418 research outputs found

    Turbulent transport and length scale measurement experiments with comfined coaxial jets

    Get PDF
    A three phase experimental study of mixing downstream of swirling and nonswirling confined coaxial jets was conducted to obtain data for the evaluation and improvement of turbulent transport models currently employed in a variety of computational procedures. The present effort was directed toward the acquisition of length scale and dissipation rate data that provide more accurate inlet boundary conditions for the computational procedures and a data base to evaluate the turbulent transport models in the near jet region where recirculation does not occur, and the acquisition of mass and momentum turbulent transport data for a nonswirling flow condition with a blunt inner jet inlet configuration rather than the tapered inner jet inlet. A measurement technique, generally used to obtain approximate integral length and microscales of turbulence and dissipation rates, was computerized. Results showed the dissipation rate varied by 2 1/2 orders of magnitude across the inlet plane, by 2 orders of magnitude 51 mm from the inlet plane, and by 1 order of magnitude at 102 mm from the inlet plane for a nonswirling flow test conditions

    Mass and Momentum Transport Experiments with Swirling Flow

    Get PDF
    An experimental study of mixing downstream of axial and swirling coaxial jets is being conducted to obtain data for the evaluation and improvement of turbulent transport models currently employed in a variety of computational procedures used throughout the propulsion community. The axial coaxial jet study was completed under Phase 1. The swirling coaxial jet study, which is the subject of this paper, was conducted under Phase 2 of the contract. A TEACH code was acquired, checked out for several test cases, and is reported. A study to measure length scales and to obtain a limited number of measurements with a blunt trailing edge inlet is being conducted under Phase 3 of the contract

    Mass and momentum turbulent transport experiments with confined swirling coaxial jets

    Get PDF
    Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow

    Mass and Momentum Turbulent Transport Experiments

    Get PDF
    An experimental study of mixing downstream of axial and swirling coaxial jets is being conducted to obtain data for the evaluation and improvement of turbulent transport models currently employed in a variety of computational procedures used throughout the propulsion community. Effort was directed toward the acquisition of length scale and dissipation rate data that will provide more accurate inlet boundary conditions for the computational procedures and a data base to evaluate the turbulent transport models in the near jet region where recirculation does not occur. Mass and momentum turbulent transport data with a blunt inner-jet inlet configuration will also be acquired

    Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    Get PDF
    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detectio

    Lidar Sensors for Autonomous Landing and Hazard Avoidance

    Get PDF
    Lidar technology will play an important role in enabling highly ambitious missions being envisioned for exploration of solar system bodies. Currently, NASA is developing a set of advanced lidar sensors, under the Autonomous Landing and Hazard Avoidance (ALHAT) project, aimed at safe landing of robotic and manned vehicles at designated sites with a high degree of precision. These lidar sensors are an Imaging Flash Lidar capable of generating high resolution three-dimensional elevation maps of the terrain, a Doppler Lidar for providing precision vehicle velocity and altitude, and a Laser Altimeter for measuring distance to the ground and ground contours from high altitudes. The capabilities of these lidar sensors have been demonstrated through four helicopter and one fixed-wing aircraft flight test campaigns conducted from 2008 through 2012 during different phases of their development. Recently, prototype versions of these landing lidars have been completed for integration into a rocket-powered terrestrial free-flyer vehicle (Morpheus) being built by NASA Johnson Space Center. Operating in closed-loop with other ALHAT avionics, the viability of the lidars for future landing missions will be demonstrated. This paper describes the ALHAT lidar sensors and assesses their capabilities and impacts on future landing missions

    Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    Get PDF
    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies

    Impact of quality of evidence on the strength of recommendations: an empirical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence is necessary but not sufficient for decision-making, such as making recommendations by clinical practice guideline panels. However, the fundamental premise of evidence-based medicine (EBM) rests on the assumed link between the quality of evidence and "truth" and/or correctness in making guideline recommendations. If this assumption is accurate, then the quality of evidence ought to play a key role in making guideline recommendations. Surprisingly, and despite the widespread penetration of EBM in health care, there has been no empirical research to date investigating the impact of quality of evidence on the strength of recommendations made by guidelines panels.</p> <p>Methods</p> <p>The American Association of Blood Banking (AABB) has recently convened a 12 member panel to develop clinical practice guidelines (CPG) for the use of fresh-frozen plasma (FFP) for 6 different clinical indications. The panel was instructed that 4 factors should play a role in making recommendation: quality of evidence, uncertainty about the balance between desirable (benefits) and undesirable effects (harms), uncertainty or variability in values and preferences, and uncertainty about whether the intervention represents a wise use of resources (costs). Each member of the panel was asked to make his/her final judgments on the strength of recommendation and the overall quality of the body of evidence. "Voting" was anonymous and was based on the use of GRADE (Grading quality of evidence and strength of recommendations) system, which clearly distinguishes between quality of evidence and strength of recommendations.</p> <p>Results</p> <p>Despite the fact that many factors play role in formulating CPG recommendations, we show that when the quality of evidence is higher, the probability of making a strong recommendation for or against an intervention dramatically increases. Probability of making strong recommendation was 62% when evidence is "moderate", while it was only 23% and 13% when evidence was "low" or "very low", respectively.</p> <p>Conclusion</p> <p>We report the first empirical evaluation of the relationship between quality of evidence pertinent to a clinical question and strength of the corresponding guideline recommendations. Understanding the relationship between quality of evidence and probability of making (strong) recommendation has profound implications for the science of quality measurement in health care.</p

    Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Get PDF
    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications
    • …
    corecore