217 research outputs found

    Exponential ergodicity of the jump-diffusion CIR process

    Get PDF
    In this paper we study the jump-diffusion CIR process (shorted as JCIR), which is an extension of the classical CIR model. The jumps of the JCIR are introduced with the help of a pure-jump L\'evy process (Jt,t0)(J_t, t \ge 0). Under some suitable conditions on the L\'evy measure of (Jt,t0)(J_t, t \ge 0), we derive a lower bound for the transition densities of the JCIR process. We also find some sufficient condition guaranteeing the existence of a Forster-Lyapunov function for the JCIR process, which allows us to prove its exponential ergodicity.Comment: 14 page

    Measuring the Creep Behaviour of Corrugated Board by Cascade and Individual Test Rig

    Get PDF
    In this paper static and quasi-static test are conducted to determine the creep behaviour of corrugated board. This study shows a possible way to take the real loads occurring in container shipping into account. The aim of the measurements is to develop a new test option, which is in keeping with the loads occurring. Two test rigs have been developed and constructed for this purpose. These make it possible to measure the creep of corrugated board extremely precisely over a longer period in the aspect of climate chamber size and relative humidity (RH) distribution in the chamber. To increase the accuracy of measurement the analysis also covers those external and internal factors, which can influence the measurement of creep rates. The results show that these influences the accuracy of creep rate measurements to a significant extent, and considerable measuring errors can occur if these are disregarded. The final aim of this study in the future is to present a climate-dependent creep behaviour model for corrugated board using speed-dependent and relatively shorter tests by cascade and individual test rigs

    Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3

    Full text link
    We exploit time- and angle- resolved photoemission spectroscopy to determine the evolution of the out-of-equilibrium electronic structure of the topological insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR laser pulses has been studied by modelling the dynamics of the hot electrons after optical excitation. We disentangle a large increase of the effective temperature T* from a shift of the chemical potential mu*, which is consequence of the ultrafast photodoping of the conduction band. The relaxation dynamics of T* and mu* are k-independent and these two quantities uniquely define the evolution of the excited charge population. We observe that the energy dependence of the non-equilibrium charge population is solely determined by the analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure

    Evidence of reduced surface electron-phonon scattering in the conduction band of Bi_{2}Se_{3} by non-equilibrium ARPES

    Full text link
    The nature of the Dirac quasiparticles in topological insulators calls for a direct investigation of the electron-phonon scattering at the \emph{surface}. By comparing time-resolved ARPES measurements of the TI Bi_{2}Se_{3} with different probing depths we show that the relaxation dynamics of the electronic temperature of the conduction band is much slower at the surface than in the bulk. This observation suggests that surface phonons are less effective in cooling the electron gas in the conduction band.Comment: 5 pages, 3 figure

    Holomorphic transforms with application to affine processes

    Get PDF
    In a rather general setting of It\^o-L\'evy processes we study a class of transforms (Fourier for example) of the state variable of a process which are holomorphic in some disc around time zero in the complex plane. We show that such transforms are related to a system of analytic vectors for the generator of the process, and we state conditions which allow for holomorphic extension of these transforms into a strip which contains the positive real axis. Based on these extensions we develop a functional series expansion of these transforms in terms of the constituents of the generator. As application, we show that for multidimensional affine It\^o-L\'evy processes with state dependent jump part the Fourier transform is holomorphic in a time strip under some stationarity conditions, and give log-affine series representations for the transform.Comment: 30 page

    Surface diffusion of Au on Si(111): A microscopic study

    Get PDF
    The direct evolution of submonolayer two-dimensional Au phases on the Si(111)-(7x7) surface was studied in real time using the spectroscopic photoemission and low energy electron microscope located at the synchrotron radiation source ELETTRA. A finite area covered by 1 monolayer (ML) of gold with a steplike transition zone was prepared by evaporation in situ. Subsequent annealing resulted in the spread of the Au layer and the formation of laterally extended Si(111)-(5x1)-Au and Si(111)-(√3x √3)R30°-Au surface reconstructions. At a temperature around 970 K, the boundary of the gold-covered region propagates on the clean Si(111)-(7x7) and exhibits a nonlinear dependence on time. The ordered Si(111)-(5x1)-Au plateau develops a separated front moving with constant velocity. Two values of the Au diffusion coefficients were estimated at a temperature of about 985 K: (1) D7x7=5,2x10-8 cm2 s-1 as the average diffusion coefficient for Au on a clean Si(111)-(7x7) surface in the concentration range from 0.4 ML up to 0.66 ML and (2) D5x1=1.2x10-7 cm2 s-1 as the lower limit for the diffusion of single Au atoms on the Si(111)-(5x1)-Au ordered phase
    corecore