769 research outputs found

    MPEC 2020-A99: 2020 AV2

    Get PDF
    [no abstract

    Relationship between the D genome of hexaploid wheats (AABBDD) and Ae. squarrosa as deduced by seed storage proteins and molecular marker analyses

    Get PDF
    The electrophoretical analyses of seed storage protein components from the gliadin and glutenin fractions in T. aeslivum ssp. vulgare, compaction, sphaerococcum, macha, vavilovii, and spelta have revealed limited variation at the tightly linked coding loci Gli-D1/Glu-D3, and Glu-D1, located respectively on the short and long arm of chromosome ID, and at the GH-D2 locus, positioned on the short arm of chromosome 6D. Much higher variation was observed, for the same protein components, in the wild diploid Ae. squarrosa, the D genome donor of the aestivum group. Genetic variation in the same wheat subspecies and in Ae. squarrosa has also been evaluated by Southern hybridization of genomic DNAs, which were digested with several restriction enzymes, and hybridized with cloned sequences of genes coding for seed storage proteins. The much higher degree of variation observed for the seed storage protein genes of Ae. squarrosa, in comparison with the variation exhibited by the proteins encoded by the D genome chromosomes of hexaploid wheats, supports the hypothesis that a limited number of crosses gave rise to hexaploid wheats of the aestivum group

    Variability of Red Supergiants in M31 from the Palomar Transient Factory

    Get PDF
    Most massive stars end their lives as Red Supergiants (RSGs), a short-lived evolution phase when they are known to pulsate with varying amplitudes. The RSG period-luminosity (PL) relation has been measured in the Milky Way, the Magellanic Clouds and M33 for about 120 stars in total. Using over 1500 epochs of R-band monitoring from the Palomar Transient Factory (PTF) survey over a five-year period, we study the variability of 255 spectroscopically cataloged RSGs in M31. We find that all RGSs brighter than M_K~ -10 mag (log(L/L_sun)>4.8) are variable at dm_R>0.05 mag. Our period analysis finds 63 with significant pulsation periods. Using the periods found and the known values of M_K for these stars, we derive the RSG PL relation in M31 and show that it is consistent with those derived earlier in other galaxies of different metallicities. We also detect, for the first time, a sequence of likely first-overtone pulsations. Comparison to stellar evolution models from MESA confirms the first overtone hypothesis and indicates that the variable stars in this sample have 12 M_sun<M<24 M_sun. As these RSGs are the immediate progenitors to Type II-P core-collapse supernovae (SNe), we also explore the implication of their variability in the initial-mass estimates for SN progenitors based on archival images of the progenitors. We find that this effect is small compared to the present measurement errors.Comment: 17 pages, 10 figure

    Qualitative characterization of unrefined durum wheat air-classified fractions

    Get PDF
    Durum wheat milling is a key process step to improve the quality and safety of final prod-ucts. The aim of this study was to characterize three bran-enriched milling fractions (i.e., F250, G230 and G250), obtained from three durum wheat grain samples, by using an innovative micronization and air-classification technology. Milling fractions were characterized for main standard quality parameters and for alveographic properties, starch composition and content, phenolic acids, antioxidant activity and ATIs. Results showed that yield recovery, ash content and particle size distributions were influenced either by the operating conditions (230 or 250) or by the grain samples. While total starch content was lower in the micronized sample and air-classified fractions, the P/L ratio increased in air-classified fractions as compared to semolina. Six main individual phenolic acids were identified through HPLC-DAD analysis (i.e., ferulic acid, vanillic acid, p-coumaric acid, sinapic acid, syringic and p-hydroxybenzoic acids). Compared to semolina, higher contents of all individual phenolic components were found in all bran-enriched fractions. The highest rise of TPAs occurred in the F250 fraction, which was maintained in the derived pasta. Moreover, bran-enriched fractions showed significant reductions of ATIs content versus semolina. Overall, our data suggest the potential health benefits of F250, G230 and G250 and support their use to make durum-based foods

    Gravitational Microlensing Events from the First Year of the Northern Galactic Plane Survey by the Zwicky Transient Facility

    Get PDF
    The Zwicky Transient Facility (ZTF) (Bellm et al. 2019; Graham et al. 2019; Masci et al. 2019) is currently surveying the entire northern sky, including dense Galactic plane fields. Here, we present preliminary results of the search for gravitational microlensing events in the ZTF data collected from the beginning of the survey (2018 March 20) through 2019 June 30

    Constructing a WISE High Resolution Galaxy Atlas

    Get PDF
    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 {\mu}m, 4.6 {\mu}m, 12 {\mu}m and 22 {\mu}m. We have begun a dedicated WISE High Resolution Galaxy Atlas (WHRGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalogue. Here we summarize the deconvolution technique used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE super-resolution image processing to that of Spitzer, GALEX and ground-based imaging. The is the first paper in a two part series; results for a much larger sample of nearby galaxies is presented in the second paper.Comment: Published in the AJ (2012, AJ, 144, 68

    Reduction algorithms for the multiband imaging photometer for Spitzer: 6 months of flight data

    Get PDF
    The first six months of flight data from the Multiband Imaging Photometer for Spitzer (MIPS) were used to test MIPS reduction algorithms based on extensive preflight laboratory data and modeling. The underlying approach for the preflight algorithms has been found to be sound, but some modifications have improved the performance. The main changes are scan mirror dependent flat fields at 24 μm, hand processing to remove the time dependent stim flash latents and fast/slow response variations at 70 μm, and the use of asteroids and other sources instead of stars for flux calibration at 160 μm due to a blue "leak." The photometric accuracy of flux measurements is currently 5%, 10%, and 20% at 24, 70, and 160 μm, respectively. These numbers are expected to improve as more flight data are analyzed and data reduction algorithms refined
    corecore