Brenneria* is a 437 causative agent of the disease, as suggested by Denman et al. (Denman et 438 al., 2012). Our census provides a baseline of healthy microbial flora in UK Q. 439 *robur* and comparison with trees in diseased states is a crucial area for further 440 study. Additionally, the observed differences in microbiome among differently 441 aged trees provides a caution for defining tree microbiome health. The healthy 442 microbiome of a young tree may well appear similar as that of a dysbiotic 443 microbiome of an old tree. As such, when using microbiome studies in the 444 context of plant health, fair comparisons among plant demographics must be 445 made in order to make useful diagnoses.

446

447

448 Acknowledgements

449 This work was supported by a Royal Society Research Grant (to CJEM and 450 BK). SM was funded by a studentship at the University of Exeter, BK by a 451 NERC independent research fellowship (NE/K00879X/1), and CJEM by a 452 Royal Society Fellowship. The authors thank Dr. Rob Jackson at the 453 University of Reading for providing an isolate of Brenneria, Dr. Keith Kirby for 454 providing data on tree age and size and Dr. Konrad Paskiewicz as well as the 455 faculty and participants of the NERC-funded population genomics workshop 456 for training in bioinformatics analyses.

457 458	References
459	Arnold, A.E., Mejía, L.C., Kyllo, D., Rojas, E.I., Maynard, Z., Robbins, N., and
460	Herre, E.A. (2003) Fungal endophytes limit pathogen damage in a
461	tropical tree. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 100 : 15649–54.
462	Beckers, B., Op De Beeck, M., Weyens, N., Van Acker, R., Van Montagu, M.,
463	Boerjan, W., and Vangronsveld, J. (2016) Lignin engineering in field-
464	grown poplar trees affects the endosphere bacterial microbiome. <i>Proc.</i>
465	<i>Natl. Acad. Sci. U. S. A.</i> 113 : 2312–7.
466	Bell, T. (2010) Experimental tests of the bacterial distance-decay relationship.
467	<i>ISME J.</i> 4 : 1357–65.
468 469	Berendsen, R.L., Pieterse, C.M.J., and Bakker, P.A.H.M. (2012) The rhizosphere microbiome and plant health. <i>Trends Plant Sci.</i> 17 : 478–86.
470	Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M., and Vorholt, J.A. (2014)
471	A synthetic community approach reveals plant genotypes affecting the
472	phyllosphere microbiota. <i>PLoS Genet.</i> 10 : e1004283.
473	Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight,
474	R., et al. (2013) Quality-filtering vastly improves diversity estimates from
475	Illumina amplicon sequencing. <i>Nat. Methods</i> 10 : 57–9.
476 477	Brestoff, J.R. and Artis, D. (2013) Commensal bacteria at the interface of host metabolism and the immune system. <i>Nat. Immunol.</i> 14 : 676–84.
478	Butt, N., Campbell, G., Malhi, Y., Morecroft, M., Fenn, K., and Thomas, M.
479	(2009) Initial Results from Establishment of a Long-term Broadleaf
480	Monitoring Plot at Wytham Woods, Oxford, UK.
481	Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D.,
482	Costello, E.K., et al. (2010) QIIME allows analysis of high-throughput
483	community sequencing data. <i>Nat. Methods</i> 7 : 335–6.
484	Caporaso, J.G., Paszkiewicz, K., Field, D., Knight, R., and Gilbert, J.A. (2012)
485	The Western English Channel contains a persistent microbial seed bank.
486	<i>ISME J.</i> 6 : 1089–93.
487 488 489	Chao, A., Chazdon, R.L., Colwell, R.K., and Shen, TJ. (2004) A new statistical approach for assessing similarity of species composition with incidence and abundance data. <i>Ecol. Lett.</i> 8 : 148–159.
490	Coleman-Derr, D., Desgarennes, D., Fonseca-Garcia, C., Gross, S.,
491	Clingenpeel, S., Woyke, T., et al. (2016) Plant compartment and
492	biogeography affect microbiome composition in cultivated and native
493	Agave species. <i>New Phytol.</i> 209 : 798–811.

- 494 UK Forestry Commision (1998) Estimating the Ade of Large and Veteran
 495 Trees in Britain. *Forestry Commision Information Note*
- Costello, E.K., Lauber, C.L., Hamady, M., Fierer, N., Gordon, J.I., and Knight,
 R. (2009) Bacterial community variation in human body habitats across
 space and time. *Science* 326: 1694–7.
- 499 Dees, M.W., Lysøe, E., Nordskog, B., and Brurberg, M.B. (2015) Bacterial
 500 communities associated with surfaces of leafy greens: shift in
 501 composition and decrease in richness over time. *Appl. Environ. Microbiol.*502 81: 1530–9.
- Denman, S., Brady, C., Kirk, S., Cleenwerck, I., Venter, S., Coutinho, T., and
 De Vos, P. (2012) Brenneria goodwinii sp. nov., associated with acute
 oak decline in the UK. *Int. J. Syst. Evol. Microbiol.* 62: 2451–6.
- 506 Denman, S. and Webber, J. (2009) Oak declines: new definitions and new 507 episodes in Britain. *Q. J. For.* **103**: 285–290.

508 DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K.,
509 et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database
510 and workbench compatible with ARB. *Appl. Environ. Microbiol.* 72: 5069–
511 72.

- Van Dongen, W.F., White, J., Brandl, H.B., Moodley, Y., Merkling, T., Leclaire,
 S., et al. (2013) Age-related differences in the cloacal microbiota of a wild
 bird species. *BMC Ecol.* 13: 11.
- 515 Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, 516 E. eds. (2006) The Prokaryotes Springer New York, New York, NY.
- Edgar, R.C. (2010) Search and clustering orders of magnitude faster than
 BLAST. *Bioinformatics* 26: 2460–1.
- Faraway, J. (2006) Extending the Linear Model in R. Taylor and Francis, Bota
 Roca FL.
- Fierer, N. (2008) Microbial biogeography: patterns in microbial diversity
 across space and time. In, Zengler,K. (ed), Accessing Uncultivated
 Microorganisms: from the Environment to Organisms and Genomes and Back. ASM Press, Washington DC, pp. 95–115.
- 525 Fierer, N., Bradford, M.A., and Jackson, R.B. (2008) Toward an ecological 526 classification of soil bacteria. *Ecology.* **88**: 1354-1364.
- 527 Finkel, O.M., Burch, A.Y., Elad, T., Huse, S.M., Lindow, S.E., Post, A.F., and 528 Belkin, S. (2012) Distance-decay relationships partially determine
- 529 diversity patterns of phyllosphere bacteria on Tamarix trees across the
- 530 Sonoran Desert [corrected]. *Appl. Environ. Microbiol.* **78**: 6187–93.

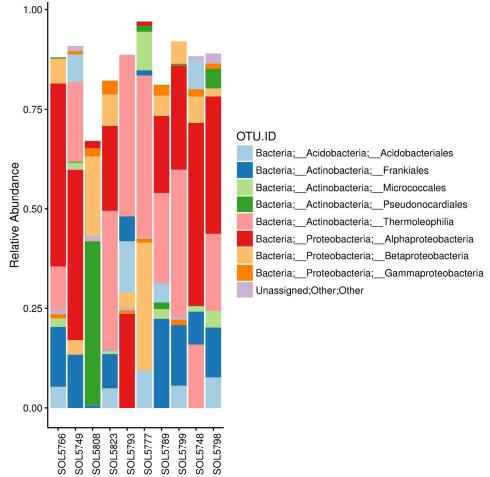
531 532 533	Flores-Palacios, A. and Garcia-Franco, J.G. (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. <i>J. Biogeogr.</i> 33 : 323–330.
534 535 536 537	Franzenburg, S., Walter, J., Künzel, S., Wang, J., Baines, J.F., Bosch, T.C.G., and Fraune, S. (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. <i>Proc. Natl. Acad.</i> <i>Sci. U. S. A.</i> 110 : E3730–8.
538 539 540	Grice, E.A., Kong, H.H., Conlan, S., Deming, C.B., Davis, J., Young, A.C., et al. (2009) Topographical and temporal diversity of the human skin microbiome. <i>Science</i> 324 : 1190–2.
541 542 543 544	Guidot, A., Prior, P., Schoenfeld, J., Carrère, S., Genin, S., and Boucher, C. (2007) Genomic structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. <i>J. Bacteriol.</i> 189 : 377–87.
545 546 547 548	Haas, B.J., Gevers, D., Earl, A.M., Feldgarden, M., Ward, D. V, Giannoukos, G., et al. (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. <i>Genome Res.</i> 21: 494– 504.
549 550	Hubbell, S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) Princeton University Press.
551 552 553	Hunter, M.D., Varley, G.C., and Gradwell, G.R. (1997) Estimating the relative roles of top-down and bottom-up forces on insect herbivore populations: A classic study revisited. <i>Proc. Natl. Acad. Sci.</i> 94 : 9176–9181.
554 555 556	Johansson, P., Rydin, H., and Thor, G. (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. <i>Ecoscience</i> 14 : 81–91.
557 558 559	Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2014) Data, information, knowledge and principle: back to metabolism in KEGG. <i>Nucleic Acids Res.</i> 42 : D199–205.
560 561 562 563	Kembel, S.W., O'Connor, T.K., Arnold, H.K., Hubbell, S.P., Wright, S.J., and Green, J.L. (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. <i>Proc. Natl.</i> <i>Acad. Sci.</i> 111 : 13715–13720.
564 565 566	Kim, M., Singh, D., Lai-Hoe, A., Go, R., Abdul Rahim, R., Ainuddin, A.N., et al. (2012) Distinctive phyllosphere bacterial communities in tropical trees. <i>Microb. Ecol.</i> 63: 674–81.
567 568	Kim, Y.C., Leveau, J., McSpadden Gardener, B.B., Pierson, E.A., Pierson, L.S., and Ryu, CM. (2011) The multifactorial basis for plant health

- promotion by plant-associated bacteria. *Appl. Environ. Microbiol.* 77:
 1548–55.
- 571 Kirby, K.J., Bazely, D.R., Goldberg, E.A., Hall, J.E., Isted, R., Perry, S.C., and
 572 Thomas, R.C. (2014) Changes in the tree and shrub layer of Wytham
 573 Woods (Southern England) 1974-2012: local and national trends
 574 compared. *Forestry* 87: 663–673.
- Lambais, M.R., Lucheta, A.R., and Crowley, D.E. (2014) Bacterial community
 assemblages associated with the phyllosphere, dermosphere, and
 rhizosphere of tree species of the Atlantic forest are host taxon
 dependent. *Microb. Ecol.* 68: 567–74.
- Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D.,
 Reyes, J.A., et al. (2013) Predictive functional profiling of microbial
 communities using 16S rRNA marker gene sequences. *Nat. Biotechnol.*31: 814–21.
- Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J.,
 McDonald, M., et al. (2015) Salicylic acid modulates colonization of the
 root microbiome by specific bacterial taxa. *Science (80-.).* 349: 860–4.
- Leff, J.W., Del Tredici, P., Friedman, W.E., and Fierer, N. (2014) Spatial
 structuring of bacterial communities within individual Ginkgo biloba trees.
 Environ. Microbiol.
- Lindow, S.E. and Brandl, M.T. (2003) Microbiology of the phyllosphere. *Appl. Environ. Microbiol.* 69: 1875–83.
- Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J.,
 Malfatti, S., et al. (2012) Defining the core Arabidopsis thaliana root
 microbiome. *Nature* 488: 86–90.
- Maignien, L., DeForce, E.A., Chafee, M.E., Eren, A.M., and Simmons, S.L.
 (2014) Ecological succession and stochastic variation in the assembly of
 Arabidopsis thaliana phyllosphere communities. *MBio* 5: e00682–13.
- 597 McMurdie, P.J. and Holmes, S. Waste not, want not: Why rarefying
- 598 microbiome data is inadmissable. *PLoS Comput. Biol.* 10: e1003531.
 599 doi:10.1371/journal.pcbi.1003531
- Misas-Villamil, J.C., Kolodziejek, I., Crabill, E., Kaschani, F., Niessen, S.,
 Shindo, T., et al. (2013) Pseudomonas syringae pv. syringae uses
 proteasome inhibitor syringolin A to colonize from wound infection sites. *PLoS Pathog.* 9: e1003281.
- Morecroft, M.D., Stokes, V.J., and Morison, J.I.L. (2003) Seasonal changes in
 the photosynthetic capacity of canopy oak (Quercus robur) leaves: the
 impact of slow development on annual carbon uptake. *Int. J. Biometeorol.*47: 221–6.

608 609 610	Morris, C.E., Sands, D.C., Vinatzer, B.A., Glaux, C., Guilbaud, C., Buffière, A., et al. (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. <i>ISME J.</i> 2 : 321–34.
611	Nemergut, D.R., Schmidt, S.K., Fukami, T., O'Neill, S.P., Bilinski, T.M.,
612	Stanish, L.F., et al. (2013) Patterns and processes of microbial
613	community assembly. <i>Microbiol. Mol. Biol. Rev.</i> 77 : 342–56.
614 615 616 617	Ottesen, A.R., González Peña, A., White, J.R., Pettengill, J.B., Li, C., Allard, S., et al. (2013) Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). <i>BMC Microbiol.</i> 13 : 114.
618	Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L., et al.
619	(2013) Diversity and heritability of the maize rhizosphere microbiome
620	under field conditions. <i>Proc. Natl. Acad. Sci.</i> 110 : 6548–6553.
621	Peñuelas, J., Rico, L., Ogaya, R., Jump, A.S., and Terradas, J. (2012)
622	Summer season and long-term drought increase the richness of bacteria
623	and fungi in the foliar phyllosphere of Quercus ilex in a mixed
624	Mediterranean forest. <i>Plant Biol. (Stuttg).</i> 14 : 565–75.
625 626 627	Perna, N.T., Plunkett, G., Burland, V., Mau, B., Glasner, J.D., Rose, D.J., et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. <i>Nature</i> 409 : 529–33.
628	Philippot, L., Andersson, S.G.E., Battin, T.J., Prosser, J.I., Schimel, J.P.,
629	Whitman, W.B., and Hallin, S. (2010) The ecological coherence of high
630	bacterial taxonomic ranks. <i>Nat. Rev. Microbiol.</i> 8: 523–9.
631	Philippot, L., Bru, D., Saby, N.P.A., Cuhel, J., Arrouays, D., Simek, M., and
632	Hallin, S. (2009) Spatial patterns of bacterial taxa in nature reflect
633	ecological traits of deep branches of the 16S rRNA bacterial tree.
634	<i>Environ. Microbiol.</i> 11 : 3096–104.
635	Pieterse, C.M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees,
636	S.C.M., and Bakker, P.A.H.M. (2014) Induced systemic resistance by
637	beneficial microbes. <i>Annu. Rev. Phytopathol.</i> 52: 347–75.
638	Poza-Carrión, C., Aguilar, I., Gallego, F.J., Nuñez-Moreno, Y., Biosca, E.G.,
639	González, R., et al. (2008) Brenneria quercina and Serratia spp. isolated
640	from Spanish oak trees: molecular characterization and development of
641	PCR primers. <i>Plant Pathol.</i> 57 : 308–319.
642	Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and
643	Glöckner, F.O. (2007) SILVA: a comprehensive online resource for
644	quality checked and aligned ribosomal RNA sequence data compatible
645	with ARB. <i>Nucleic Acids Res.</i> 35: 7188–96.

- Quintero, C. and Bowers, M.D. (2011) Plant induced defenses depend more
 on plant age than previous history of damage: implications for plantherbivore interactions. *J. Chem. Ecol.* 37: 992–1001.
- Redford, A.J., Bowers, R.M., Knight, R., Linhart, Y., and Fierer, N. (2010) The
 ecology of the phyllosphere: geographic and phylogenetic variability in
 the distribution of bacteria on tree leaves. *Environ. Microbiol.* 12: 2885–
 2893.
- Rossi, S., Menardi, R., and Anfodillo, T. (2006) Trephor: A New Tool for
 Sampling Microcores from tree stems. *IAWA J.* 27: 89–97.
- Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt,
 M.F., et al. (2014) Reagent and laboratory contamination can critically
 impact sequence-based microbiome analyses. *BMC Biol.* 12: 87.
- Sloan, W.T., Lunn, M., Woodcock, S., Head, I.M., Nee, S., and Curtis, T.P.
 (2006) Quantifying the roles of immigration and chance in shaping
 prokaryote community structure. *Environ. Microbiol.* 8: 732–40.

Sul, W.J., Oliver, T.A., Ducklow, H.W., Amaral-Zettler, L.A., and Sogin, M.L.
(2013) Marine bacteria exhibit a bipolar distribution. *Proc. Natl. Acad. Sci. U. S. A.* **110**: 2342–7.

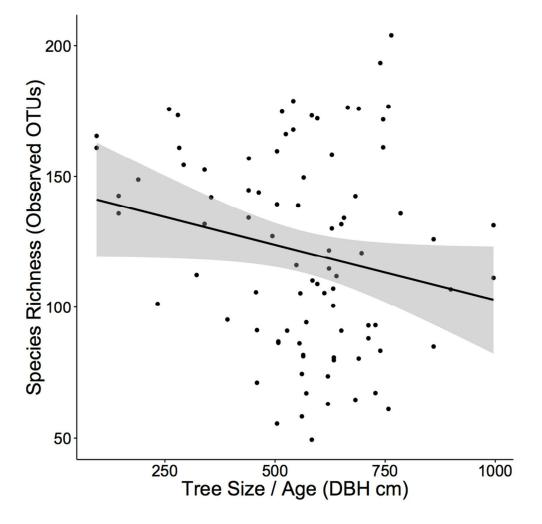

Tarpy, D.R., Mattila, H.R., and Newton, I.L.G. (2015) Characterization of the
 honey bee microbiome throughout the queen-rearing process. *Appl. Environ. Microbiol.* 81: 3182–3191.

- Tattar, T.A. (2012) Diseases of Shade Trees, Revised Edition Elsevier
 Science.
- 669 Uroz, S., Buée, M., Murat, C., Frey-Klett, P., and Martin, F. (2010)
- 670 Pyrosequencing reveals a contrasted bacterial diversity between oak
- 671 rhizosphere and surrounding soil. *Environ. Microbiol. Rep.* **2**: 281–8.
- Vellend, M. (2010) Conceptual Synthesis in Community Ecology. Q. Rev. Biol.
 85: 183–206.
- Volkov, I., Banavar, J.R., Hubbell, S.P., and Maritan, A. (2003) Neutral theory
 and relative species abundance in ecology. *Nature* 424: 1035–1037.
- 676 Vorholt, J.A. (2012) Microbial life in the phyllosphere. *Nat. Rev. Microbiol.* 10:
 677 828–40.
- Ward, N.L., Challacombe, J.F., Janssen, P.H., Henrissat, B., Coutinho, P.M.,
 Wu, M., et al. (2009) Three genomes from the phylum Acidobacteria
 provide insight into the lifestyles of these microorganisms in soils. *Appl. Environ. Microbiol.* **75**: 2046–56.

682	De Wit, R. and Bouvier, T. (2006) "Everything is everywhere, but, the
683	environment selects"; what did Baas Becking and Beijerinck really say?
684	Environ. Microbiol. 8: 755–8.

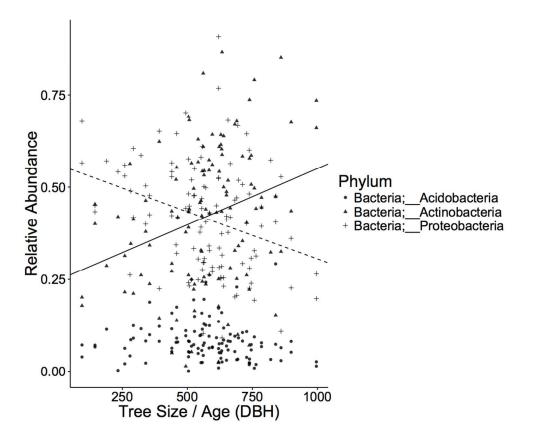
685 Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., 686 Contreras, M., et al. (2012) Human gut microbiome viewed across age 687 and geography. Nature 486: 222-7. or peer peuriew only

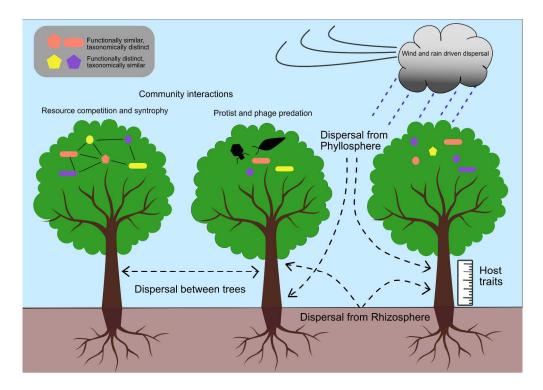
688



Bark Sample (Ascending Tree Age / Size)

Randomly selected barplots showing the 9 most common bacterial taxa ordered by ascending tree age (from left to right). Alpha diversity decreases in older trees and there is much variation in beta-diversity. Only those taxa with a mean relative abundance greater than 2.5% across the entire dataset were retained for the figure for clarity.


177x177mm (300 x 300 DPI)



Age based decline in species richness based on species richness, as measured by observed OTUs, following rarefaction to a depth of 500 sequences per sample. GLM, F1,87=4.13, p=0.0453. Intercept =142, slope = - 0.045.

180x177mm (150 x 150 DPI)

Taxa-specific correlations with Oak Tree age. The relative abundance of Actinobacteria increases with tree age (triangles, solid line, intercept = 0.25, slope = 0.00030) (Kendall's rank correlation, τ =0.19, z=3.04, p=0.0023), whilst the relative abundance of Proteobacteria declines (crosses, dashed line, intercept = 0.56, slope = -0.00026) (τ =-0.22, z=-3.39, p=0.0007). The relative abundance of Acidobacteria also declines however this is non-significant after Bonferroni correction (τ =-0.14, z=-2.13, p=0.033). 217x177mm (150 x 150 DPI)

Conceptual diagram of potential drivers of bacterial community composition in our Oak tree system. Communities may be seeded from wind and rain driven dispersal, or colonize the plant directly from the soil during growth. Following initial colonization, the microbes must survive, and potentially thrive, in the observed niche. The niche is likely to be dictated by, among others, competition for host resources, predation and environmental conditions.