1,283 research outputs found
GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy
Online adaptive radiation therapy (ART) has great promise to significantly
reduce normal tissue toxicity and/or improve tumor control through real-time
treatment adaptations based on the current patient anatomy. However, the major
technical obstacle for clinical realization of online ART, namely the inability
to achieve real-time efficiency in treatment re-planning, has yet to be solved.
To overcome this challenge, this paper presents our work on the implementation
of an intensity modulated radiation therapy (IMRT) direct aperture optimization
(DAO) algorithm on graphics processing unit (GPU) based on our previous work on
CPU. We formulate the DAO problem as a large-scale convex programming problem,
and use an exact method called column generation approach to deal with its
extremely large dimensionality on GPU. Five 9-field prostate and five 5-field
head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and
2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on
GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal
treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our
work has therefore solved a major problem in developing ultra-fast
(re-)planning technologies for online ART
Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134981/1/mp1675.pd
Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization
Beam orientation optimization (BOO) is a key component in the process of IMRT
treatment planning. It determines to what degree one can achieve a good
treatment plan quality in the subsequent plan optimization process. In this
paper, we have developed a BOO algorithm via adaptive l_1 minimization.
Specifically, we introduce a sparsity energy function term into our model which
contains weighting factors for each beam angle adaptively adjusted during the
optimization process. Such an energy term favors small number of beam angles.
By optimizing a total energy function containing a dosimetric term and the
sparsity term, we are able to identify the unimportant beam angles and
gradually remove them without largely sacrificing the dosimetric objective. In
one typical prostate case, the convergence property of our algorithm, as well
as the how the beam angles are selected during the optimization process, is
demonstrated. Fluence map optimization (FMO) is then performed based on the
optimized beam angles. The resulted plan quality is presented and found to be
better than that obtained from unoptimized (equiangular) beam orientations. We
have further systematically validated our algorithm in the contexts of 5-9
coplanar beams for 5 prostate cases and 1 head and neck case. For each case,
the final FMO objective function value is used to compare the optimized beam
orientations and the equiangular ones. It is found that, our BOO algorithm can
lead to beam configurations which attain lower FMO objective function values
than corresponding equiangular cases, indicating the effectiveness of our BOO
algorithm.Comment: 19 pages, 2 tables, and 5 figure
Presentation by the University of Nevada, Las Vegas: College of Fine Arts
Program listing performers and works performe
“I Wish I Had AIDS”: A qualitative study on access to health care services for HIV/AIDS and diabetic patients in Cambodia
Financially stricken Cambodian patients with diabetes and HIV/AIDS typically encounter multiple, serious barriers to effective care. This process may extend over many years and involve numerous rounds of diagnosis and treatment as the disease progresses from initial symptoms to longer term complications. Living with both the impact of the disease and this ongoing struggle for care can severely disrupt the everyday life of both sufferers and their families. Our retrospective study adopted qualitative research methods to collect data from HIV/AIDS and diabetic patients enrolled and not enrolled in treatment programs at varying institutions in urban and rural settings. Using purposive sampling techniques, a total of 25 HIV/AIDS and 45 diabetic patients were recruited. Semi-structured and open-ended interviews were used to collect information on patient experiences of different phases in the on-going process of seeking care and treatment. The findings indicate that both HIV/AIDS and diabetic patients encounter multiple supply- and demand-side barriers to care at different stages of their illness. More strikingly, our research findings suggest that supply-side barriers, for example rationing systems or targeting strategies that limit access to free treatment or social assistance, are substantially higher for diabetic patients. This perceived inequity had a profound impact on diabetic patients to the extent that some “wished they had HIV/AIDS”. These findings suggest that there is an urgent need to widen the focus of health care to address the substantial and increasing burden of disease resulting from diabetes and other serious chronic disorders in Cambodia and many other low/middle income countries.
Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method
Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed
to provide respiratory phase resolved volumetric imaging in image guided
radiation therapy (IGRT). Inadequate number of projections in each phase bin
results in low quality 4D-CBCT images with obvious streaking artifacts. In this
work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction
algorithm and an enhancement algorithm, utilizing a temporal nonlocal means
(TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images.
Minimization of this term favors those 4D-CBCT images such that any anatomical
features at one spatial point at one phase can be found in a nearby spatial
point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a
total energy containing a data fidelity term and the TNLM energy term. As for
the image enhancement, 4D-CBCT images generated by the FDK algorithm are
enhanced by minimizing the TNLM function while keeping the enhanced images
close to the FDK results. A forward-backward splitting algorithm and a
Gauss-Jacobi iteration method are employed to solve the problems. The
algorithms are implemented on GPU to achieve a high computational efficiency.
The reconstruction algorithm and the enhancement algorithm generate visually
similar 4D-CBCT images, both better than the FDK results. Quantitative
evaluations indicate that, compared with the FDK results, our reconstruction
method improves contrast-to-noise-ratio (CNR) by a factor of 2.56~3.13 and our
enhancement method increases the CNR by 2.75~3.33 times. The enhancement method
also removes over 80% of the streak artifacts from the FDK results. The total
computation time is ~460 sec for the reconstruction algorithm and ~610 sec for
the enhancement algorithm on an NVIDIA Tesla C1060 GPU card.Comment: 20 pages, 3 figures, 2 table
A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation
Targeting at the development of an accurate and efficient dose calculation
engine for online adaptive radiotherapy, we have implemented a finite size
pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This
new GPU-based dose engine is built on our previously published ultrafast FSPB
computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009].
Dosimetric evaluations against Monte Carlo dose calculations are conducted on
10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all
cases, there is improvement with the 3D-density correction over the
conventional FSPB algorithm and for most cases the improvement is significant.
Regarding the efficiency, because of the appropriate arrangement of memory
access and the usage of GPU intrinsic functions, the dose calculation for an
IMRT plan can be accomplished well within 1 second (except for one case) with
this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB
algorithm without 3D-density correction, this new algorithm, though slightly
sacrificing the computational efficiency (~5-15% lower), has significantly
improved the dose calculation accuracy, making it more suitable for online IMRT
replanning
Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation
Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT
(CBCT) scans has become a serious concern. Patient-specific imaging dose
calculation has been proposed for the purpose of dose management. While Monte
Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers
from low computational efficiency. In response to this problem, we have
successfully developed a MC dose calculation package, gCTD, on GPU architecture
under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray
imaging dose received by a patient during a CT or CBCT scan. Techniques have
been developed particularly for the GPU architecture to achieve high
computational efficiency. Dose calculations using CBCT scanning geometry in a
homogeneous water phantom and a heterogeneous Zubal head phantom have shown
good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In
terms of improved efficiency, it is found that gCTD attains a speed-up of ~400
times in the homogeneous water phantom and ~76.6 times in the Zubal phantom
compared to EGSnrc. As for absolute computation time, imaging dose calculation
for the Zubal phantom can be accomplished in ~17 sec with the average relative
standard deviation of 0.4%. Though our gCTD code has been developed and tested
in the context of CBCT scans, with simple modification of geometry it can be
used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl
- …