20,365 research outputs found

    Investigating the Impact of the Spatial Distribution of Deprivation on Health Outcomes

    Get PDF

    The history and characteristics of troodos and olympus rose clover

    Get PDF
    ROSE CLOVER is being produced and used in increasing quantities in south-western Australia. The first line named was designated Kondinin and five lines have now been given cultivar (variety) names. One of the first samples of rose clover, C.P.I. 13949, introduced into Western Australia proved to be a mixture of two very similar types, differing visibly only in leaf markings. The mixed sample was named Troodos,* and the selection from it, Olympus. This paper describes the origin of the two varieties, their history and characteristics

    The history, characteristics and potential of Kondinin rose clover

    Get PDF
    Experimental and field performances of rose clover over fen years suggest that it will be increasingly used as a pasture legume in south-western Australia. A number of lines differing in maturity and leaf markings have been selected locally and given cultivar (variety) names The first of these lines to be selected was designated Kondinin. This paper describes its origin, history, characteristics and performance

    Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon

    Get PDF
    During the last several thousand years the semi‐arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe Chernozems, however, lost 17–28 kg m−2 of calcium in the form of carbonates in 1970–1998. Here we demonstrate that the loss of calcium was caused by fundamental shift in the steppe hydrologic balance. Previously unleached soils where precipitation was less than potential evapotranspiration are now being leached due to increased precipitation and, possibly, due to decreased actual evapotranspiration. Because this region receives low levels of acidic deposition, the dissolution of carbonates involves the consumption of atmospheric CO2. Our estimates indicate that this climatically driven terrestrial sink of atmospheric CO2 is ∼2.1–7.4 g C m−2 a−1. In addition to the net sink of atmospheric carbon, leaching of pedogenic carbonates significantly amplified seasonal amplitude of CO2 exchange between atmosphere and steppe soil

    Systematic review and meta-analysis of age-related differences in instructed emotion regulation success

    Get PDF
    © Copyright 2018 Brady et al. The process model of emotion regulation (ER) is based on stages in the emotion generative process at which regulation may occur. This meta-analysis examines age-related differences in the subjective, behavioral, and physiological outcomes of instructed ER strategies that may be initiated after an emotional event has occurred; attentional deployment, cognitive change, and response modulation. Within-process strategy, stimulus type, and valence were also tested as potential moderators of the effect of age on ER. A systematic search of the literature identified 156 relevant comparisons from 11 studies. Few age-related differences were found. In our analysis of the subjective outcome of response modulation strategies, young adults used expressive enhancement successfully (g = 0.48), but not expressive suppression (g = 0.04). Response modulation strategies had a small positive effect among older adults, and enhancement vs suppression did not moderate this success (g = 0.31 and g = 0.10, respectively). Young adults effectively used response modulation to regulate subjective emotion in response to pictures (g = 0.41) but not films (g = 0.01). Older adults were able to regulate in response to both pictures (g = 0.26) and films (g = 0.11). Interestingly, both age groups effectively used detached reappraisal, but not positive reappraisal to regulate emotional behavior. We conclude that, in line with well-established theories of socioemotional aging, there is a lack of evidence for age differences in the effects of instructed ER strategies, with some moderators suggesting more consistent effectiveness for older compared to younger adults

    Accurate Noise Projection for Reduced Stochastic Epidemic Models

    Full text link
    We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model. Through the use of a normal form coordinate transform, we are able to analytically derive the stochastic center manifold along with the associated, reduced set of stochastic evolution equations. The transformation correctly projects both the dynamics and the noise onto the center manifold. Therefore, the solution of this reduced stochastic dynamical system yields excellent agreement, both in amplitude and phase, with the solution of the original stochastic system for a temporal scale that is orders of magnitude longer than the typical relaxation time. This new method allows for improved time series prediction of the number of infectious cases when modeling the spread of disease in a population. Numerical solutions of the fluctuations of the SEIR model are considered in the infinite population limit using a Langevin equation approach, as well as in a finite population simulated as a Markov process.Comment: 38 pages, 10 figures, new title, Final revision to appear in Chao

    The diagonal Ising susceptibility

    Full text link
    We use the recently derived form factor expansions of the diagonal two-point correlation function of the square Ising model to study the susceptibility for a magnetic field applied only to one diagonal of the lattice, for the isotropic Ising model. We exactly evaluate the one and two particle contributions χd(1)\chi_{d}^{(1)} and χd(2)\chi_{d}^{(2)} of the corresponding susceptibility, and obtain linear differential equations for the three and four particle contributions, as well as the five particle contribution χd(5)(t){\chi}^{(5)}_d(t), but only modulo a given prime. We use these exact linear differential equations to show that, not only the russian-doll structure, but also the direct sum structure on the linear differential operators for the n n-particle contributions χd(n)\chi_{d}^{(n)} are quite directly inherited from the direct sum structure on the form factors f(n) f^{(n)}. We show that the nth n^{th} particle contributions χd(n)\chi_{d}^{(n)} have their singularities at roots of unity. These singularities become dense on the unit circle sinh2Ev/kTsinh2Eh/kT=1|\sinh2E_v/kT \sinh 2E_h/kT|=1 as n n\to \infty.Comment: 18 page

    Slow epidemic extinction in populations with heterogeneous infection rates

    Get PDF
    We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals ii and jj is endowed with an infection rate βij=λwij\beta_{ij} = \lambda w_{ij} proportional to the intensity of their contact wijw_{ij}, with a distribution P(wij)P(w_{ij}) taken from face-to-face experiments analyzed in Cattuto et  al.et\;al. (PLoS ONE 5, e11596, 2010). We find an extremely slow decay of the fraction of infected individuals, for a wide range of the control parameter λ\lambda. Using a distribution of width aa we identify two large regions in the aλa-\lambda space with anomalous behaviors, which are reminiscent of rare region effects (Griffiths phases) found in models with quenched disorder. We show that the slow approach to extinction is caused by isolated small groups of highly interacting individuals, which keep epidemic alive for very long times. A mean-field approximation and a percolation approach capture with very good accuracy the absorbing-active transition line for weak (small aa) and strong (large aa) disorder, respectively

    The Cooling Flow to Accretion Flow Transition

    Full text link
    Cooling flows in galaxy clusters and isolated elliptical galaxies are a source of mass for fueling accretion onto a central supermassive black hole. We calculate the dynamics of accreting matter in the combined gravitational potential of a host galaxy and a central black hole assuming a steady state, spherically symmetric flow (i.e., no angular momentum). The global dynamics depends primarily on the accretion rate. For large accretion rates, no simple, smooth transition between a cooling flow and an accretion flow is possible; the gas cools towards zero temperature just inside its sonic radius, which lies well outside the region where the gravitational influence of the central black hole is important. For accretion rates below a critical value, however, the accreting gas evolves smoothly from a radiatively driven cooling flow at large radii to a nearly adiabatic (Bondi) flow at small radii. We argue that this is the relevant parameter regime for most observed cooling flows. The transition from the cooling flow to the accretion flow should be observable in M87 with the {\it Chandra X-ray Observatory}.Comment: emulateapj.sty, 10 pages incl. 5 figures, to appear in Ap
    corecore