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Abstract 

The central CB2 receptor represents a promising target for the treatment of 

neuroinflammatory diseases as CB2 activation mediates anti-inflammatory effects. 

Recently, the 18-F labeled PET radiotracer [18F]7a was reported, which shows high 

CB2 affinity and high selectivity over the CB1 subtype but low metabolic stability due 

to hydrolysis of the amide group. Based on these findings twelve bioisosteres of 7a 

were synthesized containing a non-hydrolysable functional group instead of the 

amide group. The secondary amine 23a (Ki = 7.9 nM) and the ketone 26a 

(Ki = 8.6 nM) displayed high CB2 affinity and CB2 : CB1 selectivity in in vitro 

radioligand binding studies. Incubation of 7a, 23a and 26a with mouse liver 
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microsomes and LC-quadrupole-MS analysis revealed a slightly higher metabolic 

stability of secondary amine 23a, but a remarkably higher stability of ketone 26a in 

comparison to amide 7a. Furthermore, a logD7.4 value of 5.56 ± 0.08 was determined 

for ketone 26a by micro shake-flask method and LC-MS quantification. 
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1. Introduction 

The relaxing and euphoric properties of Cannabis sativa have led to a worldwide use 

as therapeutic and intoxicant. In 1964 one of the responsible psychoactive 

compounds, ∆9-tetrahydrocannabinol (THC), was isolated and characterized for the 

first time [1]. With these findings it was possible to unravel the endogenous 

cannabinoid (endocannabinoid) system in the following decades. Today it is known 

that it is a complex lipid signaling network, which comprises the arachidonic acid-

derived ligands N-arachidonoylethanolamide (anandamide, AEA) [2] and 2-

arachidonoylglycerol (2-AG) [3], the two classical cannabinoid receptors (CB1 and 

CB2) [4],[5] and the enzymes responsible for the biosynthesis (e.g. N-acyltransferase, 

diacylglycerol lipase) and inactivation (e.g. fatty acid amide hydrolases, 

monoacylglycerol lipases) of the natural ligands. The affiliation of further ligands (e.g. 

2-arachidonoylglycerol ether, N-arachidonoyldopamine, hemopressin) and other 

receptors (e.g. transient receptor potential vanilloid type 1) is still discussed [6],[7]. 

The two classical cannabinoid receptors (CB1 and CB2) belong to the class of Gi/o 

protein coupled receptors and show a 44 % sequence homology [8]. They differ 
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mainly in their expression pattern. Due to an increased expression in peripheral 

tissues (e.g. immune cells; reproductive, cardiovascular, gastrointestinal and 

respiratory system) the CB2 receptor was designated as the peripheral receptor [9]. 

Compared to the CB1 receptor, which is mainly expressed in the brain, the CB2 

receptor expression in the central nervous system (CNS) is rather low [8],[10]. 

However, the presence of CB2 receptors could be shown in microglia, human 

cerebral microvascular endothelial cells and human fetal astrocytes [9],[10],[11]. 

Especially under neuroinflammatory conditions the receptor is overexpressed [12] 

and activation by an agonist leads to anti-inflammatory effects [9]. Therefore, the 

receptor is an interesting target for neurodegenerative and neuroinflammatory 

disorders like Alzheimer’s disease, Huntington’s disease, multiple sclerosis, 

depression and schizophrenia [9]. 

In order to examine expression sites and the neurophysiological function of the CB2 

receptor, adequate tools are required. Besides CB2 receptor knockout mice [13], 

several agonists (e.g. JWH 133) [14], antagonists (e.g. SR144528 and AM630) 

[15],[16] and partly unselective antibodies [17] are currently used in research. 

Another possibility to investigate the CB2 receptor expression and distribution is the 

use of positron emission tomography (PET) tracers. This approach is a non-invasive 

method that can be used to quantitatively visualize expression patterns of the 

receptor under healthy and pathological conditions, to monitor the progress of a 

neuroinflammation, and to determine pharmacokinetic (e.g. uptake into the CNS, 

reversibility of target binding and wash-out) and pharmacodynamic properties of new 

therapeutics [18]. So far, appropriate 11C or 18F labeled tracers don’t exist possessing 

high CB2 affinity and sufficient selectivity over other targets, suitable physicochemical 

(e.g. moderate lipophilicity) and pharmacokinetic properties (e.g. good penetration 

into the CNS, the absence of radiolabeled metabolites). In recent years, numerous 
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attempts have been made to address this problem. 

Trisubstituted pyridine derivative [11C]RSR-056 (1) reveals high CB2 affinity 

(Ki = 2.5 nM) and has an experimentally determined optimal log D7.4 value of 1.94 for 

a CNS PET tracer. However, the metabolic stability in male Wistar rats is rather low 

[19]. The thiophene based PET tracer [11C]AAT-015 (2) is washed out rapidly from 

mouse/rat spleen tissue. A specific binding to the CB2 receptor couldn’t be shown in 

PET studies [20]. Moreover, both PET tracers 1 and 2 contain 11C radioisotopes with 

a short half-life of 20 min, limiting broad application in clinics without cyclotron 

nearby. Radiotracers containing fluorine-18 with a half-life of 110 minutes are 

therefore preferred. 4-Oxoquinoline derivative [18F]RS-126 (3) contains 18F but shows 

rapid in vivo metabolic defluorination. Penetration of the intact tracer into the brain 

could therefore not be confirmed [21]. Brain penetrating radiometabolites were also 

shown for [18F]29 (4), which makes the interpretation of the images difficult. In 

addition, the radiofluorination to obtain 4 has proven to be quite challenging. 

Radiochemical yields did not exceed 16 ± 8.7 %, when an automated module was 

used [22]. Similar problems occurred during the radiosynthesis of a PET tracer with 

OCD218F moiety described by Hortala et al. Due to a three-step radiosynthesis, the 

overall radiochemical yield was low (0.3 – 1.6 %) [23]. The radiofluorination to yield 

[18F]CB91 (5) also caused problems as an unexpected non-radioactive peak 

appeared in the HPLC chromatogram [24]. In 2016 the quinolineamine [18F]MA3 (6) 

was reported, displaying high CB2 affinity and selectivity over the human CB1 

receptor, but a rapid wash-out from brain (Figure 1) [25]. 
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Figure 1. Potential CB2 receptor radioligands for PET imaging. 
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Figure 2. Metabolism of [18F]7a. 

 

Very recently, we reported the synthesis, radiosynthesis and biological evaluation of 

the CB2 receptor radiotracer [18F]7a containing a comparable aryl-oxadiazolyl-alkyl 

moiety as [18F]MA3 (6) [26],[27]. In addition to high CB2 affinity and selectivity over 
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the CB1 receptor, the penetration into the mouse brain and low defluorination 

tendency in vivo could be demonstrated. In further studies the high lipophilicity of 7a 

(logD = 3.82 – 4.21) [26] should be reduced, which can contribute to a high non-

specific binding. Furthermore, fast metabolic hydrolysis of the amide to the 

corresponding amine [18F]8 and carboxylic acid 9 was observed during in vivo 

experiments with mice (Figure 2). In this work, we aim to synthesize metabolically 

more stable fluorinated CB2 receptor ligands by replacing the hydrolysis-sensitive 

amide group by functional groups, which can’t be hydrolyzed. CB2 and CB1 receptor 

affinity will determine the selection of a new generation of CB2-PET-tracer. 

 

2. Synthesis 

X
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NHO

(a)
NC

X

F
(b)

Cl
O N

N
X

F

10, X = Br
11, X = Cl

12, X = Br, 59 %
13, X = Cl, 75 %

14, X = Br, 92 %
15, X = Cl, 90 %  

Scheme 1. Reagents and reaction conditions: (a) H2NOH·HCl, Na2CO3, H2O, 

MeOH/EtOH, rt  reflux. (b) 4-chlorobutyryl chloride, EtNiPr2, toluene, 0 °C  rt  

reflux. 

 

In a first approach, the amide of 7a was replaced by secondary and tertiary amines. 

In addition to the bromine atom described by Rühl et al. in 2-position of the phenyl 

moiety, compounds with a chlorine atom in 2-position described by Cheng et al. (see 

also 6) were synthesized in order to reduce the molecular mass and to slightly 

increase the polarity [28],[29]. For the preparation of 23a-c and 24a-c a convergent 

synthesis was designed. For this purpose, nitriles 10 and 11 were treated with an 

excess of hydroxylamine hydrochloride under basic conditions [26],[30]. Whilst 1.3 
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equivalents of hydroxylamine hydrochloride led to a yield of 75 % of 13, an increase 

to 3 equivalents and reduction of the temperature decreased the yield to 59 % of 12 

due to an increased formation of by-products. Treatment of the resulting 

benzamidoximes 12 and 13 with 4-chlorobutyryl chloride and ethyldiisopropylamine 

afforded the alkyl halides 14 and 15, respectively (Scheme 1). 
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Scheme 2. Reagents and reaction conditions: (a) 1. n-BuLi, ethylene sulfate, THF,  

-78 °C  rt; 2. H2SO4 97 %, water, reflux. (b) NaH, DMF, TsOCH2CH2F, 0 °C  rt. 

(c) HNO3 65 %, CH2Cl2, 0 °C. (d) 1. H2, Pd/C 10 %, THF, 1 bar, rt; 2. HCl in Et2O. (e) 

14 or 15, NEt3, Bu4NI, toluene, reflux. (f) CH3I, NEt3, CH3CN, reflux. 

 

The second building block 21∙HCl was prepared according to literature [31]. 

Carbazole 16 was deprotonated with n-butyllithium and subsequently treated with 

ethylene sulfate to yield the hydroxyalkylated carbazole 17, which was nitrated with 

nitric acid at 0 °C. Hydrogenation catalyzed by Pd/C provided the primary aromatic 

amine 21, which was precipitated as hydrochloride salt 21∙HCl (Scheme 2). Coupling 
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of 21∙HCl with 14 was performed with triethylamine and tetrabutylammonium iodide in 

toluene. Common polar aprotic solvents like acetonitrile, N,N-dimethylformamide and 

pyridine led to increased formation of polar side products. The secondary amine 23c 

was further methylated with iodomethane in the presence of triethylamine to provide 

the tertiary amine 24c in 23 % yield (Scheme 2). 

Different deoxofluorination reagents (DAST, XtalFluor-E® and Fluolead™) were 

investigated for the conversion of the alcohols 23c and 24c to the corresponding 

fluoroalkanes 23a and 24a. However, all attempts failed to give the fluoroalkanes 23a 

and 24a. It is assumed that the amine-moiety is responsible for side reactions. 

Hence, it was decided to introduce the fluorine atom at an earlier stage into the 

compounds. Therefore, fluoroethyl tosylate in the presence of sodium hydride was 

used for the fluoroalkylation of carbazole in the first step of the synthesis, leading to 

74 % yield of carbazole 18 [32],[33]. As described for the alcohol 17, the fluoro 

derivative was nitrated with nitric acid and subsequently reduced with hydrogen and 

Pd/C to afford the carbazolamine hydrochloride 22∙HCl in 75 % yield over two steps. 

Alkylation of 22∙HCl with chloroalkanes 14 and 15 led to the secondary amines 23a-

b, which were transformed into tertiary amines 24a-b upon treatment with 

iodomethane (Scheme 2). 

In a second approach, the amide of 7a was replaced bioisosterically by a ketone 26a. 

Therefore, fluoroethylcarbazole 18 was reacted with 4-(methoxycarbonyl)butanoyl 

chloride and BF3∙Et2O in a Friedel-Crafts acylation. Usage of aluminum chloride as 

lewis acid resulted in a halogen exchange of the fluorine atom with a chloride atom, 

as described in the literature [34]. Therefore, a fluoride-containing Lewis acid was 

used. The obtained ester was directly hydrolyzed with sodium hydroxide to the 

carboxylic acid 25. In this case glutaric anhydride as acylation reagent in combination 

with Lewis acids had turned out to be too unreactive. After activation with COMU®, 25 
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was coupled with amidoximes 12 and 13 to give the corresponding O-

acylamidoximes. Cyclization was performed in a one pot procedure by heating to 

reflux in toluene (Scheme 3). 
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Scheme 3. Reagents and reaction conditions: (a) 1. MeO2CCH2CH2CH2COCl, 

BF3·Et2O, 50 °C; 2. NaOH, H2O, MeOH, 0 °C  rt. (b) 1. COMU®, EtNiPr2, 

benzamidoxime 12 or 13, THF, rt  0 °C  rt; 2. toluene, reflux. (c) Et3SiH, 

F3CCO2H, 55 °C. (d) 26a, NaBH4, MeOH, EtOAc, 0 °C  rt  60 °C or 26b, LiBH4, 

THF, 0 °C  rt. (e) H2NOH·HCl, NaOAc·3H2O, EtOH 80 %, rt  reflux. 

 

The ketones 26a and 26b were used to further modify the functional group in the 

tetramethylene spacer. Oximes 29a-b were obtained by treatment of 26a-b with 

hydroxylamine hydrochloride in the presence of the weak base sodium acetate. 

Triethylsilane was used for the reduction of 26a-b to the alkanes 27a-b. Reduction of 
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26a to alcohol 28a was performed with NaBH4 in a mixture of methanol and ethyl 

acetate. Since the conversion of ketone 26a was incomplete due to its poor solubility, 

26b was reacted with the more reactive lithium borohydride in THF, which resulted in 

a higher yield of 63 %. 

In order to better understand replacement of the amide by bioisosteric functional 

groups, the parent amide 7b with a chlorine atom in 2-position had to be prepared. 

For this purpose, amidoxime 13 was reacted with succinic anhydride as described in 

literature [29] and the resulting carboxylic acid 30 was coupled with 22∙HCl in the 

presence of COMU® (Scheme 4). 
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Scheme 4. Reagents and reaction conditions: (a) succinic anhydride, DMF, 120 °C. 

(b) COMU®, EtNiPr2, carbazolamine hydrochloride 22∙HCl, THF, rt  0 °C  rt. 
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3. Receptor affinity 

N

R1

R2

O
N

N

X

F

 

Table 1. CB1 and CB2 binding affinity of test compounds. 

compd R1 R2 X Ki (hCB2) 

± SEM [nM]a 

displacement 

(hCB1)b 

7a 
N
H

O

 

F Br 2.9 ± 0.4 22 %c 

7b F Cl 1.5 ± 0.1 10 % 

23a 

N
H  

F Br 7.9 ± 1.4 - 10 % 

23b F Cl 7.1 ± 1.2 10 % 

23c OH Br 99 ± 22 9 % 

24a 

N
CH3  

F Br 128 ± 12 - 10 % 

24b F Cl 110 ± 8.3 - 10 % 

24c OH Br 55 % 12 % 

26a 

O  

F Br 8.6 ± 2.4 59 % 

26b F Cl 11 ± 1.8 44 % 

27a 

 

F Br 13 ± 0.5 28 % 

27b F Cl 15 ± 1.7 37 % 

28a 

OH  

F Br 20 ± 2.7 9 % 

28b F Cl n.d.d n.d.d 

29a 

NOH  

F Br 56 % 5 % 

29b F Cl n.d.d n.d.d 
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CP 55,940 8.44 ± 0.2 9.26 ± 0.1 

WIN 55,212-2 8.57 ± 0.2 8.72 ± 0.2 

HU 210 9.78 ± 0.04 9.55 ± 0.06 
aThe reported Ki-values are mean values of three independent experiments (n = 3). 
bDue to the low hCB1 affinity, only the radioligand displacement at a test compound 

concentration of 1 µM is given. Mean value of two independent experiments (n = 2). 
cMean value of four experiments (n = 4). dn.d. = not determined due to low stability. 

 

The CB1 and CB2 receptor affinity was determined in competition binding 

experiments with the radioligand [3H]CP-55,940 and fragments of CHO-K1 cells 

expressing the CB1 or CB2 receptor. Rimonabant (SR141716A) and AM630 were 

used for the identification of the non-specific binding of the radioligand, towards CB1 

and CB2 receptors, respectively. 

As shown in Table 1, amide 7b with a 2-chloro-4-fluorophenyl substituent represents 

a ligand with a high CB2 affinity (Ki = 1.5 nM) and selectivity over the CB2 receptor 

(> 500), which is comparable to lead compound 7a (Ki = 2.9 nM). These results 

correlate with the affinity data of the CB2 receptor PET tracer [18F]MA3 (6), which has 

the same phenyl substitution pattern [25]. 

Replacement of the NH-C=O-moiety by two methylene groups slightly decreased 

CB2 receptor affinity as reflected by Ki values of 13 nM and 15 nM for alkanes 27a 

and 27b. This result indicates that the amide group increases CB2 affinity but is not 

essential for binding at the CB2 receptor. Moreover, the replacement of the amide 

group by an ethylene group led to increased lipophilicity. This effect could contribute 

to the high CB2 affinity, since in principle lipophilic compounds preferentially bind to 

the cannabinoid receptors. 

The secondary and tertiary amines 23a,b and 24a,b, with a methylene moiety instead 
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of the carbonyl moiety of the amides 7a,b, show an increased hydrophilicity in 

comparison to the alkanes 27a and 27b. Secondary amines 23a and 23b possess 

additional H-bond donor and acceptor groups compared to the alkanes and display 

high CB2 receptor affinity with Ki values of 7.9 nM and 7.1 nM, respectively. This is 

consistent with the published data of CB2 receptor PET-tracer [18F]MA3 (6, Ki = 

0.8 nM) with arylamine substructure [25]. Replacement of the aliphatic fluorine atom 

by a polar hydroxy group (23c) led to 13-fold decreased CB2 affinity (Ki = 99 nM). 

Also, the conversion of the secondary amines 23a,b into tertiary methylamines 24a,b 

resulted in a 16-fold loss of CB2 affinity. The significantly reduced CB2 affinity of 

alcohol 24c confirms that the polar hydroxyethyl moiety is not tolerated by the CB2 

receptor. 

The secondary alcohol 28a possesses similar pharmacological properties as the 

secondary amine 23a. With a Ki (hCB2) of 20 nM, 28a is a selective CB2 receptor 

ligand that has slightly lower CB2 affinity than the amide 7a. 

Ketones 26a and 26b exhibit an electron withdrawing effect on the carbazole system 

and mimic, due to the sp2-hybridized carbonyl moiety, the planar structure of the 

amide group of 7a,b. With Ki(hCB2) values of 8.6 nM and 11 nM, the ketones 26a 

and 26b reveal high CB2 affinity, respectively, and about 100-fold selectivity over the 

CB1 subtype. In contrast, a much lower affinity was recorded for oxime 29a. At a test 

compound concentration of 1 μM, only 56 % of the radioligand was displaced, 

suggesting a Ki (hCB2) value in this concentration range. It is possible that the low 

affinity of oxime 29a is due to low stability as observed for the analog 29b.. 

Compounds with a 2-chloro-4-fluoro substitution pattern of the terminal phenyl ring 

show comparable CB2 affinity as the corresponding 2-bromo-4-fluoro substituted 

derivatives. With exception of the moderate affine tertiary amines 24, the Ki values 

differ only by 0.8 - 2.4 nM. In the case of the tertiary amines 24 a difference of 18 nM 
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was observed, which is due to the moderate CB2 affinity in the 120 nM range. In 

relative terms, the Ki values of the amide bioisosteres differ only by 10 - 22%. 

 

4. Metabolism studies of 7a, 23a and 26a 

In vivo studies with mice of [18F]7a showed low metabolic stability. 

Radiochromatograms of murine brain samples at 60 min after injection of [18F]7a 

revealed only 35 % of intact radiotracer [18F]7a [26]. Therefore, the metabolic stability 

of secondary amine 23a and ketone 26a was determined in vitro and compared to 

the in vitro metabolic stability of amide 7a. The structures of the main metabolites 

were analyzed in order to identify metabolically labile structural elements and prove 

whether the bioisosteric replacement of the amide inhibits cleavage at the original 

amide position in the side chain. Compounds 23a and 26a were selected due to their 

high CB2 affinity and selectivity and the same substitution pattern at the phenyl 

moiety as the lead compound 7a. 

 

4.1 Stability over time 

For the in vitro stability studies, mouse liver microsomes were used with and without 

addition of the cofactor NADPH. After incubation of the test compounds (75 µM) for 

90 min at 37 °C, the samples were analyzed by LC-quadrupole-MS. The amount of 

intact parent compound (in %) was calculated via external calibration in combination 

with an internal standard (ISTD). 
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Table 2. In vitro metabolic stability of potent CB2 ligands 7a, 23a and 26a. 

compd. amount of intact parent [%] 

(90 min, without NADPH, n = 4) 

amount of intact parent ± SEM [%] 

(90 min, with NADPH, n = 4) 

7a 73.3 ± 1.5 69.8 ± 0.5 

23a 84.9 ± 1.7 75.1 ± 2.9a 

26a 99.1 ± 0.4 98.2 ± 0.6b 

One-Way ANOVA, post hoc mean comparison Tukey Test compared to 7a, 
a p > 0.05. b p < 0.05. 

 

The data in Table 2 indicate that an exchange of the amide moiety (NHC(=O)) of 7a 

by an aminomethylene (NHCH2) moiety (23a) only slightly increased the metabolic 

stability upon incubation with mouse liver microsomes and NADPH. However, ketone 

26a was not metabolically degraded, as 98.2 % of the parent ketone 26a were still 

intact after an incubation period of 90 min. Ketone 26a showed a significantly higher 

metabolic stability compared to secondary amine 23a and amide 7a (p < 0.05). 

In a second experiment it was shown that degradation of amide 7a and amine 23a 

took place even in the absence of NADPH. Possible explanations for this observation 

are a low residual concentration of naturally occurring NADPH in the microsomal 

preparation or, alternatively, a NADPH independent metabolism, by e.g. microsomal 

amidases. Therefore, compounds 7a, 23a and 26a were also incubated in murine 

blood serum for the identification of metabolites. 

 

4.2 Identification of metabolite structures 

For further investigation of the metabolism, incubated samples were analyzed using 

LC-qToF-MS, which allowed the identification of metabolites through exact masses 

and fragmentation experiments. To further analyze the stability, compounds 7a, 23a 
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and 26a (75 µM) were also incubated in mouse blood serum. 
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Figure 3. Proposed structures of metabolites identified 90 min after incubation of 7a 

with mouse liver microsomes and NADPH. * The marked metabolites were also 

formed without NADPH. 

 

In Figure 3 the metabolites formed after incubation of amide 7a with rat liver 

microsomes and NADPH are displayed. Metabolite 7a-F was obtained by 

defluorination. Although this metabolite was formed in minor amounts, the F-atom of 

the potential positron emitter is lost. The oxidative N-dealkylation resulted in 

carbazole 7a-D, which was subsequently hydrolyzed to form the primary amine 7a-E. 

This metabolite can also be formed by hydrolysis of the parent compound 7a followed 
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by N-dealkylation of 7a-A. Again, the F-atom bearing the radioactivity is lost in 

metabolites 7a-D and 7a-E. Although the position of the hydroxy group in the 

carbazole moiety of metabolite 7a-C could not be assigned unequivocally, the 6-

position is most likely bearing the OH moiety. Another primary aromatic amine 7a-B 

resulted from amide hydrolysis. The structure of the N-oxide 7a-G was confirmed by 

fragmentation analysis (Figure 4).  

N+

N
H O N

N
Br

F

F

O

7a-G

-
O

N+

N
H O N

N
Br

F

F

O
N+

NH2

F
-
O

N N+

NH2

F

N

N
H O N

N
Br

F

F

O

[M+H]
+ 245.1124

[M+H]
+ 184.0713 [M]+ 227.0961

[M]
+ 523.0572

[M+H]
+ 525.0704

- O

- H2O

R

O-

R

O

HO

 

Figure 4. Fragmentation of N-oxide 7a-G. 

 

Since fragmentation of N-oxide 7a-G led to a fragment (m/z 523.0572) formed by the 

loss of water, an aromatic hydroxylation was excluded. However, the loss of oxygen 

provided the fragment m/z 525.0704 (parent 7a), which was reported for N-oxides 

[35]. Furthermore, the fragment m/z 184.0713 proves the additional O-atom of 7a-G 

somewhere at the carbazole moiety. 
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Incubation of amide 7a with mouse liver microsomes in presence and absence of 

NADPH led to hydrolysis of the amide moiety resulting in the primary aromatic amine 

7a-A ([M+H]+ 229.1123) and the carboxylic acid 7a-I ([M+H]+ 314.9716, [M-H]- 

312.9630). This hydrolysis is most likely caused by hydrolases (amidases) in the 

microsomes and was also observed during incubation with mouse blood serum. For 

similar compounds the hydrolysis of the amide was reported as major clearance 

pathway in in vivo experiments with mice and rats [26],[29]. 
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Figure 5. Proposed structures of metabolites identified 90 min after incubation of sec. 

amine 23a with mouse liver microsomes and NADPH. * The marked metabolites 

were also formed without NADPH. 
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The pattern of metabolites formed upon incubation of secondary amine 23a (Figure 

5) is very similar to those formed from amide 7a. The metabolites 23a-A (7a-A), 23a-

E (7a-E) and 23a-I (7a-I) formed upon oxidative N-dealkylation of 23a are identical 

with the metabolites formed by amide hydrolysis of 7a. Furthermore, the N-oxide 23a-

G was also formed and metabolites bearing an OH-moiety at the fluoroethyl side 

chain (23a-J) or in the carbazole system (23a-C) could be detected. The low stability 

of a possible hemiaminal led to the assumption, that the hydroxylation took place at 

the terminal carbon atom of the fluoroethyl residue (23a-J). Fragmentation of 

metabolite 23a-C with an aromatic hydroxy moiety is given in Figure 6. Fragment m/z 

257.1105 was obtained by ß-cleavage at the secondary amine. Cleavage of the C-N-

bond led to fragment m/z 244.0994, which gave fragment m/z 198.0794 upon loss of 

the fluoroethyl side chain. All fragments contained an additional O-atom confirming 

the position of the additional OH-moiety at the carbazole system of metabolite 23a-C. 
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Figure 6. Fragmentation of metabolite 23a-C. 
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The secondary amine 23a was also cleaved in the presence and absence of NADPH, 

which resulted in the primary aromatic amine 23a-A. It was assumed that the primary 

aliphatic alcohol 23a-L was formed by reduction of the intermediate aldehyde, 

released upon oxidative N-dealkylation. Additionally, the aldehyde could also be 

oxidized to afford the carboxylic acid 23a-I. However, the intermediate aldehyde 

could not be detected after incubation with and without NADPH. After incubation of 

23a with NADPH both metabolites, primary amine 23a-A and alcohol 23a-L, were 

formed in high amounts. Obviously, oxidative N-dealkylation plays an important role 

in the metabolism of secondary amine 23a. 

Serum stability was also determined for the secondary amine 23a and the amide 7a. 

With mouse serum, both CB2 ligands were metabolized to the primary aromatic 

amine (7a-A = 23a-A) (Figure 7). However, hydrolysis of amide 7a gave larger 

amounts of primary amine 7a-A than oxidative N-dealkylation of secondary amine 

23a after 90 min. 

 

Figure 7. Incubation of amide 7a and sec. amine 23a with mouse serum. Comparison 

of the amount of formed primary amine 7a-A = 23a-A after 90 min. 

 

After an incubation period of 90 min more than 98 % of parent ketone 26a remained 

unchanged. Nevertheless, a few metabolites could be detected. Oxidative N-

dealkylation (26a-D), hydroxylation of the fluoroethyl side chain (26a-J), as well as 
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hydroxylation of the carbazole moiety (26a-C) were observed. Moreover, the 

metabolite 26a-M having an additional OH moiety in the butanone linker could be 

identified (Figure 8).  
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Figure 8. Proposed structures of metabolites identified 90 min after incubation of 

ketone 26a with mouse liver microsomes and NADPH. 

 

5. logD7.4 value determination of ketone 26a 

Another important parameter for the characterization of novel ligands is the 

lipophilicity. In this project, the logD7.4 value of the most promising compound 26a 

was determined. For this purpose, the recently developed micro shake flask method 

in our lab was used and adapted to the high lipophilicity [36]. In this method an exact 
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amount of the respective compound was distributed between a defined volume of 

presaturated n-octanol and buffer (pH 7.4) layer. Afterwards, the concentration in the 

buffer layer was quantified by LC-quadrupole-MS with external calibration. Due to the 

high logD7.4 value of ketone 26a and its poor ability to be ionized in ESI positive or 

negative mode, large amounts of the buffer phase had to be injected into the LC-MS. 

As a reversed phase column was used, ketone 26a was trapped at the front of the 

column, which allowed multiple injections of the same sample prior to gradient 

elution. This procedure enabled detection of ketone 26a in the subnanomolar range. 

The experimentally determined logD7.4 value of 26a was 5.56 ± 0.08. This value is 

higher than the reported logD value of 7a (logD = 3.82 – 4.21) [26], which was 

determined by a quite different method (correlation of HPLC retention times). 

 

Calculation of logD7.4 values with ChemAxon®, consensus mode, led to the following 

order of lipophilicity: ketone 26a (clogD7.4 = 6.76) > secondary amine 23a 

(clogD7.4 = 6.62) > amide 7a (clogD7.4 = 6.20). 

 

6. Conclusion 

The aim of this study was the preparation of metabolically optimized CB2 receptor 

ligands starting from the lead compound 7a. In order to prevent the in vivo amide 

hydrolysis of 7a, compounds with six alternative functional groups instead of the 

amide of 7a were synthesized, which are non-hydrolysable or difficult to hydrolyze. 

The CB2 and CB1 receptor affinity of these compounds was determined by in vitro 

radioligand binding studies. Especially the alkanes 27a (Ki = 13 nM) and 27b 

(Ki = 15 nM), the secondary amines 23a (Ki = 7.9 nM) and 23b (Ki = 7.1 nM) as well 

as the ketones 26a (Ki = 8.6 nM) and 26b (Ki = 11 nM) show high CB2 affinity. 

Furthermore, all tested compounds possess high CB2 : CB1 selectivity. Since the 
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alkanes 27a and 27b were classified as too lipophilic, the secondary amine 23a and 

ketone 26a were examined in more detail concerning pharmacokinetic aspects. 

During in vitro incubations over 90 min with mouse liver microsomes, secondary 

amine 23a was slightly and ketone 26a was considerably more stable than amide 7a. 

Further investigations of the formed metabolites demonstrated that the amide of the 

lead compound 7a was hydrolyzed predominantly, whereas N-dealkylation of the 

secondary amine in the biotransformation of 23a played a major role. Since more 

than 98 % of parent ketone 26a remained unchanged after an incubation period of 

90 min, the logD7.4 value was determined using the micro shake-flask method with 

LC-MS quantification. A logD7.4 value of 5.56 ± 0.08 was found for 26a. The ketone 

26a is a promising starting point for the development of a promising PET tracer. As 

shown for the synthesis of [18F]7a nucleophilic substitution of a tosylate precursor is 

envisaged to obtain [18F]26a. 

 

7. Experimental 

7.1 Chemistry, General Methods 

Oxygen and moisture sensitive reactions were carried out under nitrogen, dried with 

silica gel with moisture indicator (orange gel, Merck) and in dry glassware (Schlenk 

flask or Schlenk tube). Temperatures were controlled with dry ice/acetone (-78 °C), 

ice/water (0 °C), Cryostat (Julabo FT 901 or Huber TC100E-F), magnetic stirrer MR 

3001 K (Heidolph) or RCT CL (IKA®), together with temperature controller EKT 

HeiCon (Heidolph) or VT-5 (VWR) and PEG or silicone bath. All solvents were of 

analytical grade quality. Demineralized water was used. THF was distilled from 

sodium/benzophenone. Methanol was distilled from magnesium methanolate. CH3CN 

and ethanol abs. were dried with molecular sieves (3 Å); DMF, ethyl acetate and 

toluene were dried with molecular sieves (4 Å). Thin layer chromatography (tlc): tlc 
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silica gel 60 F254 on aluminum sheets (Merck). Flash chromatography (fc): Silica gel 

60, 40–63 µm (Merck); parentheses include: diameter of the column (∅), length of the 

stationary phase (l), fraction size (v) and eluent. Melting point: Melting point system 

MP50 (Mettler Toledo), open capillary, uncorrected. MS: MicroTOFQII mass 

spectrometer (Bruker Daltonics); deviations of the found exact masses from the 

calculated exact masses were 5 ppm or less; the data were analyzed with 

DataAnalysis (Bruker). NMR: NMR spectra were recorded on Agilent DD2 400 MHz 

and 600 MHz spectrometers; chemical shifts (δ) are reported in parts per million 

(ppm) against the reference substance tetramethylsilane and calculated using the 

solvent residual peak of the undeuterated solvent. IR: FT/IR IRAffinity-1 IR 

spectrometer (Shimadzu) using ATR technique. 

 

7.2 HPLC method for the determination of the purity 

Equipment 1: Pump: L-7100, degasser: L-7614, autosampler: L-7200, UV detector: L-

7400, interface: D-7000, data transfer: D-line, data acquisition: HSM-Software (all 

from LaChrom, Merck Hitachi); Equipment 2: Pump: LPG-3400SD, degasser: DG-

1210, autosampler: ACC-3000T, UV-detector: VWD-3400RS, interface: DIONEX 

UltiMate 3000, data acquisition: Chromeleon 7 (Thermo Fisher Scientific); column: 

LiChropher® 60 RP-select B (5 µm), LiChroCART® 250-4 mm cartridge; flow rate: 1.0 

mL/min; injection volume: 5.0 µL; detection at λ = 210 nm; solvents: A: demineralized 

water with 0.05 % (V/V) trifluoroacetic acid, B: acetonitrile with 0.05 % (V/V) 

trifluoroacetic acid; gradient elution (% A): 0 - 4 min: 90 %; 4 - 29 min: gradient from 

90 % to 0 %; 29 - 31 min: 0 %; 31 - 31.5min: gradient from 0 % to 90 %; 31.5 -

 40 min: 90 %. The purity of all compounds was determined by this method. With 

exception of compounds 23c, 24c and 28a, the purity of all test compounds is higher 
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than 95 %. 

 

7.3 Synthetic procedures 

7.3.1 2-Bromo-4-fluorobenzamidoxime (12) [26] 

Methanol (64 mL) was added to a stirred solution of NH2OH·HCl (5.21 g, 75 mmol, 

3 eq.) and Na2CO3 (3.98 g, 38 mmol, 1.5 eq.) in water (16 mL). After stirring for 

20 min, 2-bromo-4-fluorobenzonitrile (10, 5.00 g, 25 mmol, 1 eq.) was added and the 

reaction mixture was heated at 86 °C for 20 h. The methanol was removed in vacuo 

and the aqueous suspension was diluted with ethyl acetate (100 mL). The organic 

layer was separated from the aqueous layer and washed with water (2 x 20 mL) and 

brine (20 mL). The combined aqueous layers were washed with ethyl acetate 

(2 x 50 mL). The combined ethyl acetate layers were dried (Na2SO4) and evaporated 

to dryness in vacuo. The residue was purified by fc (∅ = 6.5 cm, l = 15 cm, 

v = 100 mL, cyclohexane/ethyl acetate 60:40, Rf = 0.34 (cyclohexane/ethyl acetate 

5:5)). Colorless solid, mp 120 - 121 °C, yield 3.43 g (59 %). Purity (HPLC): 96.4 % 

(tR = 3.7 and 3.9 min). C7H6BrFN2O (233.0 g/mol). Exact mass (APCI): m/z = 

232.9722 (calcd. 232.9720 for C7H779BrFN2O [M+H+]). 1H NMR (600 MHz, DMSO-

D6): δ (ppm) = 5.81 (s, 2H, NH2), 7.28 (td, J = 8.5/2.6 Hz, 1H, 5-H), 7.42 (dd, J = 

8.5/6.2 Hz, 1H, 6-H), 7.60 (dd, J = 8.7/2.6 Hz, 1H, 3-H), 9.45 (s, 1H, N-OH). 13C NMR 

(101 MHz, DMSO-D6): δ (ppm) = 114.5 (d, J = 21.1 Hz, 1C, C-5), 119.7 (d, J = 24.7 

Hz, 1C, C-3), 122.6 (d, J = 9.9 Hz, 1C, C-2), 132.5 (d, J = 3.5 Hz, 1C, C-1), 132.7 (d, 

J = 8.9 Hz, 1C, C-6), 150.9 (1C, C=N), 161.7 (d, J = 249.6 Hz, 1C, C-4). FTIR (neat): 

ṽ (cm-1) = 3483 (m, O-H), 3363 (m, N-H), 1664 (s, C=N), 1029 (m, C-Br, arom). 
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7.3.2 3-(2-Bromo-4-fluorophenyl)-5-(3-chloropropyl)-1,2,4-oxadiazole (14) 

N-Ethyl-N,N-diisopropylamine (2.6 mL, 15 mmol, 2 eq.) and 4-chlorobutyryl chloride 

(0.85 mL, 7.6 mmol, 1 eq.) were added dropwise at 0 °C to a suspension of 

benzamidoxime 12 (1.78 g, 7.6 mmol, 1 eq.) in dry toluene (120 mL). The solution 

was stirred at room temperature for 6 h, followed by heating at reflux for 16 h. All 

volatiles were removed at reduced pressure and the residue was dissolved in ethyl 

acetate (350 mL). The solution was washed with water (2 x 80 mL) and brine 

(80 mL), dried (Na2SO4) and the organic layer was concentrated under reduced 

pressure. The residue was purified by fc (∅ = 6 cm, l = 16 cm, v = 60 mL, 

cyclohexane/ethyl acetate 95:5, Rf = 0.71 (cyclohexane/ethyl acetate 3:7)). Colorless 

solid, mp 48 - 49 °C, yield 2.25 g (92 %). Purity (HPLC): 96.7 % (tR = 22.7 min). 

C11H9BrClFN2O (319.6 g/mol). Exact mass (APCI): m/z = 318.9659 (calcd. 318.9644 

for C11H1079Br35ClFN2O [M+H+]). 1H NMR (400 MHz, DMSO-D6): δ (ppm) = 2.26 (tt, J 

= 7.2/6.5 Hz, 2H, CH2CH2CH2Cl), 3.17 (t, J = 7.4 Hz, 2H, CH2CH2CH2Cl), 3.79 (t, J = 

6.4 Hz, 2H, CH2CH2CH2Cl), 7.47 (ddd, J = 8.7/8.2/2.6 Hz, 1H, 5-H), 7.84 (dd, J = 

8.7/2.5 Hz, 1H, 3-H), 7.89 (dd, J = 8.7/6.1 Hz, 1H, 6-H). 13C NMR (151 MHz, DMSO-

D6): δ (ppm) = 23.2 (1C, CH2CH2CH2Cl), 28.8 (1C, CH2CH2CH2Cl), 44.0 (1C, 

CH2CH2CH2Cl), 115.4 (d, J = 21.6 Hz, 1C, C-5), 121.3 (d, J = 25.0 Hz, 1C, C-3), 

122.1 (d, J = 9.9 Hz, 1C, C-2), 124.4 (d, J = 3.6 Hz, 1C, C-1), 133.6 (d, J = 9.4 Hz, 

1C, C-6), 162.8 (d, J = 253.3 Hz, 1C, C-4), 166.6 (1C, C-3oxadiazole), 178.9 (1C, C-

5oxadiazole). FTIR (neat): ṽ (cm-1) = 3078 (w, C-H, arom), 2958 (w, C-H, aliph), 1037 

(m, C-Br, arom). 

 

7.3.3 9-(2-Fluoroethyl)carbazole (18) 

Under N2 atmosphere, carbazole (16, 3.01 g, 18 mmol, 1 eq.) was dissolved in dry 
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DMF (80 mL) and cooled down to 0 °C. NaH (60 % dispersion in Paraffin Oil, 1.44 g, 

36 mmol, 2 eq.) was added and the mixture was stirred for 30 min at 0 °C. After the 

dropwise addition of fluoroethyl tosylate (4.72 g, 22 mmol, 1.2 eq.), the mixture was 

stirred at room temperature for 19 h. Water (10 mL) and a saturated Na2CO3 solution 

(50 mL) were added and the mixture was extracted with CH2Cl2 (200 mL). The 

organic layer was washed with a saturated Na2CO3 solution (50 mL) and water 

(2 x 50 mL), dried (Na2SO4) and concentrated under reduced pressure. The residue 

was purified by fc (∅ = 6.5 cm, l = 20 cm, v = 60 mL, cyclohexane/ethyl acetate 99:1, 

Rf = 0.51 (cyclohexane/ethyl acetate 8:2)). Colorless solid, mp 85 °C, yield 2.83 g 

(74 %). Purity (HPLC): 97.1 % (tR = 22.7 min). C14H12FN (213.3 g/mol). Exact mass 

(APCI): m/z = 214.1036 (calcd. 214.1027 for C14H13FN [M+H+]). 1H NMR (400 MHz, 

CDCl3): δ (ppm) = 4.58 (dt, J = 23.9/5.2 Hz, 2H, CH2CH2F), 4.79 (dt, J = 46.8/5.3 Hz, 

2H, CH2F), 7.23 - 7.29 (m, 2H, 3-H, 6-H), 7.41 (d, J = 7.9 Hz, 2H, 1-H, 8-H), 7.47 

(ddd, J = 8.2/7.0/1.2 Hz, 2H, 2-H, 7-H), 8.11 (dt, J = 7.8/0.8 Hz, 2H, 4-H, 5-H). 13C 

NMR (101 MHz, CDCl3): δ (ppm) = 43.5 (d, J = 22.9 Hz, 1C, CH2CH2F), 82.0 (d, J = 

172.8 Hz, 1C, CH2F), 108.7 (d, J = 1.2 Hz, 2C, C-1, C-8), 119.5 (2C, C-3, C-6), 120.5 

(2C, C-4, C-5), 123.2 (2C, C-4a, C-4b), 126.0 (2C, C-2, C-7), 140.6 (2C, C-8a, C-9a). 

FTIR (neat): ṽ (cm-1) = 3047 (w, C-H, arom), 2947 (w, C-H, aliph), 1593 (m, C-C, 

arom). 

 

7.3.4 9-(2-Fluoroethyl)-3-nitrocarbazole (20) 

Fluoroethylcarbazole 18 (2.57 g, 12 mmol, 1 eq.) was dissolved in CH2Cl2 (62 mL) 

and cooled down to 0 °C. HNO3 65 % (1.2 mL, 18 mmol, 1.5 eq.) was added 

dropwise over 30 min and the solution was stirred at 0 °C for another 3 h. Afterwards, 

the reaction mixture was diluted with water (15 mL), neutralized with a saturated 
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NaHCO3 solution and the aqueous layer was diluted with water to 80 mL. After 

evaporation of CH2Cl2 in vacuo, the aqueous layer was extracted with ethyl acetate 

(4 x 200 mL). The combined organic layers were dried (Na2SO4) and concentrated in 

vacuo. The residue was purified by fc with a gradient (∅ = 5 cm, l = 15 cm, v = 60 mL, 

cyclohexane/ethyl acetate 70:30, 50:50, 0:100, Rf = 0.64 (cyclohexane/ethyl acetate 

5:5)). Yellow solid, mp 191 - 192 °C, yield 2.50 g (80 %). Purity (HPLC): 98.7 % 

(tR = 22.7 min). C14H11FN2O2 (258.3 g/mol). Exact mass (APCI): m/z = 259.0885 

(calcd. 259.0877 for C14H12FN2O2 [M+H+]). 1H NMR (400 MHz, CDCl3): δ (ppm) = 

4.66 (dt, J = 25.3/4.9 Hz, 2H, CH2CH2F), 4.85 (dt, J = 46.7/5.0 Hz, 2H, CH2F), 7.34 -

 7.43 (m, 1H, 6-H), 7.42 - 7.51 (m, 2H, 1-H, 8-H), 7.58 (ddd, J = 8.3/7.1/1.1 Hz, 1H, 7-

H), 8.17 (dd, J = 7.8/1.0 Hz, 1H, 5-H), 8.39 (dd, J = 9.1/2.2 Hz, 1H, 2-H), 9.01 (d, J = 

2.2 Hz, 1H, 4-H). 13C NMR (151 MHz, CDCl3): δ (ppm) = 44.1 (d, J = 22.1 Hz, 1C, 

CH2CH2F), 81.8 (d, J = 173.4 Hz, 1C, CH2F), 108.6 (d, J = 2.1 Hz, 1C, C-1), 109.6 (d, 

J = 1.0 Hz, 1C, C-8), 117.4 (1C, C-4), 121.2 (1C, C-5), 121.4 (1C, C-6), 121.9 (1C, C-

2), 123.0 (1C, C-4a), 123.2 (1C, C-4b), 127.8 (1C, C-7), 141.2 (1C, C-3), 141.7 (1C, 

C-8a), 143.9 (1C, C-9a). FTIR (neat): ṽ (cm-1) = 3055 (w, C-H, arom), 2920, 2850 (w, 

C-H, aliph), 1307 (s, NO2). 

 

7.3.5 9-(2-Fluoroethyl)carbazol-3-ammonium chloride (22·HCl) 

Under N2 atmosphere, nitrocarbazole 20 (2.50 g, 9.7 mmol, 1 eq.) was dissolved in 

dry THF (260 mL). Pd/C 10 % (0.375 g) was added and the mixture was stirred for 

23 h under H2 atmosphere (balloon). After filtration through Celite®, the solvent was 

removed under reduced pressure and the residue was dissolved in Et2O (300 mL). A 

solution of HCl in Et2O (2 M, 5.0 mL, 10 mmol, 1.03 eq.) was added dropwise until 

the salt 22·HCl precipitated completely. The precipitate was filtered off, washed with 
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cold Et2O and dried under reduced pressure. Rf = 0.61 (cyclohexane/ethyl acetate 

3:7). Grey solid, mp 230 - 253 °C (decomposition), yield 2.41 g (94 %). Purity 

(HPLC): 95.9 % (tR = 15.2 min). C14H14ClFN2 (264.7 g/mol). Exact mass (APCI): m/z 

= 229.1135 (calcd. 229.1136 for C14H14ClFN2 [M+H+]). 1H NMR (400 MHz, DMSO-

D6): δ (ppm) = 4.72 - 4.87 (m, 4H, CH2CH2F), 7.23 - 7.28 (m, 1H, 6-H), 7.48 - 7.54 

(m, 2H, 2-H, 7-H), 7.68 (d, J = 8.3 Hz, 1H, 8-H), 7.75 (d, J = 8.7 Hz, 1H, 1-H), 8.16 (d, 

J = 2.1 Hz, 1H, 4-H), 8.19 (d, J = 7.8 Hz, 1H, 5-H), 10.52 (s, 3H, -NH3+). 13C NMR 

(101 MHz, DMSO-D6): δ (ppm) = 43.5 (d, J = 20.0 Hz, 1C, CH2CH2F), 83.0 (d, J = 

167.7 Hz, 1C, CH2F), 110.4 (1C, C-8), 110.9 (1C, C-1), 115.2 (1C, C-4), 120.0 (1C, 

C-6), 121.0 (1C, C-5), 121.2 (1C, C-2), 121.9 (1C, C-4b), 122.8 (1C, C-4a), 123.6 

(1C, C-3), 127.07 (1C, C-7), 139.8 (1C, C-9a), 141.3 (1C, C-8a). FTIR (neat): ṽ (cm-1) 

= 3051 (w, C-H, arom), 2843 (m, C-H, aliph). 

 

7.3.6 N-{3-[3-(2-Bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl]propyl}-9-(2-

fluoroethyl)carbazol-3-amine (23a) 

Under N2 atmosphere, triethylamine (0.20 mL, 1.5 mmol, 3 eq.), chloroalkane 14 

(156 mg, 0.49 mmol, 1 eq.) and tetrabutylammonium iodide (181 mg, 0.49 mmol, 

1 eq.) were sequentially added to a suspension of carbazolamine hydrochloride 

22·HCl (144 mg, 0.54 mmol, 1.1 eq.) in dry toluene (20 mL). After the reaction 

mixture was heated at reflux for 68 h, the cold mixture was filtered and all volatiles 

were removed under reduced pressure. The residue was dissolved in ethyl acetate 

(40 mL). Afterwards, the organic layer was washed with HCl solution (1 M, 15 mL) 

and water (2 x 15 mL), dried (Na2SO4) and concentrated in vacuo. The residue was 

purified by fc (∅ = 2 cm, l = 17 cm, v = 10 mL, cyclohexane/ethyl 

acetate/dimethylethylamine 85:15:3, Rf = 0.64 (cyclohexane/ethyl acetate 6:4)). 
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Brown solid, mp 103 °C, yield 137 mg (55 %). Purity (HPLC): 96.2 % (tR = 20.9 min). 

C25H21BrF2N4O (511.4 g/mol). Exact mass (APCI): m/z = 511.0915 (calcd. 511.0940 

for C25H2279BrF2N4O [M+H+]). 1H NMR (400 MHz, DMSO-D6): δ (ppm) = 2.15 (quint, J 

= 7.1 Hz, 2H, NCH2CH2CH2), 3.19 (t, J = 7.4 Hz, 2H, NCH2CH2CH2), 3.27 (t, J = 6.8 

Hz, 2H, NCH2CH2CH2), 4.61 (dt, J = 27.3/4.6 Hz, 2H, CH2CH2F), 4.74 (dt, J = 

47.4/4.6 Hz, 2H, CH2F), 5.45 (s, 1H, NH), 6.86 (dd, J = 8.7/2.2 Hz, 1H, 8-Hcarb), 7.06 

(t, J = 7.4 Hz, 1H, 6-Hcarb), 7.28 (d, J = 2.1 Hz, 1H, 4-Hcarb), 7.32 - 7.38 (m, 2H, 2-

Hcarb, 7-Hcarb), 7.43 (td, J = 8.4/2.6 Hz, 1H, 5-Hphenyl), 7.49 (d, J = 8.2 Hz, 1H, 1-Hcarb), 

7.82 - 7.89 (m, 2H, 3-Hphenyl, 6-Hphenyl), 7.96 (d, J = 7.7 Hz, 1H, 5-Hcarb). 13C NMR 

(101 MHz, DMSO-D6): δ (ppm) = 23.6 (1C, NCH2CH2CH2), 25.5 (1C, NCH2CH2CH2), 

42.9 (d, J = 20.4 Hz, 1C, CH2CH2F), 43.1 (1C, NCH2CH2CH2), 82.6 (d, J = 167.9 Hz, 

1C, CH2F), 101.5 (1C, C-4carb), 109.2 (1C, C-1carb), 110.0 (1C, C-2carb), 114.6 (1C, C-

8carb), 115.4 (d, J = 21.6 Hz, 1C, C-5phenyl), 117.9 (1C, C-6carb), 120.0 (1C, C-5carb), 

121.3 (d, J = 25.1 Hz, 1C, C-3phenyl), 122.1 (1C, C-4bcarb), 122.2 (d, J = 10.2 Hz, 1C, 

C-2phenyl), 122.9 (1C, C-4acarb), 124.6 (d, J = 3.5 Hz, 1C, C-1phenyl), 125.1 (1C, C-

7carb), 133.4 (1C, C-9acarb), 133.6 (d, J = 9.4 Hz, 1C, C-6phenyl), 140.4 (1C, C-8acarb), 

142.3 (1C, C-3carb), 162.9 (d, J = 253.3 Hz, 1C, C-4phenyl), 166.7 (1C, C-3oxadiazole), 

180.0 (1C, C-5oxadiazole). FTIR (neat): ṽ (cm-1) = 3379 (w, N-H), 3055 (w, C-H, arom), 

2935 (w, C-H, aliph), 1593 (m, C-C, arom), 1573 (m, C-C, arom). 

 

7.3.7 N-{3-[3-(2-Bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl]propyl}-9-(2-

fluoroethyl)-N-methylcarbazol-3-amine (24a) 

Under N2 atmosphere, triethylamine (0.16 mL, 1.1 mmol, 3 eq.) and iodomethane 

(0.24 mL, 3.8 mmol, 10 eq.) were added to a solution of secondary amine 23a 

(195 mg, 0.38 mmol, 1 eq.) in dry CH3CN (20 mL). After the reaction mixture was 

heated at reflux for 2.75 h, the cold mixture was filtered and all volatiles were 
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removed in vacuo. The residue was dissolved in ethyl acetate (20 mL) and the 

mixture was washed with HCl solution (1 M, 10 mL) and water (3 x 10 mL). 

Afterwards, the organic layer was dried (Na2SO4) and concentrated in vacuo. The 

residue was purified by fc (∅ = 2 cm, l = 20 cm, v = 10 mL, cyclohexane/ethyl 

acetate/dimethylethylamine 92:8:3, Rf = 0.73 (cyclohexane/ethyl acetate 6:4)). Brown 

resin, yield 73 mg (37 %). Purity (HPLC): 95.8 % (tR = 21.2 min). C26H23BrF2N4O 

(525.4 g/mol). Exact mass (APCI): m/z = 525.1082 (calcd. 525.1096 for 

C26H2479BrF2N4O [M+H+]). 1H NMR (400 MHz, CDCl3): δ (ppm) = 2.23 (quint, J = 7.2 

Hz, 2H, NCH2CH2CH2), 3.01 (s, 3H, NCH3), 3.08 (t, J = 7.3 Hz, 2H, NCH2CH2CH2), 

3.51 (t, J = 6.3 Hz, 2H, NCH2CH2CH2), 4.55 (dt, J = 23.7/4.7 Hz, 2H, CH2CH2F), 4.77 

(dt, J = 46.8/5.2 Hz, 2H, CH2F), 7.05 - 7.13 (m, 2H, 5-Hphenyl, 2-Hcarb), 7.17 (t, J = 7.4 

Hz, 1H, 6-Hcarb), 7.30 (d, J = 8.8 Hz, 1H, 1-Hcarb), 7.35 (d, J = 8.1 Hz, 1H, 8-Hcarb), 

7.40 - 7.45 (m, 1H, 7-Hcarb), 7.47 (dd, J = 8.2/2.6 Hz, 1H, 3-Hphenyl), 7.50 - 7.56 (m, 

1H, 4-Hcarb), 7.80 (dd, J = 8.7/6.0 Hz, 1H, 6-Hphenyl), 8.01 (d, J = 7.8 Hz, 1H, 5-Hcarb). 

13C NMR (101 MHz, CDCl3): δ (ppm) = 24.0 (1C, NCH2CH2CH2), 24.3 (1C, 

NCH2CH2CH2), 40.6 (1C, NCH3), 43.6 (d, J = 22.8 Hz, 1C, CH2CH2F), 54.2 (1C, 

NCH2CH2CH2), 82.1 (d, J = 172.6 Hz, 1C, CH2F), 106.3 (1C, C-4carb), 108.6 (1C, C-

8carb), 109.3 (1C, C-1carb), 115.0 (d, J = 21.4 Hz, 1C, C-5phenyl), 115.9 (1C, C-2carb), 

118.9 (1C, C-6carb), 120.5 (1C, C-5carb), 121.7 (d, J = 24.7 Hz, 1C, C-3phenyl), 122.9 (d, 

J = 9.7 Hz, 1C, C-2phenyl), 123.0 (1C, C-4bcarb), 123.9 (1C, C-4acarb), 124.8 (d, J = 3.6 

Hz, 1C, C-1phenyl), 125.9 (1C, C-7carb), 133.4 (d, J = 9.1 Hz, 1C, C-6phenyl), 134.9 (1C, 

C-9acarb), 141.1 (1C, C-8acarb), 144.1 (1C, C-3carb), 163.4 (d, J = 255.5 Hz, 1C, C-

4phenyl), 167.3 (1C, C-3oxadiazole), 179.4 (1C, C-5oxadiazole). FTIR (neat): ṽ (cm-1) = 3051 

(w, C-H, arom), 2947 (w, C-H, aliph), 1600 (m, C-C, arom), 1573 (m, C-C, arom). 
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7.3.8 5-[9-(2-Fluoroethyl)carbazol-3-yl]-5-oxopentanoic acid (25) 

Under N2 atmosphere, BF3·Et2O (78.5 mL, 620 mmol, 33 eq.) was added to a mixture 

of 4-(methoxycarbonyl)butanoyl chloride (3.9 mL, 28 mmol, 1.5 eq.) and 

fluoroethylcarbazole 18 (4.00 g, 19 mmol, 1 eq.). The mixture was heated at 50 °C. 

After 2 h, additional acid chloride (1.3 mL, 9.4 mmol, 0.5 eq.) was added at room 

temperature and the reaction mixture was heated at 50 °C for another 19 h. At 0 °C 

NaOH solution (20 %, 320 mL) was slowly added to the reaction mixture (violent 

reaction). The organic solvent was evaporated in vacuo and methanol (250 mL) was 

added dropwise at 0 °C. Stirring was continued at room temperature for 74 h. 

Afterwards, methanol was removed in vacuo and the pH value was adjusted to 1 with 

HCl 37 %. The resulting suspension was filtered and washed with 50 °C warm ethyl 

acetate (200 mL). The aqueous layer was extracted with ethyl acetate (2 x 200 mL). 

The combined organic layers were washed with brine (100 mL), dried (Na2SO4) and 

the solvent was evaporated in vacuo. The residue was purified by fc with a gradient 

(∅ = 6 cm, l = 18 cm, v = 60 mL, cyclohexane/ethyl acetate/formic acid 80:20:0.5, 

65:35:0.5, 50:50:0.5, Rf = 0.50 (cyclohexane/ethyl acetate/formic acid 5:5:0.2)). The 

product was purified by recrystallization (ethyl acetate). Beige solid, mp 152 °C, yield 

1.92 g (31 %). Purity (HPLC): 96.1 % (tR = 19.6 min). C19H18FNO3 (327.4 g/mol). 

Exact mass (APCI): m/z = 328.1347 (calcd. 328.1343 for C19H19FNO3 [M+H+]). 1H 

NMR (400 MHz, DMSO-D6): δ (ppm) = 1.92 (quint, J = 7.3 Hz, 2H, 

CH2CH2CH2CO2H), 2.37 (t, J = 7.4 Hz, 2H, CH2CH2CH2CO2H), 3.18 (t, J = 7.3 Hz, 

2H, CH2CH2CH2CO2H), 4.73 - 4.90 (m, 4H, CH2CH2F), 7.30 (t, J = 7.4 Hz, 1H, 6-H), 

7.51 (ddd, J = 8.3/7.1/1.2 Hz, 1H, 7-H), 7.65 - 7.74 (m, 2H, 1-H, 8-H), 8.08 (dd, J = 

8.7/1.6 Hz, 1H, 2-H), 8.31 (d, J = 7.7 Hz, 1H, 5-H), 8.88 (d, J = 1.3 Hz, 1H, 4-H). 13C 

NMR (101 MHz, DMSO-D6): δ (ppm) = 19.8 (1C, CH2CH2CO2H), 33.0 (1C, 
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CH2CO2H), 37.1 (1C, CH2CH2CH2CO2H), 43.1 (d, J = 20.1 Hz, 1C, CH2CH2F), 82.5 

(d, J = 167.9 Hz, 1C, CH2F), 109.4 (1C, C-1), 110.1 (1C, C-8), 120.0 (1C, C-6), 120.7 

(1C, C-5), 121.4 (1C, C-4), 122.0 (1C, C-4a), 122.6 (1C, C-4b), 125.8 (1C, C-2), 

126.5 (1C, C-7), 128.4 (1C, C-3), 140.9 (1C, C-8a), 142.9 (1C, C-9a), 174.4 (1C, 

CO2H), 198.7 (1C, C=O). FTIR (neat): ṽ (cm-1) = 3250 - 2300 (b, O-H), 1712 (s, 

C=O), 1670 (m, C=O). 

 

7.3.9 4-[3-(2-Bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl]-1-[9-(2-

fluoroethyl)carbazol-3-yl]butan-1-one (26a) 

Under N2 atmosphere, N-ethyl-N,N-diisopropylamine (66 µL, 0.38 mmol, 2 eq.) and 

COMU® (106 mg, 0.25 mmol, 1.3 eq.) were added to a solution of carboxylic acid 25 

(71 mg, 0.21 mmol, 1.1 eq.) in dry THF (2.5 mL). After the reaction mixture was 

stirred at room temperature for 30 min, it was cooled down to 0 °C and 

benzamidoxime 12 (45 mg, 0.19 mmol, 1 eq.) was added. Stirring was continued at 

room temperature for 24 h. Afterwards, THF was removed in vacuo, dry toluene 

(2 mL) was added and the mixture was heated at reflux for 24 h. All volatiles were 

removed under reduced pressure and the residue was dissolved in ethyl acetate 

(30 mL). The organic layer was washed with water (2 x 10 mL) and brine (10 mL), 

dried (Na2SO4) and concentrated in vacuo. The residue was purified by fc with a 

gradient (∅ = 2 cm, l = 15 cm, v = 10 mL, cyclohexane/ethyl acetate 85:15, 75:25, 

Rf = 0.50 (cyclohexane/ethyl acetate 6:4)). Beige solid, mp 150 °C, yield 61 mg 

(61 %). Purity (HPLC): 96.0 % (tR = 25.2 min). C26H20BrF2N3O2 (524.3 g/mol). Exact 

mass (APCI): m/z = 524.0755 (calcd. 524.0780 for C26H2179BrF2N3O2 [M+H+]). 1H 

NMR (400 MHz, DMSO-D6): δ (ppm) = 2.22 (quint, J = 7.2 Hz, 2H, COCH2CH2CH2), 

3.17 (t, J = 7.4 Hz, 2H, COCH2CH2CH2), 3.36 (t, J = 7.1 Hz, 2H, COCH2CH2CH2), 
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4.72 - 4.91 (m, 4H, CH2CH2F), 7.29 (t, J = 7.5 Hz, 1H, 6-Hcarb), 7.43 (td, J = 8.4/2.5 

Hz, 1H, 5-Hphenyl), 7.52 (t, J = 7.6 Hz, 1H, 7-Hcarb), 7.68 - 7.74 (m, 2H, 1-Hcarb, 8-Hcarb), 

7.82 (dd, J = 8.6/2.5 Hz, 1H, 3-Hphenyl), 7.88 (dd, J = 8.7/6.1 Hz, 1H, 6-Hphenyl), 8.10 

(dd, J = 8.8/1.4 Hz, 1H, 2-Hcarb), 8.27 (d, J = 7.7 Hz, 1H, 5-Hcarb), 8.89 (d, J = 1.4 Hz, 

1H, 4-Hcarb). 13C NMR (101 MHz, DMSO-D6): δ (ppm) = 21.0 (1C, COCH2CH2CH2), 

25.2 (1C, COCH2CH2CH2), 36.6 (1C, COCH2CH2CH2), 43.1 (d, J = 19.9 Hz, 1C, 

CH2CH2F), 82.5 (d, J = 167.8 Hz, 1C, CH2F), 109.4 (1C, C-1carb), 110.1 (1C, C-8carb), 

115.4 (d, J = 21.6 Hz, 1C, C-5phenyl), 120.0 (1C, C-6carb), 120.6 (1C, C-5carb), 121.3 (d, 

J = 25.1 Hz, 1C, C-3phenyl), 121.5 (1C, C-4carb), 122.0 (1C, C-4acarb), 122.2 (d, J = 10.1 

Hz, 1C, C-2phenyl), 122.5 (1C, C-4bcarb), 124.5 (d, J = 3.5 Hz, 1C, C-1phenyl), 125.8 (1C, 

C-2carb), 126.5 (1C, C-7carb), 128.3 (1C, C-3carb), 133.6 (d, J = 9.4 Hz, 1C, C-6phenyl), 

140.9 (1C, C-8acarb), 143.0 (1C, C-9acarb), 162.8 (d, J = 253.3 Hz, 1C, C-4phenyl), 

166.6 (1C, C-3oxadiazole), 179.7 (1C, C-5oxadiazole), 198.3 (1C, C=O). FTIR (neat): ṽ (cm-

1) = 2935 (w, C-H, aliph), 1666 (m, C=O), 1593 (m, C-C, arom), 1573 (m, C-C, arom). 

 

7.3.10 3-{4-[3-(2-Bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl]butyl}-9-(2-

fluoroethyl)carbazole (27a) 

Et3SiH (78 µL, 0.49 mmol, 2.5 eq.) was added dropwise to a solution of ketone 26a 

(103 mg, 0.20 mmol, 1 eq.) in trifluoroacetic acid (0.80 mL). After the reaction mixture 

was heated at 55 °C for 3 h, the mixture was carefully dropped into water (10 mL) at 

0 °C and the mixture was neutralized with NaOH. The aqueous suspension was 

extracted with ethyl acetate (3 x 10 mL). Afterwards, the organic layer was washed 

with water (10 mL) and brine (10 mL), dried (Na2SO4) and concentrated in vacuo. 

The residue was purified by fc (∅ = 2 cm, l = 15 cm, v = 10 mL, cyclohexane/ethyl 

acetate 90:10, Rf = 0.73 (cyclohexane/ethyl acetate 6:4)). Brownish resin, yield 
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77 mg (77 %). Purity (HPLC): 97.4 % (tR = 27.9 min). C26H22BrF2N3O (510.4 g/mol). 

Exact mass (APCI): m/z = 510.0988 (calcd. 510.0987 for C26H2379BrF2N3O [M+H+]). 

1H NMR (400 MHz, CDCl3): δ (ppm) = 1.83 - 1.93 (m, 2H, C-3carb-CH2CH2CH2CH2), 

1.93 - 2.02 (m, 2H, C-3carb-CH2CH2CH2CH2), 2.88 (t, J = 7.4 Hz, 2H, C-3carb-

CH2CH2CH2CH2), 3.02 (t, J = 7.4 Hz, 2H, C-3carb-CH2CH2CH2CH2), 4.59 (dt, J = 

23.8/5.2 Hz, 2H, CH2CH2F), 4.79 (dt, J = 46.8/5.2 Hz, 2H, CH2F), 7.10 - 7.15 (m, 1H, 

5-Hphenyl), 7.21 - 7.26 (m, 1H, 6-Hcarb), 7.30 (dd, J = 8.4/1.6 Hz, 1H, 2-Hcarb), 7.34 (d, J 

= 8.3 Hz, 1H, 1-Hcarb), 7.39 (d, J = 8.1 Hz, 1H, 8-Hcarb), 7.43 - 7.49 (m, 2H, 3-Hphenyl, 

7-Hcarb), 7.83 (dd, J = 8.7/6.0 Hz, 1H, 6-Hphenyl), 7.90 (d, J = 0.6 Hz, 1H, 4-Hcarb), 8.07 

(d, J = 7.8 Hz, 1H, 5-Hcarb). 13C NMR (101 MHz, CDCl3): δ (ppm) = 26.3 (1C, C-3carb-

CH2CH2CH2CH2), 26.6 (1C, C-3carb-CH2CH2CH2CH2), 31.6 (1C, C-3carb-

CH2CH2CH2CH2), 35.5 (1C, C-3carb-CH2CH2CH2CH2), 43.5 (d, J = 22.8 Hz, 1C, 

CH2CH2F), 82.0 (d, J = 172.7 Hz, 1C, CH2F), 108.5 (d, J = 1.1 Hz, 1C, C-1carb), 108.6 

(d, J = 1.0 Hz, 1C, C-8carb), 115.0 (d, J = 21.4 Hz, 1C, C-5phenyl), 119.4 (1C, C-6carb), 

120.0 (1C, C-4carb), 120.5 (1C, C-5carb), 121.7 (d, J = 24.7 Hz, 1C, C-3phenyl), 122.9 (d, 

J = 9.8 Hz, 1C, C-2phenyl), 123.1 (1C, C-4bcarb), 123.4 (1C, C-4acarb), 124.8 (d, J = 3.5 

Hz, 1C, C-1phenyl), 125.9 (1C, C-7carb), 126.7 (1C, C-2carb), 132.9 (1C, C-3carb), 133.4 

(d, J = 9.1 Hz, 1C, C-6phenyl), 139.2 (1C, C-9acarb), 140.9 (1C, C-8acarb), 163.4 (d, J = 

255.6 Hz, 1C, C-4phenyl), 167.3 (1C, C-3oxadiazole), 179.7 (1C, C-5oxadiazole). FTIR (neat): 

ṽ (cm-1) = 2924 (w, C-H, aliph), 1600 (m, C-C, arom), 1570 (m, C-C, arom). 

 

7.4 Receptor binding studies to determine CB1 and CB2 receptor affinity 

[3H]CP55940 displacement assays were used for the determination of affinity (Ki) 

values of ligands for the cannabinoid CB1 and CB2 receptors. Membrane aliquots 

containing 5 μg (CHOK1hCB1_bgal) or 1 μg (CHOK1hCB2_bgal) of membrane 

protein in 100 μL assay buffer (50 mM Tris–HCl, 5 mM MgCl2, 0.1 % BSA, pH 7.4) 
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were incubated at 30 °C for 1 h, in presence of 3.5 nM [3H]CP55940 

(CHOK1hCB1_bgal) or 1.5 nM [3H]CP55940 (CHOK1hCB2_bgal). Initially, 1 µM of 

competing ligand was used, followed by six concentrations of competing ligand 

(between 10-5.5 M and 10-10.5 M) when more than 50 % displacement was found at 

1 µM. Non-specific binding was determined in the presence of 10 μM AM630 

(CHOK1hCB2_bgal) or 10 μM SR141716A (CHOK1hCB1_bgal). Incubation was 

terminated by rapid filtration through GF/C filters (Whatman International, Maidstone, 

UK), and followed by extensive washing using a Filtermate 96-well harvester (Perkin 

Elmer, Groningen, The Netherlands). Filter-bound radioactivity was determined by 

scintillation spectrometry using a 1450 Microbeta Wallac Trilux scintillation counter 

(Perkin Elmer).  

Data analysis was performed by using the nonlinear regression curve fitting program 

GraphPad Prism 7.0 (GraphPad Software, Inc., San Diego, CA). From displacement 

assays, IC50 values were obtained by non-linear regression analysis of the 

displacement curves. The obtained IC50 values were converted into Ki values using 

the Cheng Prusoff equation [37] to determine the affinity of the ligands using a KD 

value of [3H]CP55940 of 0.93 nM at CB2R. 

 

Supporting Information 

Purity data of all compounds, additional synthetic procedures, general procedures for 

metabolism studies, determination of microsomal stability of 7a, 23a and 26a, 

identification of metabolite structures of 7a, 23a and 26a, determination of the logD7.4 

value of 26a, 1H and 13C NMR spectra. 
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