73 research outputs found

    Mathematical analysis of a model of river channel formation.

    Get PDF
    The study of overland flow of water over an erodible sediment leads to a coupled model describing the evolution of the topographic elevation and the depth of the overland water film. The spatially uniform solution of this model is unstable, and this instability corresponds to the formation of rills, which in reality then grow and coalesce to form large-scale river channels. In this paper we consider the deduction and mathematical analysis of a deterministic model describing river channel formation and the evolution of its depth. The model involves a degenerate nonlinear parabolic equation (satisfied on the interior of the support of the solution) with a super-linear source term and a prescribed constant mass. We propose here a global formulation of the problem (formulated in the whole space, beyond the support of the solution) which allows us to show the existence of a solution and leads to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving channel self-determines its own width, without the need to pose any extra conditions at the channel margin

    Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems

    Get PDF
    Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength

    Genetic markers associated with bone composition in Rhode Island Red laying hens

    Get PDF
    BackgroundBone damage has welfare and economic impacts on modern commercial poultry and is known as one of the major challenges in the poultry industry. Bone damage is particularly common in laying hens and is probably due to the physiological link between bone and the egg laying process. Previous studies identified and validated quantitative trait loci (QTL) for bone strength in White Leghorn laying hens based on several measurements, including bone composition measurements on the cortex and medulla of the tibia bone. In a previous pedigree-based analysis, bone composition measurements showed heritabilities ranging from 0.18 to 0.41 and moderate to strong genetic correlations with tibia strength and density. Bone composition was measured using infrared spectroscopy and thermogravimetry. The aim of this study was to combine these bone composition measurements with genotyping data via a genome-wide association study (GWAS) to investigate genetic markers that contribute to genetic variance in bone composition in Rhode Island Red laying hens. In addition, we investigated the genetic correlations between bone composition and bone strength.ResultsWe found novel genetic markers that are significantly associated with cortical lipid, cortical mineral scattering, medullary organic matter, and medullary mineralization. Composition of the bone organic matter showed more significant associations than bone mineral composition. We also found interesting overlaps between the GWAS results for tibia composition traits, particularly for cortical lipid and tibia strength. Bone composition measurements by infrared spectroscopy showed more significant associations than thermogravimetry measurements. Based on the results of infrared spectroscopy, cortical lipid showed the highest genetic correlations with tibia density, which was negative (- 0.20 & PLUSMN; 0.04), followed by cortical CO3/PO4 (0.18 & PLUSMN; 0.04). Based on the results of thermogravimetry, medullary organic matter% and mineral% showed the highest genetic correlations with tibia density (- 0.25 & PLUSMN; 0.04 and 0.25 & PLUSMN; 0.04, respectively).ConclusionsThis study detected novel genetic associations for bone composition traits, particularly those involving organic matter, that could be used as a basis for further molecular genetic investigations. Tibia cortical lipids displayed the strongest genetic associations of all the composition measurements, including a significantly high genetic correlation with tibia density and strength. Our results also highlighted that cortical lipid may be a key measurement for further avian bone studies

    No evidence that selection for egg production persistency causes loss of bone quality in laying hens

    Get PDF
    Background The physiological adaptations that have evolved for egg laying make hens susceptible to bone fractures and keel bone damage. In modern laying hen breeds, longer periods of egg laying could result in a greater risk of poor bone quality, and selection for increased egg production has frequently been stated to be a cause. However, the existing literature does not support this hypothesis. To test the hypothesis that egg production is associated with quality, breaking strength and density of bone, genetic correlations between these traits were estimated in White Leghorn and Rhode Island Red breeds. Genetic correlations of cortical and medullary bone material chemical properties with bone quality were also estimated, in order to identify methods to improve bone quality with appropriately targeted measurement of key traits. Results Estimates of heritability for bone quality traits were moderate (0.19-0.59) for both White Leghorn and Rhode Island Red breeds, except for the keel bone trait, which had a heritability estimate equal to zero. There was no evidence for genetic or phenotypic relationships between post-peak egg production and bone quality. In the White Leghorn breed, the estimate of the genetic correlation between pre-peak production/age at first egg and bone quality was significant and negative (- 0.7 to - 0.4). Estimates of heritability of thermogravimetric measurements of tibial medullary bone mineralisation were significant (0.18-0.41), as were estimates of their genetic correlations with tibia breaking strength and density (0.6-0.9). Conclusions The low genetic correlation of post-peak egg production with bone quality suggests that selection for increased persistency of egg production may not adversely affect bone quality. Onset of puberty and mineralisation of the medullary bone, which is a specialised adaptation for egg laying, were identified as important factors associated with the quality of the skeleton later during egg production. These are traits for which genetic, as well as environmental and management factors can positively impact the overall quality of the skeleton of laying hens

    Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems

    Get PDF
    Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength

    Resistin-Like Molecule-β Inhibits SGLT-1 Activity and Enhances GLUT2-Dependent Jejunal Glucose Transport

    Get PDF
    International audienceOBJECTIVE: An increased expression of RELM-beta (resistin-like molecule-beta), a gut-derived hormone, is observed in animal models of insulin resistance/obesity and intestinal inflammation. Intestinal sugar absorption is modulated by dietary environment and hormones/cytokines. The aim of this study was to investigate the effect of RELM-beta on intestinal glucose absorption. RESEARCH DESIGN AND METHODS: Oral glucose tolerance test was performed in mice and rats in the presence and the absence of RELM-beta. The RELM-beta action on glucose transport in rat jejunal sacs, everted rings, and mucosal strips was explored as well as downstream kinases modulating SGLT-1 and GLUT2 glucose transporters. RESULTS: Oral glucose tolerance test carried out in rodents showed that oral administration of RELM-beta increased glycemia. Studies in rat jejunal tissue indicated that mucosal RELM-beta promoted absorption of glucose from the gut lumen. RELM-beta had no effect on paracellular mannitol transport, suggesting a transporter-mediated transcellular mechanism. In studies with jejunal mucosa mounted in Ussing chamber, luminal RELM-beta inhibited SGLT-1 activity in line with a diminished SGLT-1 abundance in brush border membranes (BBMs). Further, the potentiating effect of RELM-beta on jejunal glucose uptake was associated with an increased abundance of GLUT2 at BBMs. The effects of RELM-beta were associated with an increased amount of protein kinase C betaII in BBMs and an increased phosphorylation of AMP-activated protein kinase (AMPK). CONCLUSIONS: The regulation of SGLT-1 and GLUT2 by RELM-beta expands the role of gut hormones in short-term AMPK/protein kinase C mediated control of energy balance

    An eQTL in the cystathionine beta synthase gene is linked to osteoporosis in laying hens

    Get PDF
    Background Skeletal damage is a challenge for laying hens because the physiological adaptations required for egg laying make them susceptible to osteoporosis. Previously, we showed that genetic factors explain 40% of the variation in end of lay bone quality and we detected a quantitative trait locus (QTL) of large effect on chicken chromosome 1. The aim of this study was to combine data from the commercial founder White Leghorn population and the F2 mapping population to fine-map this QTL and understand its function in terms of gene expression and physiology. Results Several single nucleotide polymorphisms on chromosome 1 between 104 and 110 Mb (galGal6) had highly significant associations with tibial breaking strength. The alternative genotypes of markers of large effect that flanked the region had tibial breaking strengths of 200.4 vs. 218.1 Newton (P < 0.002) and, in a subsequent founder generation, the higher breaking strength genotype was again associated with higher breaking strength. In a subsequent generation, cortical bone density and volume were increased in individuals with the better bone genotype but with significantly reduced medullary bone quality. The effects on cortical bone density were confirmed in a further generation and was accompanied by increased mineral maturity of the cortical bone as measured by infrared spectrometry and there was evidence of better collagen cross-linking in the cortical bone. Comparing the transcriptome of the tibia from individuals with good or poor bone quality genotypes indicated four differentially-expressed genes at the locus, one gene, cystathionine beta synthase (CBS), having a nine-fold higher expression in the genotype for low bone quality. The mechanism was cis-acting and although there was an amino-acid difference in the CBS protein between the genotypes, there was no difference in the activity of the enzyme. Plasma homocysteine concentration, the substrate of CBS, was higher in the poor bone quality genotype. Conclusions Validated markers that predict bone strength have been defined for selective breeding and a gene was identified that may suggest alternative ways to improve bone health in addition to genetic selection. The identification of how genetic variants affect different aspects of bone turnover shows potential for translational medicine

    Reversal of diastereoselectivity in the synthesis of Peptidomimetic 3‑Carboxamide-1,4-benzodiazepin-5-ones

    Get PDF
    Enantiopure 3-carboxamide-1,4-benzodiazepin-5-ones were synthesized via the Ugi reaction followed by the Staudinger/aza-Wittig or reduction reactions in only two steps. A complete reversal of diastereoselectivity was achieved depending on the cyclization methodology employed. The different orientation of the C3 substituent in our 3-substituted 1,4-benzodiazepin-5-ones with respect to the most studied 1,4-benzodiazepin-2-ones makes them complementary in the development of new drugs because the primary source of binding selectivity of 1,4-benzodiazepines is the selective recognition of ligand conformations by the receptor.Ministerio de Economía y Competitividad, Spain (Project CTQ2012-31611), Junta de Castilla y León, Consejería de Educación y Cultura y Fondo Social Europeo (Project BU246A12-1) and the European Commission, Seventh Framework Programme (Project SNIFFER FP7-SEC-2012-312411)
    corecore