660 research outputs found

    FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    Get PDF
    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts

    Diffuse Gamma-Ray Emission from Starburst Galaxies and M31

    Get PDF
    We present a search for high energy gamma-ray emission from 9 nearby starburst galaxies and M31 with the EGRET instrument aboard CGRO. Though the diffuse gamma-ray emission from starburst galaxies was suspected to be detectable, we find no emission from NGC 253, M82 nor from the average of all 9 galaxies. The 2 sigma upper limit for the EGRET flux above 100 MeV for the averaged survey observations is 1.8 x 10-8 ph cm-2 s-1. From a model of the expected radio and gamma-ray emission, we find that the magnetic field in the nuclei of these galaxies is > 25 micro Gauss, and the ratio of proton and electron densities is < 400. The EGRET limits indicate that the rate of massive star formation in the survey galaxies is only about an order of magnitude higher than in the Milky Way. The upper limit to the gamma-ray flux above 100 MeV for M31 is 1.6 x 10-8 ph cm-2 s-1. At the distance of M31, the Milky Way flux would be over twice this value, indicating higher gamma-ray emissivities in our Galaxy. Therefore, since the supernova rate of the Milky Way is higher than in M31, our null detection of M31 supports the theory of the supernova origin of cosmic rays in galaxies.Comment: 17 pages, plus 1 Postscript figure, AAS Latex macros v4.0, accepted for publication in ApJ Main Journa

    The quantification of surface roughness on root caries using Noncontact Optical Profilometry - An in vitro study

    Get PDF
    Purpose. The aim of this study was to quantify surface roughness of carious dentine using Noncontact Optical Profilometry (NCOP) in vitro. Methods. A total of 20 extracted teeth with root caries were examined according to clinical assessment criteria. NCOP (Proscan 2000, Scantron, Taunton, UK) was used to carry out the surface roughness measurements in vitro. Selection of sampling rate measurements were subsequently performed. Results. Results showed that the surface roughness (Ra) values were most accurately obtained at a sampling rate of 30 Hz. All lesions had rough texture, with cavitation ranging from 0.5 to 4 mm. Most lesions were leathery, whilst remaining few were soft. There was a significant difference in surface roughness between the carious and sound dentine (p0.05) whilst there was a significant correlation between the hardness and surface roughness (r: 0.47, p=0.04). There was an inverse relationship trend between surface roughness measurements and severity of root caries. Conclusions. There are limitations due to the sophisticated layout of collage network within the root carious dentine especially cavitated lesions. The NCOP could be considered for the quantification of surface roughness on noncavitated carious dentine in a laboratory setting. Clinical significance. The effect of different oral health care products on root caries using the NCOP without causing any potential damage to the noncavitated root surface could be assessed prior to the large scale clinical studies

    The identification of the optical companion to the binary millisecond pulsar J0610-2100 in the Galactic field

    Full text link
    We have used deep V and R images acquired at the ESO Very Large Telescope to identify the optical companion to the binary pulsar PSR J0610-2100, one of the black-widow millisecond pulsars recently detected by the Fermi Gamma-ray Telescope in the Galactic plane. We found a faint star (V~26.7) nearly coincident (\delta r ~0".28) with the pulsar nominal position. This star is visible only in half of the available images, while it disappears in the deepest ones (those acquired under the best seeing conditions), thus indicating that it is variable. Although our observations do not sample the entire orbital period (P=0.28 d) of the pulsar, we found that the optical modulation of the variable star nicely correlates with the pulsar orbital period and describes a well defined peak (R~25.6) at \Phi=0.75, suggesting a modulation due to the pulsar heating. We tentatively conclude that the companion to PSR J0610-2100 is a heavily ablated very low mass star (~ 0.02Msun) that completely filled its Roche Lobe.Comment: 17 pages, 5 figures - Accepted for pubblication in Ap

    EGRET Gamma-Ray Observations of the Crab P2/P1 Ratio

    Get PDF
    Recent observations of the Crab pulsar by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory show that the high-energy gamma-ray light curve has changed little over the lifetime of the instrument. Previous data collected by SAS-2 and COS-B in the years 1972-82, along with earlier EGRET data, suggested a 14 year sinusoidal variation in the flux ratio between the first and second peaks. The new data from EGRET indicate that the flux ratio is constant.Comment: 6 pages, 3 figures. To be published in Ap

    Neutron rich matter, neutron stars, and their crusts

    Full text link
    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.Comment: 10 pages, 2 figures, Plenary talk International Nuclear Physics Conference 2010, Vancouver, C

    Shear thickening and jamming in densely packed suspensions of different particle shapes

    Get PDF
    We investigated the effects of particle shape on shear thickening in densely packed suspensions. Rods of different aspect ratios and non-convex hooked rods were fabricated. Viscosity curves and normal stresses were measured using a rheometer for a wide range of packing fractions for each shape. Suspensions of each shape exhibit qualitatively similar Discontinuous Shear Thickening. The logarithmic slope of the stress/shear-rate relation increases dramatically with packing fraction and diverges at a critical packing fraction phi_c which depends on particle shape. The packing fraction dependence of the viscosity curves for different convex shapes can be collapsed when the packing fraction is normalized by phi_c. Intriguingly, viscosity curves for non-convex particles do not collapse on the same set as convex particles, showing strong shear thickening over a wider range of packing fraction. The value of phi_c is found to coincide with the onset of a yield stress at the jamming transition, suggesting the jamming transition also controls shear thickening. The yield stress is found to correspond with trapped air in the suspensions, and the scale of the stress can be attributed to interfacial tension forces which dramatically increase above phi_c due to the geometric constraints of jamming. The relationship between shear and normal stresses is found to be linear in both the shear thickening and jammed regimes, indicating that the shear stresses come from friction. In the limit of zero shear rate, normal stresses pull the rheometer plates together due to the surface tension of the liquid below phi_c, but push the rheometer plates apart due to jamming above phi_c.Comment: 13 pages, 13 figures. published in Physical Review

    The Dark Side of ROTSE-III Prompt GRB Observations

    Get PDF
    We present several cases of optical observations during gamma-ray bursts (GRBs) which resulted in prompt limits but no detection of optical emission. These limits constrain the prompt optical flux densities and the optical brightness relative to the gamma-ray emission. The derived constraints fall within the range of properties observed in GRBs with prompt optical detections, though at the faint end of optical/gamma flux ratios. The presently accessible prompt optical limits do not require a different set of intrinsic or environmental GRB properties, relative to the events with prompt optical detections.Comment: ApJ accepted. 20 pages in draft manuscript form, which includes 6 pages of tables and 2 figure
    corecore