36 research outputs found

    Teaching Reading Flexibility in the Content Areas

    Get PDF
    Two problems existing in secondary classrooms warrant the teaching of reading flexibility. The first is the problem of students being required to read extensively in many of their classes. In order to meet this requirement, they must accomplish their reading assignments efficiently in these subject areas. This, in turn, demands that they be flexible readers who can read rapidly when such speed is appropriate and slowly and carefully when a slow and careful rate is demanded

    Optimization of the metabolic stability of a fluorinated cannabinoid receptor subtype 2 (CB2) ligand designed for PET studies

    Get PDF
    The central CB2 receptor represents a promising target for the treatment of neuroinflammatory diseases as CB2 activation mediates anti-inflammatory effects. Recently, the F-18 labeled PET radiotracer [F-18]7a was reported, which shows high CB2 affinity and high selectivity over the CB1 subtype but low metabolic stability due to hydrolysis of the amide group. Based on these findings twelve bioisosteres of 7a were synthesized containing a non-hydrolysable functional group instead of the amide group. The secondary amine 23a (K-i = 7.9 nM) and the ketone 26a (K-i = 8.6 nM) displayed high CB2 affinity and CB2:CB1 selectivity in in vitro radioligand binding studies. Incubation of 7a, 23a and 26a with mouse liver microsomes and LC-quadrupole-MS analysis revealed a slightly higher metabolic stability of secondary amine 23a, but a remarkably higher stability of ketone 26a in comparison to amide 7a. Furthermore, a logD(7.4) value of 5.56 +/- 0.08 was determined for ketone 26a by micro shake-flask method and LC-MS quantification. (C) 2018 Elsevier Masson SAS. All rights reserved.Medicinal Chemistr

    Overcoming establishment thresholds for peat mosses in human-made bog pools

    Get PDF
    Globally, peatlands have been affected by drainage and peat extraction, with adverse effects on their functioning and services. To restore peat‐forming vegetation, drained bogs are being rewetted on a large scale. Although this practice results in higher groundwater levels, unfortunately it often creates deep lakes in parts where peat was extracted to greater depths than the surroundings. Revegetation of these deeper waters by peat mosses appears to be challenging due to strong abiotic feedbacks that keep these systems in an undesired bare state. In this study, we theoretically explore if a floating peat mat and an open human‐made bog lake can be considered two alternative stable states using a simple model, and experimentally test in the field whether stable states are present, and whether a state shift can be accomplished using floating biodegradable structures that mimic buoyant peat. We transplanted two peat moss species into these structures (pioneer sp. Sphagnum cuspidatum and later‐successional sp. S. palustre) with and without additional organic substrate. Our model suggests that these open human‐made bog lakes and floating peat mats can indeed be regarded as alternative stable states. Natural recovery by spontaneous peat moss growth, i.e., a state shift from open water to floating mats, is only possible when the water table is sufficiently shallow to avoid light limitation (<0.29 m at our site). Our experiment revealed that alternative stable states are present and that the floating structures facilitated the growth of pioneer S. cuspidatum and vascular plants. Organic substrate addition particularly facilitated vascular plant growth, which correlated to higher moss height. The structures remained too wet for the late‐successional species S. palustre. We conclude that open water and floating peat mats in human‐made bog lakes can be considered two alternative stable states, and that temporary floating establishment structures can induce a state shift from the open water state to peat‐forming vegetation state. These findings imply that for successful restoration, there is a clear water depth threshold to enable peat moss growth and there is no need for addition of large amounts of donor‐peat substrate. Correct species selection for restoration is crucial for success

    Cardiac Memory Mimicking Myocardial Ischaemia

    No full text
    corecore