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ABSTRACT- This paper presents a literature survey of the occurrences of radionuclide plumes in 
saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in 

detail. Results of a modeling study are also presented showing that the length to width ratio of a plume 
starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20: 1 for 

the base case to about 4: 1 for a higher value of transverse dispersivity, indicating enhanced lateral 
spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not 

directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential 
that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing 

radionuclides. 

MOTIVATION 
At the Yucca Mountain Project (YMP) site, 

the natural system is the final transport bamer 
preventing waste from reaching the accessible 
environment. To understand the role played by 
the natural system in making the safety case for 
Yucca Mountain, one must first set the 
regulatory context. For the nominal case 
(excluding the impact of volcanism), the 
exposure scenario being studied is one in which 
a supply well located downstream of the 
repository produces water containing 
radionuclides that have escaped the engineered 
bamer and traveled to the 18 krn compliance 
boundary. This is a conservative approach to 
avoid basing regulations on uncertain future use 
scenarios. Within this regulatory context, certain 
details about the transport system become of 
primary importance, and others become 
unimportant. To illustrate this, consider a 
radionuclide that is released at a time-varying 

rate m, ( t )  from the source, and travels through 

the natural system The mass flux (mass per unit 

time) at the compliance boundary mCb (t) can be 

expressed as a simple convolution over all 

possible travel times, corrected by radioactive ' 

decay 'of a given species. Time zero is considered 
to be the time of emplacement and radionuclide 
mass flux predictions are required from this 
point to the regulatory time of interest: 10,000 
years for the original standard, and a time 
exceeding the time of peak dose for the draft 
peak dose standard. 

Besides radioactive decay, the only 
processes in the natural system leading to lower 
fluxes at the compliance boundary are those that 
sequester radionuclides in the natural system by 
affecting the travel time through the combined 
unsaturated zone-saturated zone (UZ-SZ) 
system. For radionuclides with half-lives that are 
short compared to the regulatory time period of 
interest, the relevant time frame is the half-life; 
the natural system is effective if travel times 
exceeding t , , ,  dominate the system. For very 

long-lived radionuclides, the regulatory time 
frame becomes the controlling factor; radioactive 
decay has a minimal impact on reducing'the 
mass flux, and only processes that extend the 
travel time distribution to values greater than the 
regulatory time frame are important. It should be 
noted that, even if travel times are too short to 
provide complete isolation, the natural system 







as Hanford or Mirror Lake, or for research 
agencies such as the U.S. Geological Survey or 
the National Laboratories were visited and 
searched. When possible, personal contacts with 
researchers were made to seek out additional 
information. Relevant references, cited in 
research papers being reviewed, were obtained 
when possible. 

The sites considered in this survey that had 
reported plume and dispersivity data in fractured 
rocks are INL (USA), Hanford (USA), and Oak 
Ridge (USA). These sites are described in more 
detail later in this paper. The following sites in 
sedimentary formations were also considered for 
comparison: Cape Code (USA), Condi Aquifer 
(USA), Amargosa Tracer Site (USA), SE 
Wisconsin Dolomite (USA), Paducah (USA), 
Norton (USA), and Whidbey Island (USA). Sites 
included in the literature survey that had no 
reported plume data but did report tracer tests or 
dispersivity values are Kamaishi (Japan), El 
Berrocal (Spain), Stripa (Sweden), Grimsel 
(Switzerland), NTS (USA), LANL(USA), YMP 
(USA), Creston (USA), Oracle(USA), Chalk 
River (USA), Mirror Lake (USA), 
NWAC(USA). These sites are not considered 
fiu-ther in this paper. Sites included in the 
literature survey that had no reported data on 
saturated zone ground water plumes or tracer 
tests are Olkiluoto (Finland), Palmottu (Finland), 
Mizunami (Japan), Aspo (Sweden), Pinawa 
(Canada), Sellafield (UK), Konrad (Germany), 
Fanay-Augeres (France), Mayak (Russia), 
Tomsk (Russia), Beishan (China), and 
Kalpakkam (India). These sites are not 
considered fiu-ther in this paper. 

DISCUSSION OF PREVIOUS 
DISPERSIVITY REVIEWS 

Two important reviews of dispersivity have 
been written by Gelhar et al. (1992)[3] and 
Schulze-Makuch (2005) [4]. Additionally, 
Walton (1984, table 2.6)[5] presents summary - . data for both longitudinal and transverse 
dispersivity. 

Gelhar et al. (1992)[3] conducted a review 
of 106 dispersivity values from 59 field sites. 
They classified the dispersivity values into three 
reliability classes: high reliability values accurate 
within a factor of 2, low reliability values 
accurate than within 1-2 orders of magnitude, 
and intermediate reliability values between the 
two extremes. Of these sites, 2 1 were 
consolidated-rock sites. Site scales ranged from 
1.2 to 50,000 m, longitudinal dispersivity values 
ranged from 0.2 to 910 m, and transverse 

dispersivity values ranged from 8 to 1,370 m. 
Most of the dispersivity values were considered 
to be of low reliability and only one value was 
considered to be of high reliability. None of the 
consolidate-rock sites were in volcanic tuffs, 
although several sites were in basalt. The largest 
longitudinal and h&izontal transverse 
dispersivity values (9 10 and 1370 m, 
respectively) were obtained from a site in Idaho 
underlain by basalt [3]. 

A more recent review of dispersivity values 
by Shulze-Makuch [4] compiles longitudinal 
dispersivity data from 109 studies. This review 
[4] categorizes the dispersivity values with the . 
same reliability categories used in the Gelhar et 
al. (1992) review [3]. For 20 consolidated-rock 
sites with test scales of greater than 1 m, 
longitudinal dispersivity values ranged from 
0.003 to 76 m. The.largest dispersivity value (76 
m) was obtained from a site in Hawaii underlain 
by basalt. 

RESULTS FOR SELECTED SITES 
Three sites with documented wide 

plumes in fractured rock formations were 
identified for further considerations : the Snake , 

River-INL, Oak Ridge, and Hanford. All of these 
sites are within the USA. 

The Snake River Plain Aquifer at the Idaho 
National Laboratory 

Site Description: Idaho National 
Laboratory (INL) overlies the Snake River Plain 
aquifer in southeast Idaho. The aquifer consists 
of thin, lobate flows of Tertiary and Quaternary 
basalt interlayered with smaller volumes of 
sedimentary material at irregular intervals. Basalt 
flow interiors are fine-grained and typically . 
massive. In contrast, the margins of the flows are 
commonly highly fractured and rubbly, 
providing conductive flow paths [6]. The aquifer 
is unconfined and groundwater flow is fracture- 
dominated. 

The INL has served as the United State's . 
primary facility dedicated to the development of 
atomic energy since 195 1. Until the mid 1980s 
contaminated liquid waste was disposed of 
through direct injection to the aquifer and via 
percolation ponds. The majority of the liquid 
waste discharged to the aquifer was released at 
the Test Reactor Area (TRA) and the Idaho 
Nuclear Technology and Engineering Center 
(INTEC). In addition, contaminants are present 
in the aquifer due to waste disposal from the 
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