15,628 research outputs found

    Activities of \gamma-ray emitting isotopes in rainwater from Greater Sudbury, Canada following the Fukushima incident

    Full text link
    We report the activity measured in rainwater samples collected in the Greater Sudbury area of eastern Canada on 3, 16, 20, and 26 April 2011. The samples were gamma-ray counted in a germanium detector and the isotopes 131I and 137Cs, produced by the fission of 235U, and 134Cs, produced by neutron capture on 133Cs, were observed at elevated levels compared to a reference sample of ice-water. These elevated activities are ascribed to the accident at the Fukushima Dai-ichi nuclear reactor complex in Japan that followed the 11 March earthquake and tsunami. The activity levels observed at no time presented health concerns.Comment: 4 pages, 8 figure

    Slow epidemic extinction in populations with heterogeneous infection rates

    Get PDF
    We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals ii and jj is endowed with an infection rate ÎČij=λwij\beta_{ij} = \lambda w_{ij} proportional to the intensity of their contact wijw_{ij}, with a distribution P(wij)P(w_{ij}) taken from face-to-face experiments analyzed in Cattuto et  al.et\;al. (PLoS ONE 5, e11596, 2010). We find an extremely slow decay of the fraction of infected individuals, for a wide range of the control parameter λ\lambda. Using a distribution of width aa we identify two large regions in the a−λa-\lambda space with anomalous behaviors, which are reminiscent of rare region effects (Griffiths phases) found in models with quenched disorder. We show that the slow approach to extinction is caused by isolated small groups of highly interacting individuals, which keep epidemic alive for very long times. A mean-field approximation and a percolation approach capture with very good accuracy the absorbing-active transition line for weak (small aa) and strong (large aa) disorder, respectively

    On Universality in Human Correspondence Activity

    Get PDF
    Identifying and modeling patterns of human activity has important ramifications in applications ranging from predicting disease spread to optimizing resource allocation. Because of its relevance and availability, written correspondence provides a powerful proxy for studying human activity. One school of thought is that human correspondence is driven by responses to received correspondence, a view that requires distinct response mechanism to explain e-mail and letter correspondence observations. Here, we demonstrate that, like e-mail correspondence, the letter correspondence patterns of 16 writers, performers, politicians, and scientists are well-described by the circadian cycle, task repetition and changing communication needs. We confirm the universality of these mechanisms by properly rescaling letter and e-mail correspondence statistics to reveal their underlying similarity.Comment: 17 pages, 3 figures, 1 tabl

    An Introduction to the Covariant Quantization of Superstrings

    Get PDF
    We give an introduction to a new approach to the covariant quantization of superstrings. After a brief review of the classical Green--Schwarz superstring and Berkovits' approach to its quantization based on pure spinors, we discuss our covariant formulation without pure spinor constraints. We discuss the relation between the concept of grading, which we introduced to define vertex operators, and homological perturbation theory, and we compare our work with recent work by others. In the appendices, we include some background material for the Green-Schwarz and Berkovits formulations, in order that this presentation be self contained.Comment: LaTex, 23 pp. Contribution to the Proceedings of the Workshop in String Theory, Leuven 2002, some references added and a comment on ref. [16

    Dynamics of Multi-Player Games

    Get PDF
    We analyze the dynamics of competitions with a large number of players. In our model, n players compete against each other and the winner is decided based on the standings: in each competition, the mth ranked player wins. We solve for the long time limit of the distribution of the number of wins for all n and m and find three different scenarios. When the best player wins, the standings are most competitive as there is one-tier with a clear differentiation between strong and weak players. When an intermediate player wins, the standings are two-tier with equally-strong players in the top tier and clearly-separated players in the lower tier. When the worst player wins, the standings are least competitive as there is one tier in which all of the players are equal. This behavior is understood via scaling analysis of the nonlinear evolution equations.Comment: 8 pages, 8 figure

    Voter Dynamics on an Ising Ladder: Coarsening and Persistence

    Full text link
    Coarsening and persistence of Ising spins on a ladder is examined under voter dynamics. The density of domain walls decreases algebraically with time as t−1/2t^-{1/2} for sequential as well as parallel dynamics. The persistence probability decreases as t−ξst^{-\theta_{s}} under sequential dynamics, and as t−ξpt^{-\theta_{p}} under parallel dynamics where ξp=2ξs≈.88\theta_{p} = 2 \theta_{s} \approx .88. Numerical values of the exponents are explained. The results are compared with the voter model on one and two dimensional lattices, as well as Ising model on a ladder under zero-temperature Glauber dynamics.Comment: replaced with published version (text somewhat expanded): 11 pages, 2 figure

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Turbulent dissipation in the ISM: the coexistence of forced and decaying regimes and implications for galaxy formation and evolution

    Get PDF
    We discuss the dissipation of turbulent kinetic energy Ek in the global ISM by means of 2-D, MHD, non-isothermal simulations in the presence of model radiative heating and cooling. We argue that dissipation in 2D is representative of that in three dimensions as long as it is dominated by shocks rather than by a turbulent cascade. Energy is injected at a few isolated sites in space, over relatively small scales, and over short time periods. This leads to the coexistence of forced and decaying regimes in the same flow. We find that the ISM-like flow dissipates its turbulent energy rapidly. In simulations with forcing, the input parameters are the radius l_f of the forcing region, the total kinetic energy e_k each source deposits into the flow, and the rate of formation of those regions, sfr_OB. The global dissipation time t_d depends mainly on l_f. In terms of measurable properties of the ISM, t_d >= Sigma_g u_rms^2/(e_k sfr_OB), where Sigma_g is the average gas surface density and u_rms is the rms velocity dispersion. For the solar neighborhood, t_d >= 1.5x10^7 yr. The global dissipation time is consistently smaller than the crossing time of the largest energy-containing scales. In decaying simulations, Ek decreases with time as t^-n, where n~0.8-0.9. This suggests a decay with distance d as Ek\propto d^{-2n/(2-n)} in the mixed forced+decaying case. If applicable to the vertical direction, our results support models of galaxy evolution in which stellar energy injection provides significant support for the gas disk thickness, but not models of galaxy formation in which this energy injection is supposed to reheat an intra-halo medium at distances of up to 10-20 times the optical galaxy size, as the dissipation occurs on distances comparable to the disk height.Comment: 23 pages, including figures. To appear in ApJ. Abstract abridge

    Gravitational Collapse in Turbulent Molecular Clouds. I. Gasdynamical Turbulence

    Get PDF
    Observed molecular clouds often appear to have very low star formation efficiencies and lifetimes an order of magnitude longer than their free-fall times. Their support is attributed to the random supersonic motions observed in them. We study the support of molecular clouds against gravitational collapse by supersonic, gas dynamical turbulence using direct numerical simulation. Computations with two different algorithms are compared: a particle-based, Lagrangian method (SPH), and a grid-based, Eulerian, second-order method (ZEUS). The effects of both algorithm and resolution can be studied with this method. We find that, under typical molecular cloud conditions, global collapse can indeed be prevented, but density enhancements caused by strong shocks nevertheless become gravitationally unstable and collapse into dense cores and, presumably, stars. The occurance and efficiency of local collapse decreases as the driving wave length decreases and the driving strength increases. It appears that local collapse can only be prevented entirely with unrealistically short wave length driving, but observed core formation rates can be reproduced with more realistic driving. At high collapse rates, cores are formed on short time scales in coherent structures with high efficiency, while at low collapse rates they are scattered randomly throughout the region and exhibit considerable age spread. We suggest that this naturally explains the observed distinction between isolated and clustered star formation.Comment: Minor revisions in response to referee, thirteen figures, accepted to Astrophys.

    Truncation of power law behavior in "scale-free" network models due to information filtering

    Full text link
    We formulate a general model for the growth of scale-free networks under filtering information conditions--that is, when the nodes can process information about only a subset of the existing nodes in the network. We find that the distribution of the number of incoming links to a node follows a universal scaling form, i.e., that it decays as a power law with an exponential truncation controlled not only by the system size but also by a feature not previously considered, the subset of the network ``accessible'' to the node. We test our model with empirical data for the World Wide Web and find agreement.Comment: LaTeX2e and RevTeX4, 4 pages, 4 figures. Accepted for publication in Physical Review Letter
    • 

    corecore