39 research outputs found

    Comparison between standard and dual mobility implants in total hip arthroplasty for femoral neck fractures in elderly

    Get PDF
    Background: Dislocation is a major concern after total hip replacement (THR) in displaced fracture neck of femur. Recent studies have shown reduced dislocation rates with dual mobility THR (DMTHR) for femur neck fractures; however, there is a lack of comparative research to show its superiority over conventional THR. Further, its role in the Asian subcontinent, where the patient requires sitting cross-legged or squatting, has not been studied. Methods: A prospective cohort study of 30 elderly patients with displaced NOF with a minimum follow-up of 2-year. Sixteen patients were operated on with DMTHR and fourteen patients with conventional THR. Both the groups were matched; radiological and functional outcomes in terms of Harris hip score (HHS), visual analog scale (VAS), range of motion, and dislocation rate were compared between the two groups. Results: Mean HHS of the DMTHR group was 79.99 at three months and 92.73 at the end of the 2 year postoperatively, which was significantly better than the conventional THR group 59.5 at three months and 88.14 at 2-year. The range of motion was significantly better in the DMTHR group than the conventional THR group. There was no significant difference in radiological outcomes and postoperative dislocation rate between the two groups. Conclusions: Dual mobility implants give better results than conventional implants for primary THA in elderly patients of displaced FNOF regarding better function and greater range of motion. More long-term multicentric studies are still needed

    Generation of realistic nonwoven and foam filter geometry and mesh for filtration simulation using open-source tools

    Get PDF
    Recovery of liquid aerosols (mists) from industrial processes is typically accomplished through coalescence filtration, employing highly porous nonwoven (fibrous), knitted or foam media which are regarded to potentially provide high collection efficiencies. Highly resolved pore-scale computational fluid dynamics (CFD) analysis of mist filtration processes is increasingly becoming an important tool for design and optimization of such filter media. A key to efficient application-specific optimization of filter media is the ability to generate CFD-suitable virtual filter geometries with controllable geometric parameters including solidity, fibre diameters, morphology, etc. - yet, a review of the literature suggests that the current designs are heavily reliant on computed tomography (CT) scans of available filter media for accurate representation of the pore-scale structures in a computational simulation. In the present study, a novel methodology is presented for generating realistic virtual nonwoven (fibrous) and foam filter geometries with parametric customizability, using open-source tools including Python, OpenFOAM libraries, Gmsh and Blender. Further, a methodology for the generation of a computational mesh suitable for multiphase CFD at the pore-scale is delineated for the two types of filter media generated using the present technique, viz: nonwoven and foam, using open-source tools available within the OpenFOAM framework. The proposed methodology for the generation of virtual filter media and computational mesh is validated by qualitative comparison against with images from electron-microscopy (SEM) scans of real filters as well as comparison of the single-phase pressure drops predicted from CFD simulations using the generated fibrous and foam media with different solidities, fibre (or strand of foam) diameters, filter thicknesses, against the literature. The excellent agreement between the predicted pressure drops and the literature and its consistency over the several different geometric conditions considered for comparison reaffirms the validity of the proposed methodology for efficient virtual filter media development, which can eventually lead to enhanced parametric optimization capabilities and reduced design costs and lead times

    Influence of filter domain size on the simulation of gas-liquid filtration in nonwoven and foam media

    Get PDF
    The process of coalescence mist filtration in liquid- or gas-liquid systems is strongly controlled by the dynamics of the multi-component fluid transport at the pore- or fibrescales and its interactions with the filter media. However, current designs of mist filters are largely based on empirical data or on single-fibre filtration theory, primarily because of the complexity and difficulty in making accurate measurements at such (small) length scales. Current advancements in high performance computing provide a unique possibility to understand the dynamics of such flows using highly resolved droplet and interface capturing computational fluid dynamics (CFD) simulations - which can provide vital data for application-specific optimization of filter media. However it is important that the spatio-temporal resolutions required to accurately numerical model the fluid dynamics of micro or nano-fibre filtration processes at full size of the filters may typically demand simulations to be run with several hundred million (to over a billion) computational cells and long run-times. Hence, for reduced design lead times as well as computational cost, it is desirable to keep the size of the filter domain to a minimum, while ensuring that the largest fluid structures and scales are captured in the simulations. A review of the (limited) literature on CFD simulations of the mist-filtration process reveals that the size of the filtration domain have been predominantly chosen rather arbitrarily based on the a set multiple of the Brinkman screening length or by the computing power available - and no reported studies are yet available that address conditions of high levels of fluid saturation that involve large fluid structures. In the present study, a series of systematic computational simulations using successively larger domain sizes are carried out to identify the relationship between the characteristics of the two phase flow (such as saturation, thickness of liquid layer, pressure drop, etc.) and the size of the filter domains considered. Two vastly different types of filter media, nonwoven and foam, with similar properties such as packing density, fibre (or element of foam) diameters are chosen to additionally infer the influence of filter structures at the pore-scales to the domain size. The transient simulations are carried out using the interface capturing volume-of-fluid (VOF) solver available within the open-source CFD framework OpenFOAM

    Carica Papaya’s Anti-Diabetic and Anti-Cancer Properties – A Review

    Get PDF
    The Carica papaya originates from the Caricaceae family, and various members of this family have been used as treatments for a range of ailments. The perennial plant C. papaya, which is currently found over the whole tropical region, is thought to have originated in the southern region of Mexico. To assess the biological activity of distinct C. papaya sections, several scientific studies have been carried out. Since ancient times, the papaya plant's many components have been employed for medicinal purposes. In this article, the process of extracting Carica papaya leaves as well as the anti-cancer and anti-diabetic properties of papaya leaf activity were all things we wanted to assess. The information for this review paper, which focuses mostly on the therapeutic potential of papaya leaf extract was obtained via researching a collection of wider internet databases, including Google Scholar, PubMed, Science Direct, and Elsevier. The papaya plant, which has different parts such as fruit, leaves, seeds, bark, latex, and other substances, is very important in controlling the spread of illness. Alkaloids, glycosides, tannins, saponins, and flavonoids are just a few of the bioactive constituents in this, we focused on the papaya plant leaf's anti-cancer and anti-diabetic properties. The papaya has a wide range of therapeutic qualities. Papaya is a potent remedy, according to traditional beliefs. Biological activities have been the subject of much research. In the current review, all the pharmacological applications and activities of certain chemical components are discussed

    Simulating transport in and entrainment form nonwoven fibrous, knitted, and opne-cell foam filters

    Get PDF
    The movement and re-entrainment of liquid droplets from three different filter media, namely fibrous, knitted, and open-cell foam was investigated numerically using computational fluid dynamics (CFD). A range of face velocities were considered which resulted in a range of oil transform rates and steady state saturation levels. It will be shown that liquid volume fraction in filters depends on velocity and time. The minimum velocity required for detachment of droplets was also identified. The main purpose of this research is to investigate the behaviour of pre saturated oil-mist filters in different geometric configuration and also different air flow conditions. In this study, all the produced filter geometries have a packing density (solidity) of 2 % with fiber/element diameter of 9 ÎĽm and overall dimensions of: 2mm (z), 0.5 mm (x), and 0.5 mm (y). In order to capture the gas-liquid interface, the Volume of Fluid (VOF) method will be applied. To perform the simulations, the open source computational fluid dynamics (CFD) toolbox, OpenFOAM is used. To verify the accuracy of computations, the calculation of clean pressure drop is compared against well-established pressure approximation in the literature. This work has examined the movement and re-entrainment of droplets in fibrous, knitted, and open-cell foam media with a range of different face velocities. It was found that by increasing in velocity and time, liquid volume fraction in the filters reduced though re-entrainment once a threshold of 2 m/s in all three cases. Furthermore, it has been shown that knitted media produced largest re-entrainment and the fibrous media the least. It is worth mentioning that other factors such as saturation, initial droplet position, temperature may play an important role in re-entrainment form filter which are not investigated in this study. It is important to note however that these results would need to be validated in real media. The large drops entrained from knitted media would be advantageous in many cases as they would readily settle under gravity

    SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques

    Get PDF
    Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain–hepatitis B surface antigen virus–like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses

    Potently neutralizing and protective human antibodies against SARS-CoV-2

    Get PDF
    The COVID-19 pandemic is a major threat to global health1 for which there are limited medical countermeasures2,3. Moreover, we currently lack a thorough understanding of mechanisms of humoral immunity4. From a larger panel of human monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein5, we identified several that exhibited potent neutralizing activity and fully blocked the receptor-binding domain of S (SRBD) from interacting with human ACE2 (hACE2). Competition-binding, structural, and functional studies allowed clustering of the mAbs into classes recognizing distinct epitopes on the SRBD as well as distinct conformational states of the S trimer. Potent neutralizing mAbs recognizing non-overlapping sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two mouse models of SARS-CoV-2 infection, passive transfer of either COV2-2196 or COV2-2130 alone or a combination of both mAbs protected mice from weight loss and reduced viral burden and inflammation in the lung. In addition, passive transfer of each of two of the most potently ACE2 blocking mAbs (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutics
    corecore