222,375 research outputs found

    Quasi-local energy and the choice of reference

    Full text link
    A quasi-local energy for Einstein's general relativity is defined by the value of the preferred boundary term in the covariant Hamiltonian formalism. The boundary term depends upon a choice of reference and a time-like displacement vector field (which can be associated with an observer) on the boundary of the region. Here we analyze the spherical symmetric cases. For the obvious analytic choice of reference based on the metric components, we find that this technique gives the same quasi-local energy values using several standard coordinate systems and yet can give different values in some other coordinate systems. For the homogeneous-isotropic cosmologies, the energy can be non-positive, and one case which is actually flat space has a negative energy. As an alternative, we introduce a way to determine the choice of both the reference and displacement by extremizing the energy. This procedure gives the same value for the energy in different coordinate systems for the Schwarzschild space, and a non-negative value for the cosmological models, with zero energy for the dynamic cosmology which is actually Minkowski space. The timelike displacement vector comes out to be the dual mean curvature vector of the two-boundary.Comment: 21 pages; revised version to appear in CQ

    A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

    Get PDF
    A controllable ion transport including ion selectivity and ion rectification across nanochannels or porous membranes is of great importance because of potential applications ranging from biosensing to energy conversion. Here, a nanofluidic ion diode was realized by modifying carbon nitride nanotubes with different molecules yielding an asymmetric surface charge that allows for ion rectification. With the advantages of low-cost, thermal and mechanical robustness, and simple fabrication process, carbon nitride nanotubes with ion rectification have the potential to be used in salinity-gradient energy conversion and ion sensor systems

    From urban to national heat island: The effect of anthropogenic heat output on climate change in high population industrial countries

    Get PDF
    The project presented here sought to determine whether changes in anthropogenic thermal emission can have a measurable effect on temperature at the national level, taking Japan and Great Britain as type examples. Using energy consumption as a proxy for thermal emission, strong correlations (mean r2 = 0.90 and 0.89, respectively) are found between national equivalent heat output (HO) and temperature above background levels Δt averaged over 5‐ to 8‐yr periods between 1965 and 2013, as opposed to weaker correlations for CMIP5 model temperatures above background levels Δmt (mean r2 = 0.52 and 0.10). It is clear that the fluctuations in Δt are better explained by energy consumption than by present climate models, and that energy consumption can contribute to climate change at the national level on these timescales

    Partonic effects on anisotropic flows at RHIC

    Full text link
    We report recent results from a multiphase transport (AMPT) model on the azimuthal anisotropies of particle momentum distributions in heavy ion collisions at the Relativistic Heavy Ion Collider. These include higher-order anisotropic flows and their scaling, the rapidity dependence of anisotropic flows, and the elliptic flow of charm quarks.Comment: 7 pages, 5 figures, talk given at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US
    corecore