1,155 research outputs found
Recommended from our members
Electrophysiological correlates of crossmodal visual distractor congruency effects: Evidence for response conflict
To investigate the basis of crossmodal visual distractor congruency effects we recorded event-related brain potentials (ERP) while participants performed a tactile location discrimination task. Participants made speeded tactile location discrimination responses to tactile targets presented to the index fingers or thumbs while ignoring simultaneously presented task-irrelevant visual distractor stimuli at either the same (congruent) or a different (incongruent) location. Behavioural results were in line with previous studies showing slowed response times and increased error rates on incongruent compared to congruent visual distractor trials. To clarify the effect of visual distractors on tactile processing, concurrently recorded ERPs were analysed for post-stimulus, pre-response and post-response modulations. An enhanced negativity was found in the time range of the N2 component on incongruent compared to congruent visual distractor trials prior to correct responses. In addition, post-response ERPs showed the presence of ERN components on incorrect response trials and enhanced negativity for congruent-incorrect compared to incongruent-incorrect trials. This pattern of ERP results has previously been related to response conflict (Yeung, Cohen, & Botvinick, 2004). Importantly, no modulation of early somatosensory ERPs was present prior to the N2 time range, which may have suggested the contribution of other perceptual or post-perceptual processes to crossmodal congruency effects. Taken together, our results suggest that crossmodal visual distractor effects are largely due to response conflict
A GRANULAR FORMULATION OF Nomuraea rileyi Farlow (Samson) FOR THE CONTROL OF Spodoptera frugiperda (LEPIDOPTERA: NOCTUIDAE)
A granular formulation of the entomopathogenic fungus Nomuraea rileyi (Farlow) Samson was evaluated against Spodoptera frugiperda (Lepidoptera: Noctuidae). The formulation consisted of 1mm particles of defatted corn germ (DCG) containing 107 conidia/g. This preparation protected the conidia against UV radiation and killed 80% of S. frugiperda larvae in laboratory bioassays. It was shown that the fungus used DCG as a substrate for growth and sporulation, creating foci for further infection. This strategy has great potential for the formulation of fungal biocontrol agents, especially those with a high growth rate
Robotic load balancing for mobility-on-demand systems
In this paper we develop methods for maximizing the throughput of a mobility-on-demand urban transportation system. We consider a finite group of shared vehicles, located at a set of stations. Users arrive at the stations, pickup vehicles, and drive (or are driven) to their destination station where they drop-off the vehicle. When some origins and destinations are more popular than others, the system will inevitably become out of balance: vehicles will build up at some stations, and become depleted at others. We propose a robotic solution to this rebalancing problem that involves empty robotic vehicles autonomously driving between stations. Specifically, we utilize a fluid model for the customers and vehicles in the system. Then, we develop a rebalancing policy that lets every station reach an equilibrium in which there are excess vehicles and no waiting customers and that minimizes the number of robotic vehicles performing rebalancing trips. We show that the optimal rebalancing policy can be found as the solution to a linear program. We use this solution to develop a real-time rebalancing policy which can operate in highly variable environments. Finally, we verify policy performance in a simulated mobility-on-demand environment and in hardware experiments.Singapore-MIT Alliance for Research and Technology CenterUnited States. Office of Naval Research (Grant N000140911051)National Science Foundation (U.S.) (Grant EFRI0735953
Unveiling Oxygen Redox Activity in P2-Type NaxNi0.25Mn0.68O2 High-Energy Cathode for Na-Ion Batteries
Na-ion batteries are emerging as convenient energy-storage devices for large-scale applications. Enhanced energy density and cycling stability are key in the optimization of functional cathode materials such as P2-type layered transition metal oxides. High operating voltage can be achieved by enabling anionic reactions, but irreversibility of O2–/O2n–/O2 evolution still limits this chance, leading to extra capacity at first cycle that is not fully recovered. Here, we dissect this intriguing oxygen redox activity in Mn-deficient NaxNi0.25Mn0.68O2 from first-principles, by analyzing the formation of oxygen vacancies and dioxygen complexes at different stages of sodiation. We identify low-energy intermediates that release molecular O2 at high voltage, and we show how to improve the overall cathode stability by partial substitution of Ni with Fe. These new atomistic insights on O2 formation mechanism set solid scientific foundations for inhibition and control of this process toward the rational design of new anionic redox-active cathode materials
Breaking Symmetry Rules Enhance the Options for Stereoselective Propene Polymerization Catalysis
An example of breaking "Ewen's symmetry rule" for olefin catalysis polymerization is proposed by DFT calculations. Catalyst precursors with Cs symmetry are suggested to promote the isotactic propene polymerization by a modification of the active site geometry obtained via coordination with AlH-alkyl species in solution. The origin of stereocontrol in olefin polymerization is due to a dual mechanism dictated by the chiral catalyst. These findings may expand the toolbox for promoting stereoselective olefin polymerization by transition metal catalysts
Combined Structural, Chemometric, and Electrochemical Investigation of Vertically Aligned TiO2 Nanotubes for Na-ion Batteries
In the challenging scenario of anode materials for sodium-ion batteries, TiO2 nanotubes could represent a winning choice in terms of cost, scalability of the preparation procedure, and long-term stability upon reversible operation in electrochemical cells. In this work, a detailed physicochemical, computational, and electrochemical characterization is carried out on TiO2 nanotubes synthesized by varying growth time and heat treatment, viz. the two most significant experimental parameters during preparation. A chemometric approach is proposed to obtain a concrete and solid multivariate analysis of sodium battery electrode materials. Such a statistical approach, combined with prolonged galvanostatic cycling and density functional theory analysis, allows identifying anatase at high growth time as the TiO2 polymorph of choice as an anode material, thus creating a benchmark for sodium-ion batteries, which currently took the center stage of the research in the field of energy storage systems from renewables
Recommended from our members
Investigating light-induced processes in covalent dye-catalyst assemblies for hydrogen production
The light-induced processes occurring in two dye-catalyst assemblies for light-driven hydrogen production were investigated by ultrafast transient absorption spectroscopy. These dyads consist of a push-pull organic dye based on a cyclopenta[1,2-b:5,4-b’]dithiophene (CPDT) bridge, covalently linked to two different H2-evolving cobalt catalysts. Whatever the nature of the latter, photoinduced intramolecular electron transfer from the excited state of the dye to the catalytic center was never observed. Instead, and in sharp contrast to the reference dye, a fast intersystem crossing (ISC) populates a long-lived triplet excited state, which in turn non-radiatively decays to the ground state. This study thus shows how the interplay of different structures in a dye-catalyst assembly can lead to unexpected excited state behavior and might open up new possibilities in the area of organic triplet sensitizers. More importantly, a reductive quenching mechanism with an external electron donor must be considered to drive hydrogen production with these dye-catalyst assemblies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
Rotational spectra of isotopic species of methyl cyanide, CHCN, in their ground vibrational states up to terahertz frequencies
Methyl cyanide is an important trace molecule in star-forming regions. It is
one of the more common molecules used to derive kinetic temperatures in such
sources. As preparatory work for Herschel, SOFIA, and in particular ALMA we
want to improve the rest frequencies of the main as well as minor isotopologs
of methyl cyanide. The laboratory rotational spectrum of methyl cyanide in
natural isotopic composition has been recorded up to 1.63 THz. Transitions with
good signal-to-noise ratio could be identified for CHCN, CHCN,
CHCN, CHCN, CHDCN, and CHCN in their
ground vibrational states up to about 1.2 THz. The main isotopic species could
be identified even in the highest frequency spectral recordings around 1.6 THz.
The highest quantum numbers included in the fit are 64 for
CHCN and 89 for the main isotopic species. Greatly improved
spectroscopic parameters have been obtained by fitting the present data
together with previously reported transition frequencies. The present data will
be helpful to identify isotopologs of methyl cyanide in the higher frequency
bands of instruments such as the recently launched Herschel satellite, the
upcoming airplane mission SOFIA or the radio telescope array ALMA.Comment: 13 pages, 2 figures, article appeared; CDMS links update
- …