621 research outputs found

    Performances and stability of a 2.4 ton Gd organic liquid scintillator target for antineutrino detection

    Full text link
    In this work we report the performances and the chemical and physical properties of a (2 x 1.2) ton organic liquid scintillator target doped with Gd up to ~0.1%, and the results of a 2 year long stability survey. In particular we have monitored the amount of both Gd and primary fluor actually in solution, the optical and fluorescent properties of the Gd-doped liquid scintillator (GdLS) and its performances as a neutron detector, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the target being continuously monitored. After two years from the doping time the performances of the Gd-doped liquid scintillator do not show any hint of degradation and instability; this conclusion comes both from the laboratory measurements and from the "in-tank" measurements. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period

    Species richness influences the spatial distribution of trees in European forests

    Get PDF
    The functioning of plant communities is strongly influenced by the number of species in the community and their spatial arrangement. This is because plants interact with their nearest neighbors and this interaction is expected to be stronger when the interacting individuals are ecologically similar in terms of resource use. Recent evidence shows that species richness alters the balance of intra- versus interspecific competition, but the effect of species richness, and phylogenetic and functional diversity on the spatial pattern of the plant communities remain less studied. Even far, how forest stand structure derived from past management practices can influence the relationship between species richness and spatial pattern is still unknown. Here, we evaluate the spatial distribution of woody individuals (DBH >7.5 cm) in 209 forest stands (i.e. plots) with an increasing level of species richness (from 1 up to 10 species) in six forest types along a latitudinal gradient in Europe. We used completely mapped plots to investigate the spatial pattern in each forest stand with point pattern techniques. We fitted linear models to analyze the effect of species richness (positively correlated with phylogenetic diversity) and functional diversity on tree spatial arrangements. We also controled this relationship by forest type and stand structure as a proxy of the management legacy. Our results showed a generalized positive effect of species richness and functional diversity on the degree of spatial clustering of trees, and on the spatial independence of tree sizes regardless of the forest type. Moreover, current tree spatial arrangements were still conditioned by its history of management; however its effect was independent of the number of species in the community. Our study showed that species richness and functional diversity are relevant attributes of forests influencing the spatial pattern of plant communities, and consequently forest functioning. © 2019 Nordic Society Oikos. Published by John Wiley & Sons LtdThis research was supported by the FunDivEUROPE project, receiving funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no.265171, the Spanish‐funded project REMEDINAL TE‐CM S2018/EMT‐4338 and COMEDIAS FEDER/Ministerio de Ciencia, InnovaciĂłn y Universidades – Agencia Estatal de InvestigaciĂłn/_Proyecto CGL2017‐83170‐R. RB was funded by a Marie SkƂodowska‐Curie Intra‐European fellowship (grant agreement no. 302445)

    The Extreme Energy Events HECR array: status and perspectives

    Full text link
    The Extreme Energy Events Project is a synchronous sparse array of 52 tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic Rays-related phenomena. The observatory is also meant to address Long Distance Correlation (LDC) phenomena: the network is deployed over a broad area covering 10 degrees in latitude and 11 in longitude. An overview of a set of preliminary results is given, extending from the study of local muon flux dependance on solar activity to the investigation of the upward-going component of muon flux traversing the EEE stations; from the search for anisotropies at the sub-TeV scale to the hints for observations of km-scale Extensive Air Shower (EAS).Comment: XXV ECRS 2016 Proceedings - eConf C16-09-04.

    Dark Matter Results from 100 Live Days of XENON100 Data

    Full text link
    We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows to select only the innermost 48 kg as ultra-low background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in a pre-defined signal region with an expected background of 1.8 +/- 0.6 events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic WIMP-nucleon scattering cross-sections above 7.0x10^-45 cm^2 for a WIMP mass of 50 GeV/c^2 at 90% confidence level.Comment: 5 pages, 5 figures; matches accepted versio

    Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data

    Full text link
    The XENON100 experiment has recently completed a dark matter run with 100.9 live-days of data, taken from January to June 2010. Events in a 48kg fiducial volume in the energy range between 8.4 and 44.6 keVnr have been analyzed. A total of three events have been found in the predefined signal region, compatible with the background prediction of (1.8 \pm 0.6) events. Based on this analysis we present limits on the WIMP-nucleon cross section for inelastic dark matter. With the present data we are able to rule out the explanation for the observed DAMA/LIBRA modulation as being due to inelastic dark matter scattering off iodine at a 90% confidence level.Comment: 3 pages, 3 figure

    Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"

    Full text link
    In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that XENON100's upper limits on spin-independent WIMP-nucleon cross sections for WIMP masses below 10 GeV "may be understated by one order of magnitude or more". Having performed a similar, though more detailed analysis prior to the submission of our new result (arXiv:1207.5988), we do not confirm these findings. We point out the rationale for not considering the described effect in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure

    Study of single muons with the Large Volume Detector at Gran Sasso Laboratory

    Get PDF
    The present study is based on the sample of about 3 mln single muons observed by LVD at underground Gran Sasso Laboratory during 36500 live hours from June 1992 to February 1998. We have measured the muon intensity at slant depths from 3 km w.e. to 20 km w.e. Most events are high energy downward muons produced by meson decay in the atmosphere. The analysis of these muons has revealed the power index of pion and kaon spectrum: 2.76 \pm 0.05. The reminders are horizontal muons produced by the neutrino interactions in the rock surrounding LVD. The value of this flux is obtained. The results are compared with Monte Carlo simulations and the world data.Comment: 13 pages, 2 figures, accepted for publication in "Physics of Atomic Nuclei

    Upper Limit on the Prompt Muon Flux Derived from the LVD Underground Experiment

    Get PDF
    We present the analysis of the muon events with all muon multiplicities collected during 21804 hours of operation of the first LVD tower. The measured depth-angular distribution of muon intensities has been used to obtain the normalization factor, A, the power index, gamma, of the primary all-nucleon spectrum and the ratio, R_c, of prompt muon flux to that of pi-mesons - the main parameters which determine the spectrum of cosmic ray muons at the sea level. The value of gamma = 2.77 +/- 0.05 (68% C.L.) and R_c < 2.0 x 10^-3 (95% C.L.) have been obtained. The upper limit to the prompt muon flux favours the models of charm production based on QGSM and the dual parton model.Comment: 10 pages, 4 figures, RevTex. To appear in Phys. Rev.

    Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    Get PDF
    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like Neutrino Factories and Beta Beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kton iron detector and a high energy Beta Beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for Ξ13\theta_{13} values greater than 4∘^\circ.Comment: 16 pages, 7 figures. Added a new section discussing systematic errors (sec 5.2); sec.5.1 and 4 have been extended. Version to appear in EPJ
    • 

    corecore