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We present a Ge2Sb2Te5(GST)-integrated ring resonator 
with the tuning enabled by all-optical phase change of GST 
using a sequence of optical pulses. The tuning is non-
volatile and repeatable, with no static power consumption 
due to the “self-holding” feature of the GST phase-change 
material. The 2-µm-long GST can be partially crystallized 
by controlling the number of pulses, increasing the tuning 
freedom. The coupling between the ring resonator and the 
bus waveguide is based on an asymmetric Mach-Zehnder 
interferometer. The coupling strength is wavelength-
dependent so that an optimal wavelength can be selected 
for the probe light to get more than 20 dB transmission 
contrast between the amorphous and crystalline GST 
states. © 2018 Optical Society of America 

OCIS codes: (230.4555) Coupled resonators; (160.2900) Optical storage 
materials; (160.3130) Integrated optics materials; (230.3120) Integrated 
optics devices. 
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The active tuning of silicon photonic devices is mostly achieved by 
the thermo-optic (TO) effect or the electro-optic (EO) effect based 
on free-carrier injection, which has a refractive index (RI) tuning 
range in the order of 0.01 and 0.001, respectively. Thus, in order to 
obtain adequate phase change, usually, a relative long waveguide of 
100’s µm to mm length is required [1], although there are some 
exceptional cases such as very efficient TO phase shifter [2] and 
silicon-plasmonic-organic hybrid phase shifters [3]. Additional 
energy is also needed to maintain the elevated temperature in the 
TO tuning or the current injection in the EO tuning. Phase-change 
materials (PCMs) offer an extremely large RI tuning range with non-
volatile phase states. In recent years, the ability to switch rapidly 
and reversibly between amorphous and crystalline states of a PCM 
with significantly different optical and electronic properties has 
found an increasingly wider variety of potential applications in 
photonics such as neuromorphic computing, multi-level storage, 

display, and photonic in-memory computing [4-8]. The prototypical 
phase-change material Ge2Sb2Te5 (GST) exhibits distinct optical and 
electrical properties in its amorphous, metastable distorted face-
centered cubic (FCC), and hexagonal forms. High speed and 
reversible phase transitions between two states could be triggered 
by thermal [9], optical [10, 11] or electrical pulses [12, 13]. In 
addition, this material possesses the “self-holding” feature so it does 
not require static power to maintain the states [14]. This feature can 
be utilized to implement reconfigurable, non-volatile and low-
power optical devices.  

In this letter, we investigate a silicon asymmetric Mach-Zehnder 
interferometer (AMZI)-coupled ring resonator integrated with GST 
material for all-optical resonance tuning. The AMZI coupler makes 
it possible to achieve critical coupling at certain wavelengths, 
offering a large switching extinction ratio upon GST phase change. 
It points to a new way of creating energy-efficient non-volatile 
optical components towards large-scale silicon photonic hybrid 
integration.  

Figure 1(a) illustrates the structure of the GST-loaded silicon 
waveguide. The single-mode silicon waveguide height is h = 220 nm 
and width is w = 500 nm with air upper-cladding and 2-µm-thick 
buried oxide under-cladding. A stack of 15-nm-thick GST layer and 
10-nm-thick indium tin oxide (ITO) layer with a length of LGST is 
placed on top of the silicon waveguide to form a hybrid waveguide. 
The ITO layer is used to protect the GST from being oxidized when 
it is exposed in the atmosphere environment [15]. The GST phase 
change is reversible and repeatable, as shown in Fig. 1(b). In the 
crystallization process, only even-numbered rings are constructed 
from amorphous GST (a-GST). In the re-amorphization process, the 
a-GST can be converted to the crystal GST (c-GST), which only 
transforms the large-size even-numbered (8-, 10-, 12-fold) rings to 
NaCl-type structure (4-and 6-fold rings). In this process, the Ge/Sb–
Te bonds are formed but no bond is broken, leading to the fast 
crystallization of the amorphous phase [16]. The significant change 
in bonds results in a great difference in RI between the amorphous 
and crystalline states. The high contrast in the optical property 
means that the optical transmission through the GST-loaded 
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waveguide can be efficiently modulated by changing the GST phase 
state. Figure 1(c) illustrates the modal electric-field intensity 
profiles for the GST-loaded silicon waveguide in two phase states. 
The refractive indices of silicon and silica are taken as 3.481 and 
1.445, respectively. The complex refractive index of ITO is 
1.55+0.33i. The complex refractive index of GST is taken as 
3.9207+0.0055i and 6.0769+0.9040i for the amorphous and 
crystalline states, respectively [17]. In the amorphous phase, the 
optical field is mainly confined in the silicon waveguide, with an 
effective index of 2.516+0.0067i for the transverse electric (TE) 
polarization. In the crystalline state, on the other hand, the optical 
field is localized more in the GST layer, with a larger effective index 
of 2.693 + 0.111i. Thus, the crystalline state has a larger propagation 
constant and a higher optical absorption loss.  

 

Fig. 1. (a) Schematic structure of the GST-loaded silicon waveguide. The 
inset shows the cross-sectional view of the Si-GST hybrid waveguide 
section. (b) Reversible phase change of GST material. (c) Simulated 
modal electric-field profiles of the Si-GST hybrid waveguide for the two 
phase states.  

The GST-loaded silicon waveguide can be integrated into a ring 
resonator to control its resonance property. Figure 2(a) shows the 
structure of a ring resonator with coupling enabled by an AMZI 
coupler. The ring resonator feedback waveguide is covered with a 
small patch of GST. The AMZI is composed of two 3-dB 2×2 
multimode interferometers (MMIs) connected by a pair of 
waveguides of different lengths.  

The key advantage of our AMZI-coupled ring resonator lies in its 
strong wavelength dependence of coupling on wavelength, so 
different coupling conditions are obtained in a small wavelength 
range. We make full use of this merit in our pump-probe all-optical 
resonance tuning experiment. The pump pulse is chosen to be in the 
over-coupling regime so that it can interact with the GST without 
suffering the narrow band filtering effect of the ring resonator. On 
the other hand, the probe light is chosen at the critical-coupling 
wavelength which gives the maximum optical transmission 
contrast between the amorphous and crystalline states.  

The transfer matrix of the MZI coupler is given by 
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where A1 (A2) and ϕ1 (ϕ2) represent the amplitude and phase of the 
optical field transmission through the long (short) arm, respectively. 

The input-normalized output electric-field transfer function can 
be expressed as: 
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where ai and bi (i = 1, 2) are the electric fields before and after the 
AMZI coupler, respectively, A3 and ϕ3 represent the amplitude and 
phase of the optical field transmission through the ring feedback 
waveguide, respectively. The phase change of GST will modify both 
the optical phase, ϕ3 (RI real part change) and the optical 
transmission amplitude, A3 (RI imaginary part change) in (4).  

 

Fig. 2. (a) Schematic structure of the AMZI-coupled ring resonator 
integrated with GST. (b) Scanning electron microscope image of the 
fabricated device. The inset shows the zoom-in of the GST-loaded ring 
waveguide. 

The device was fabricated in a silicon-on-insulator (SOI) wafer 
with the top silicon layer thickness of 220 nm. The silicon 
waveguide patterns were defined using e-beam lithography (EBL) 
and subsequent reactive ion etch (RIE). The etch depth was 220 nm, 
down to the buried oxide under-cladding layer. A second EBL was 
used to open the GST deposition window. GST was sputtered from 
a stoichiometric GST target, immediately followed by ITO 
sputtering deposition to protect the GST. Finally, the device was 
placed in an acetone bath for lift-off stripping so that the GST/ITO 
was only left in the deposition window. Figure 2(b) shows the 
scanning electron microscope (SEM) image of the AMZI-coupled 
ring resonator covered with a small piece of GST. The length of GST 
is LGST = 2 µm. The length difference between the AMZI two arms is 
∆L = 70 μm. The waveguide cross-sectional dimensions are the 
same as those used in the Fig. 1. 

We used a pump-probe experimental setup as sketched in Fig. 3 
(a) to measure the ring resonator transmission spectrum upon GST 
phase change. The pump pulses were obtained by modulating the 
continuous-wave (CW) laser light using an electro-optical 
modulator (EOM) driven by an arbitrary waveform generator 
(AWG). The pump pulses were subsequently amplified to reach the 
appropriate peak power. The probe light was from another CW 
laser with the optical power fixed to a lower level (-6 dBm) so that 
the device spectrum could be measured without changing the GST 
phase state. The pump light and the probe light were separated by 
two optical circulators. The probe light after the device was 
switched for static and dynamic measurements. In the static 



transmission spectrum measurement, the probe light was directly 
detected by an optical detector. For the dynamic response 
measurement, the probe light was further amplified and then 
detected by a high-speed photodiode before being received by an 
oscilloscope. The pump light and probe light were set to the TE 
polarization using polarization controllers (PC) prior to coupling to 
the device. Figure 3(b) shows the typical waveform of the pump 
pulses. The pulse was measured before coupling to the chip. The 
coupling loss of the grating coupler is around 5 dB/facet. 

 

Fig. 3. (a) Optical pump & probe experimental setup for characterizing 
the device. CWL: continuous-wave laser; PC: polarization controller; 
AWG: arbitrary waveform generator; EOM: electro-optic modulator; 
EDFA: erbium-doped fiber amplifier; OTF: optical tunable filter; DUT: 
device under test; PD: photodiode. (b) Typical pump signal waveform 
showing both set and reset pulses. 

We first measured the transmission spectrum of the device with 
the probe laser wavelength scanning from 1520 to 1580 nm. Figure 
4(a) shows the transmission spectra for two phase-change cycles 
(two crystalline states and two amorphous states). The spectra 
were normalized to a reference straight waveguide. The 
crystallization of GST was induced by a sequence of identical optical 
pulses with a width tset = 50 ns and peak power Pset = 21 mW. The 
pump light is set to 1556.6 nm (κ close to 1). Each of these pulses 
initiated partial crystallization of the GST. Subsequently, the re-
amorphization was induced by a single pulse with a width treset = 20 
ns and peak power Preset = 53 mW at the same wavelength. The two 
amorphous state spectra and the two crystalline state spectra are 
both well overlapped, indicating good repeatability of the 
resonance tuning using GST phase change. Figure 4(b) illustrates 
the four intermediate states (state1 to state4) of the crystallization 
process. It can be seen that the resonance spectrum gradually 
evolves when the GST goes through the intermediate states.  

In order to illustrate the resonant enhancement effect on the 
transmission contrast upon GST phase change, we also measured a 
GST-loaded straight waveguide as a comparison. The dimensions of 
the silicon waveguide and the GST are the same as the AMZI device. 
Figure 4(c) shows the normalized transmission spectra of the 
straight waveguide over two phase change cycles.  

We define the transmission contrast as the output power 
difference between the amorphous and crystalline states. Figure 
4(d) shows the transmission contrast of the ring resonator and the 
straight waveguide as a function of wavelength. The maximum 
contrast of the ring resonator is larger than 20 dB, achieved at the 
critical coupling wavelengths of either amorphous or crystalline 
state. In contrast, the transmission contrast of the waveguide is only 
5 dB, although it is wavelength independent.  

 

Fig. 4. (a) Measured transmission spectra of the ring resonator device 
over two phase-change cycles. (b) Intermediate transmission spectra 
when the GST is partially crystallized. (c) Measured transmission 
spectra of a GST-loaded straight waveguide over two phase-change 
cycles. (d) Transmission contrast between the crystalline and 
amorphous states. 

We next investigated the time response of the output 
transmission upon phase change. The probe light was fixed at 
1548.4 nm to get the maximum transmission contrast. The initial 
phase of GST was amorphous and the partial crystallization of GST 
by controlling the width of pump pulses tset and the number of pump 
pulses n generated multiple intermediate levels. The period of the 
crystallization pulse T is fixed at 300 ns. Figures 5 (a)-(c) show that 
four, six and seven clearly distinguishable intermediate levels can 
be obtained, respectively, due to the partial crystallization of GST. 
The width of the pump pulses is tset = 50ns and 40ns for the four and 
six levels, respectively. When a re-amorphization pulse was applied, 
the transmission rises to the initial level as GST became amorphous. 
Therefore, as long as the energy of the reset pulse is sufficiently large, 
the GST in an arbitrary intermediate state can return to the original 
amorphous state. In Fig. 5 (c), the width of pump pulses tset = 40 ns 
and the number of pump pulses n=10. As GST was completely 
crystallized after the first eight pulses, only seven intermediate 
states were eventually obtained. Figure 5 (d) shows the measured 
time response when only a single crystallization pulse was applied. 
The probe light power first drops rapidly and then rises slightly 
until it is completely stable. The gradual increase of the 
transmission after phase change is due to the heating effect [8].  

The parameters of the ring resonator can be extracted by fitting 
the measured spectra using (4). Table 1 summarizes the extracted 
parameters for various GST states. The extinction coefficients of the 
GST-loaded silicon waveguide are keff = 0.03881 and 0.2161 for the 
amorphous and crystalline states, respectively. The measurement 
gives larger losses than simulation, which may be caused by several 
factors. First, the surface roughness of GST and ITO films could 



cause additional scattering loss. Second, in the simulation, we did 
not consider the refractive index change of the ITO material affected 
by the pump pulses. In fact, the conductance and loss of ITO increase 
after high-temperature annealing by the pump pulses [18]. From 
the amorphous to the crystalline state, the effective index increases 
by neff = 0.07436. This presents a larger RI tuning range compared 
to the thermo-optic or electro-optic effects in silicon. The measured 
effective index change is slightly smaller than the simulation. It 
could be caused by the insufficient crystallization or re-
amorphization of GST by a sequence of equal-energy pump pulses. 
Crystallization pulses need to be further optimized to have 
continuously decreased energy, which is worth further 
investigation in the future work. 

 

Fig. 5. (a-c) Temporal response of the device when a sequence of 
crystallization pulses followed by a single re-amorphization pulse is 
applied. Multiple clearly distinguishable intermediate levels of (a) four, 
(b) six and (c) seven stairs can be discerned. Two measurements were 
performed to illustrate its repeatability. (d) Temporal response when a 
single crystallization pulse is applied.  

TABLE I. Extracted Microring Resonator Parameters When 
GST Is at the Various States. 

state Α3 keff ∆ϕ3 ∆neff 
am1 0.7311 0.03881 Reference 

state1 0.4801 0.09091 0.1164 0.01439 
state2 0.3455 0.1317 0.2327 0.02878 
state3 0.2941 0.1516 0.3103 0.03838 
state4 0.2360 0.1789 0.4266 0.05277 

cr1 0.1748 0.2161 0.6012 0.07436 
In conclusion, we have investigated a silicon AMZI-coupled ring 

resonator integrated with a small piece of GST material on top of the 
ring waveguide. The phase-change of GST provides a new tool to 
tune the resonance with the “self-holding” feature. The partial 
crystallization of GST by controlling the number of pump pulses also 
allows for the presence of multiple intermediate states. This gives 
an effective tool to manipulate light propagation with the phase-
change material in integrated photonic devices. The comparison of 
our device with the straight waveguide clearly indicates that the 
ring resonator has a much more sensitive transmission response to 
GST phase change than that of the straight waveguide at the critical 
coupling wavelengths. The ring resonance greatly improves the 
switching extinction ratio. No energy is required to maintain the 

GST phase state. These results open the way for a new class of all-
optically non-volatile silicon photonic devices. The GST material 
that we used is just one type of candidate phase-change material. In 
fact, there exist a great variety of other phase-change materials, such 
as vanadium dioxide [19], Ge2Sb2Se4Te1 [20], etc. They could be 
further explored in the future work to realize high-speed and low-
loss all-optical devices. 
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