734 research outputs found

    Content vs. context for multimedia semantics: the case of SenseCam image structuring

    Get PDF
    Much of the current work on determining multimedia semantics from multimedia artifacts is based around using either context, or using content. When leveraged thoroughly these can independently provide content description which is used in building content-based applications. However, there are few cases where multimedia semantics are determined based on an integrated analysis of content and context. In this keynote talk we present one such example system in which we use an integrated combination of the two to automatically structure large collections of images taken by a SenseCam, a device from Microsoft Research which passively records a person’s daily activities. This paper describes the post-processing we perform on SenseCam images in order to present a structured, organised visualisation of the highlights of each of the wearer’s days

    Axion minivoids and implications for direct detection

    Get PDF
    In the scenario in which QCD axion dark matter is produced after inflation, the Universe is populated by large inhomogeneities on very small scales. Eventually, these fluctuations will collapse gravitationally to form dense axion miniclusters that trap up to ∌75% of the dark matter within asteroid-mass clumps. Axion miniclusters are physically tiny however, so haloscope experiments searching for axions directly on Earth are much more likely to be probing “minivoids”—the space in between miniclusters. This scenario seems like it ought to spell doom for haloscopes, but while these minivoids might be underdense, they are not totally devoid of axions. Using Schrödinger-Poisson and N-body simulations to evolve from realistic initial field configurations, we quantify the extent to which the local ambient dark matter density is suppressed in the postinflationary scenario. We find that a typical experimental measurement will sample an axion density that is only around 10% of the expected galactic dark matter density. Our results are taken as conservative estimates and have implications for experimental campaigns lasting longer than a few years, as well as broadband haloscopes that have sensitivity to transient signatures. We show that for a OĂ°(year)-long integration times, the measured dark matter density should be expected to vary by 20%–30%

    Studying the effects of thalamic interneurons in a thalamocortical neural mass model

    Get PDF
    Neural mass models of the thalamocortical circuitry are often used to mimic brain activity during sleep and wakefulness as observed in scalp electroencephalogram (EEG) signals [1]. It is understood that alpha rhythms (8-13 Hz) dominate the EEG power-spectra in the resting-state [2] as well as the period immediately before sleep [3]. Literature review shows that the thalamic interneurons (IN) are often ignored in thalamocortical population models; the emphasis is on the connections between the thalamo cortical relay (TCR) and the thalamic reticular nucleus (TRN). In this work, we look into the effects of the IN cell population on the behaviour of an existing thalamocortical model containing the TCR and TRN cell populations [4]. A schematic of the extended model used in this work is shown in Fig.1. The model equations are solved in Matlab using the Runge-Kutta method of the 4th/5th order. The model shows high sensitivity to the forward and reverse rates of reactions during synaptic transmission as well as on the membrane conductance of the cell populations. The input to the model is a white noise signal simulating conditions of resting state with eyes closed, a condition well known to be associated with dominant alpha band oscillations in EEG e.g. [5]. Thus, the model parameters are calibrated to obtain a set of basal parameter values when the model oscillates with a dominant frequency within the alpha band. The time series plots and the power spectra of the model output are compared with those when the IN cell population is disconnected from the circuit (by setting the inhibitory connectivity parameter from the IN to the TCR to zero). We observe (Fig. 2 inset) a significant difference in time series output of the TRN cell population with and without the IN cell population in the model; this in spite of the IN having no direct connectivity to and from the TRN cell population (Fig. 1). A comparison of the power spectra behaviour of the model output within the delta (1-3.5Hz), theta (3.75-7.5Hz), alpha (7.75-13.5Hz) and beta (13.75-30.5Hz) bands is shown in Fig. 2. Disconnecting the IN cell population shows a significant drop in the alpha band power and the dominant frequency of oscillation now lies within the theta band. An overall ‘slowing’ (left-side shift) of the power spectra is observed with an increase within the delta and theta bands and a decrease in the alpha and beta bands. Such a slowing of EEG is a signature of slow wave sleep in healthy individuals, and this suggests that the IN cell population may be centrally involved in the phase transition to slow wave sleep [6]. It is also characteristic of the waking EEG in Alzheimer’s disease, and may help us to understand the role of the IN cell population in modulating TCR and TRN cell behaviour in pathological brain conditions

    Oligodendroglia Are Particularly Vulnerable to Oxidative Damage After Neurotrauma In Vivo.

    Get PDF
    In the paper "Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo," we determined the extent of oxidative damage to specific cellular subpopulations and structures within regions vulnerable to secondary degeneration and assessed the effect this had on oligodendroglial function. Comparative assessment of oxidative damage demonstrated selective vulnerability of oligodendroglia, specifically oligodendrocyte progenitor cells (OPCs) to DNA oxidation in vivo. Immunohistochemical fate mapping along the oligodendroglial lineage showed a transient susceptibility of these cells to DNA oxidation, protein nitration, and lipid peroxidation, with mature oligodendrocytes derived immediately after injury more vulnerable to DNA oxidation than their counterparts existing at the time of injury or later derived. In situ hybridization demonstrated a reduction in myelin regulatory factor (MyRF) messenger RNA (mRNA) fluorescence in newly derived mature oligodendrocytes, suggesting a compromise in the production and maintenance of the myelin sheath in these cells. The data imply a deficit in the normal differentiation of OPCs to myelinating oligodendrocytes, associated with a transient increase in oxidative damage, which may contribute to the dysmyelinating phenotype seen at chronic time points after injury. Identifying and understanding the sources of this oxidative damage is integral for the development of therapeutic interventions for neurotrauma

    Reconstructing disease transmission dynamics from animal movements and test data

    Get PDF
    Disease outbreaks are often accompanied by a wealth of data, usually in the form of movements, locations and tests. This data is a valuable resource in which data scientists and epidemiologists can reconstruct the transmission pathways and parameters and thus devise control strategies. However, the spatiotemporal data gathered can be both vast whilst at the same time incomplete or contain errors frustrating the effort to accurately model the transmission processes. Fortunately, several techniques exist that can be used to infer the relevant information to help explain these processes. The aim of this article is to provide the reader with a user friendly introduction to the techniques used in dealing with the large datasets that exists in epidemiological and ecological science and the common pitfalls that are to be avoided as well as an introduction to inference techniques for estimating parameter values for mathematical models from spatiotemporal datasets

    Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer

    Get PDF
    The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells

    Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma

    Get PDF
    Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease

    Toward a Deeper Understanding of the Meaning of Marriage Among Black Men

    Get PDF
    Black men benefit from healthy, satisfying marriages in domains of physical, psychological, and financial well-being. Yet marriage among Black men has declined and remains elusive for many. One gap in the research concerns the positive meaning that Black men find in their marriages. Prior research has failed to collect in-depth accounts of Black men’s experiences of marriage. The purpose of this qualitative study is to explore the meaning of marriage among 52 Black men, using interview data. Findings highlight four themes in the meaning of marriage—secure emotional support, lifelong commitment, enhanced life success, and secure attachment. Two themes emerged from the data related to important influences on the construction of meaning relative to marriage—faith, and the dynamics of give and take. Responses among the men concerning the change in marriage over time related to transitions in American marriages and a deepened respect for marriage. Implications are discussed

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    • 

    corecore