3,477 research outputs found

    The way of life of pluriactivity farmers in Minho villages in Northwest Portugal

    Get PDF
    Este artigo teve por objetivo analisar o modo de vida do agricultor pluriativo, uma categoria em expansão na agricultura praticada não apenas nas aldeias minhotas do noroeste de Portugal, lócus deste estudo, mas em grande parte do mundo ocidental. Utilizou-se a aplicação de um survey, cross-sectional, aplicado a famílias de agricultores exclusivamente agrícolas e pluriativos, em 50% das freguesias da vila escolhida para este estudo. Os resultados da pesquisa revelaram a urbanização do modo de vida dos agricultores pluriativos e inclusive dos que viviam exclusivamente da agricultura, apontando, contudo, para a compatibilidade da agricultura com este modo de vida mais tecnologizado e integrado à dinâmica das vilas e cidades.This article aimed to analyze the lifestyle of the pluriactive farmer. This is a growing category in the agricultural practices not only held in the Minho villagesin northwestern Portugal, which is the locus for this study, but also vastly found in the eastern world. A cross-sectional survey was conducted, which was applied exclusively to pluriactive, agricultural families, in 50% of the civil parishes of the chosen village. The results of thisresearch made evident the urbanization in the lifestyle of the pluriactive farmer including those who used to live solely of agriculture. However, thisstudy points out to the compatibility of agriculture with a lifestyle that is more technological, more integrated with the village and the city dynamics

    Loss of survival factors and activation of inflammatory cascades in brain sympathetic centers in type 1 diabetic mice

    Get PDF
    Neuroinflammation and neurodegeneration have been observed in the brain in type 1 diabetes (T1D). However, little is known about the mediators of these effects. In T1D mice with 12- and 35-wk duration of diabetes we examined two mechanisms of neurodegeneration, loss of the neuroprotective factors insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) and changes in indoleamine 2,3-dioxygenase (IDO) expression in the brain, and compared the response to age-matched controls. Furthermore, levels of matrix metalloproteinase-2 (MMP-2), nucleoside triphosphate diphosphohydrolase-1 (CD39), and ionized calcium-binding adaptor molecule 1 (Iba-1) were utilized to assess inflammatory changes in astrocytes, microglia, and blood vessels. In the diabetic hypothalamus (HYPO), we observed 20% reduction in neuronal soma diameter (P<0.05) and reduced neuronal expression of IGFBP-3 (-32%, P<0.05) and IGF-I (-15%, P<0.05) compared with controls at 35 wk. In diabetic HYPO, MMP-2 expression was increased in astrocytes (46%, P<0.01), and IDO⁺ cell density rose by (62%, P<0.05). CD39 expression dropped by 30% (P<0.05) in microglia and blood vessels. With 10 wk of systemic treatment using minocycline, an anti-inflammatory agent that crosses the blood-brain barrier, MMP-2, IDO, and CD39 levels normalized (P<0.05). Our results suggest that increased IDO and early loss of CD39⁺ protective cells lead to activation of inflammation in sympathetic centers of the CNS. As a downstream effect, the loss of the neuronal survival factors IGFBP-3 and IGF-I and the neurotoxic products of the kynurenine pathway contribute to the loss of neuronal density observed in the HYPO in T1D

    Glycerol monolaurate inhibits lipase production by clinical ocular isolates without affecting bacterial cell viability

    Get PDF
    PURPOSE. We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. METHODS. Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 106/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 378C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. RESULTS. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dosedependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P \u3c 0.05) lipase inhibition above concentrations of 15 μg /mL in S. aureus and was not cytotoxic up to 25 μg /mL. For S. epidermidis, GML showed significant (P \u3c 0.05) lipase inhibition above 7.5 μg /mL. CONCLUSIONS. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability

    Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration

    Get PDF
    Bone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis. Importantly, electroretinography and optokinetic response tests confirmed that visual function was significantly improved. Mice treated with non-modified BMDCs or BMDCs pre-programmed with LacZ did not exhibit significant improvement in visual deficit. RPE65-BMDC administration was most effective in early disease, when visual function and retinal morphology returned to near normal, and less effective in late-stage disease. This experimental paradigm offers a minimally invasive cellular therapy that can be given systemically overcoming the need for invasive ocular surgery and offering the potential to arrest progression in early AMD and other RPE-based diseases

    KIR-HLA and Maternal-Infant HIV-1 Transmission in Sub-Saharan Africa

    Get PDF
    Numerous studies have suggested a role for natural killer (NK) cells in attenuation of HIV-1 disease progression via recognition by killer-cell immunoglobulin-like receptors (KIRs) of specific HLA class I molecules. The role of KIR and HLA class I has not been addressed in the context of maternal-infant HIV-1 transmission. KIR and HLA class I B and C genes from 224 HIV-1-infected mothers and 222 infants (72 infected and 150 uninfected) from South Africa were characterized. Although a number of significant associations were determined in both the total group and in the nevirapine (NVP) exposed group, the most significant findings involved KIR2DL2 and KIR2DL3 and HLA-C. KIR2DL2/KIR2DL3 was underrepresented in intrapartum (IP)-transmitting mothers compared to non-transmitting (NT) mothers (P = 0.008) and remained significant (P = 0.036) after correction for maternal viral load (MVL). Homozygosity for KIR2DL3 alone and in combination with HLA-C allotype heterozygosity (C1C2) was elevated in IP-transmitting mothers compared to NT mothers (P = 0.034 and P = 0.01 respectively), and after MVL correction (P = 0.033 and P = 0.027, respectively). In infants, KIR2DL3 in combination with its HLA-C1 ligand (C1) as well as homozygosity for KIR2DL3 with C1C2, were both found to be underrepresented in infected infants compared to exposed uninfected infants in the total group (P = 0.06 and P = 0.038, respectively) and in the sub-group of infants whose mothers received NVP (P = 0.007 and P = 0.03, respectively). These associations were stronger post MVL adjustment (total group: P = 0.02 and P = 0.009, respectively; NVP group: P = 0.004 and P = 0.02, respectively). Upon stratification according to low and high MVL, all significant associations fell within the low MVL group, suggesting that with low viral load, the effects of genotype can be more easily detected. In conclusion this study has identified a number of significant associations that suggest an important role for NK cells in maternal-to-infant HIV-1 transmission

    KIR-HLA and Maternal-Infant HIV-1 Transmission in Sub-Saharan Africa

    Get PDF
    Numerous studies have suggested a role for natural killer (NK) cells in attenuation of HIV-1 disease progression via recognition by killer-cell immunoglobulin-like receptors (KIRs) of specific HLA class I molecules. The role of KIR and HLA class I has not been addressed in the context of maternal-infant HIV-1 transmission. KIR and HLA class I B and C genes from 224 HIV-1-infected mothers and 222 infants (72 infected and 150 uninfected) from South Africa were characterized. Although a number of significant associations were determined in both the total group and in the nevirapine (NVP) exposed group, the most significant findings involved KIR2DL2 and KIR2DL3 and HLA-C. KIR2DL2/KIR2DL3 was underrepresented in intrapartum (IP)-transmitting mothers compared to non-transmitting (NT) mothers (P = 0.008) and remained significant (P = 0.036) after correction for maternal viral load (MVL). Homozygosity for KIR2DL3 alone and in combination with HLA-C allotype heterozygosity (C1C2) was elevated in IP-transmitting mothers compared to NT mothers (P = 0.034 and P = 0.01 respectively), and after MVL correction (P = 0.033 and P = 0.027, respectively). In infants, KIR2DL3 in combination with its HLA-C1 ligand (C1) as well as homozygosity for KIR2DL3 with C1C2, were both found to be underrepresented in infected infants compared to exposed uninfected infants in the total group (P = 0.06 and P = 0.038, respectively) and in the sub-group of infants whose mothers received NVP (P = 0.007 and P = 0.03, respectively). These associations were stronger post MVL adjustment (total group: P = 0.02 and P = 0.009, respectively; NVP group: P = 0.004 and P = 0.02, respectively). Upon stratification according to low and high MVL, all significant associations fell within the low MVL group, suggesting that with low viral load, the effects of genotype can be more easily detected. In conclusion this study has identified a number of significant associations that suggest an important role for NK cells in maternal-to-infant HIV-1 transmission

    Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids

    Get PDF
    Dietary polyunsaturated fatty acids (PUFA) are suggested to modulate immune function, but the effects of dietary fatty acids composition on gene expression patterns in immune organs have not been fully characterized. In the current study we investigated how dietary fatty acids composition affects the total transcriptome profile, and especially, immune related genes in two immune organs, spleen (SPL) and bone marrow cells (BMC). Four tissues with metabolic function, skeletal muscle (SKM), white adipose tissue (WAT), brown adipose tissue (BAT), and liver (LIV), were investigated as a comparison. Following 8 weeks on low fat diet (LFD), high fat diet (HFD) rich in saturated fatty acids (HFD-S), or HFD rich in PUFA (HFD-P), tissue transcriptomics were analyzed by microarray and metabolic health assessed by fasting blood glucose level, HOMA-IR index, oral glucose tolerance test as well as quantification of crown-like structures in WAT. HFD-P corrected the metabolic phenotype induced by HFD-S. Interestingly, SKM and BMC were relatively inert to the diets, whereas the two adipose tissues (WAT and BAT) were mainly affected by HFD per se (both HFD-S and HFD-P). In particular, WAT gene expression was driven closer to that of the immune organs SPL and BMC by HFDs. The LIV exhibited different responses to both of the HFDs. Surprisingly, the spleen showed a major response to HFD-P (82 genes differed from LFD, mostly immune genes), while it was not affected at all by HFD-S (0 genes differed from LFD). In conclusion, the quantity and composition of dietary fatty acids affected the transcriptome in distinct manners in different organs. Remarkably, dietary PUFA, but not saturated fat, prompted a specific regulation of immune related genes in the spleen, opening the possibility that PUFA can regulate immune function by influencing gene expression in this organ
    corecore