35,925 research outputs found

    Neutrino Physics and Nuclear Axial Two-Body Interactions

    Full text link
    We consider the counter-term describing isoscalar axial two-body currents in the nucleon-nucleon interaction, L1A, in the effective field theory approach. We determine this quantity using the solar neutrino data. We investigate the variation of L1A when different sets of data are used.Comment: 8 pages with 4 figures. To be published in the Proceedings of the Conference "Blueprints For The Nucleus: From First Principles to Collective Motion" held at Feza Gursey Institute, Istanbul, Turkey; May 17 -22, 200

    Exploring Io's atmospheric composition with APEX: first measurement of 34SO2 and tentative detection of KCl

    Full text link
    The composition of Io's tenuous atmosphere is poorly constrained. Only the major species SO2 and a handful of minor species have been positively identified, but a variety of other molecular species should be present, based on thermochemical equilibrium models of volcanic gas chemistry and the composition of Io's environment. This paper focuses on the spectral search for expected yet undetected molecular species (KCl, SiO, S2O) and isotopes (34SO2). We analyze a disk-averaged spectrum of a potentially line-rich spectral window around 345 GHz, obtained in 2010 at the APEX-12m antenna (Atacama Pathfinder EXperiment). Using different models assuming either extended atmospheric distributions or a purely volcanically-sustained atmosphere, we tentatively measure the KCl relative abundance with respect to SO2 and derive a range of 4x10^{-4}-8x10^{-3}. We do not detect SiO or S2O and present new upper limits on their abundances. We also present the first measurement of the 34S/32S isotopic ratio in gas phase on Io, which appears to be twice as high as the Earth and ISM reference values. Strong lines of SO2 and SO are also analyzed to check for longitudinal variations of column density and relative abundance. Our models show that, based on their predicted relative abundance with respect to SO2 in volcanic plumes, both the tentative KCl detection and SiO upper limit are compatible with a purely volcanic origin for these species.Comment: Accepted for publication in ApJ. 11 pages, 4 figure

    Writing in your own voice: An intervention that reduces plagiarism and common writing problems in students' scientific writing.

    Get PDF
    In many of our courses, particularly laboratory courses, students are expected to engage in scientific writing. Despite various efforts by other courses and library resources, as instructors we are often faced with the frustration of student plagiarism and related writing problems. Here, we describe a simple Writing in Your Own Voice intervention designed to help students become more aware of different types of plagiarism and writing problems, avoid those problems, and practice writing in their own voice. In this article, we will introduce the types of plagiarism and writing problems commonly encountered in our molecular biology laboratory course, the intervention, and the results of our study. From the evaluation of 365 student reports, we found the intervention resulted in nearly 50% fewer instances of plagiarism and common writing problems. We also observed significantly fewer instances of severe plagiarism (e.g. several sentences copied from an external source). In addition, we find that the effects last for several weeks after the students complete the intervention assignment. This assignment is particularly easy to implement and can be a very useful tool for teaching students how to write in their own voices. © 2019 International Union of Biochemistry and Molecular Biology, 47(5):589-598, 2019

    Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    Get PDF
    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite's annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated VLA and ATCA observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 3.6% +- 1.0% below Planck values; at 43 GHz, the discrepancy increases to 6.2% +- 1.4% for both ATCA and the VLA.Comment: 16 pages, 4 figures and 4 table

    The Expanded Very Large Array

    Full text link
    In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.Comment: Added journal reference: published in Proceedings of the IEEE, Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8, 1448-1462 Six figures, one tabl

    Development and testing of porous ionizer materials, part I Summary report, Feb. 1965 - May 1966

    Get PDF
    Development and testing of porous tungsten ionizer materials for cesium contact engine

    Planetary Bistatic Radar

    Get PDF
    Planetary radar observations offer the potential for probing the properties of characteristics of solid bodies throughout the inner solar system and at least as far as the orbit of Saturn. In addition to the direct scientific value, precise orbital determinations can be obtained from planetary radar observations, which are in turn valuable for mission planning or spacecraft navigation and planetary defense. The next-generation Very Large Array would not have to be equipped with a transmitter to be an important asset in the world's planetary radar infrastructure. Bistatic radar, in which one antenna transmits (e.g., Arecibo or Goldstone) and another receives, are used commonly today, with the Green Bank Telescope (GBT) serving as a receiver. The improved sensitivity of the ngVLA relative to the GBT would improve the signal-to-noise ratios on many targets and increase the accessible volume specifically for asteroids. Goldstone-ngVLA bistatic observations would have the potential of rivaling the sensitivity of Arecibo, but with much wider sky access.Comment: 11 pages, 2 figures, To be published in the ASP Monograph Series, "Science with a Next-Generation VLA", ed. E. J. Murphy (ASP, San Francisco, CA

    Numerical approximation of statistical solutions of scalar conservation laws

    Full text link
    We propose efficient numerical algorithms for approximating statistical solutions of scalar conservation laws. The proposed algorithms combine finite volume spatio-temporal approximations with Monte Carlo and multi-level Monte Carlo discretizations of the probability space. Both sets of methods are proved to converge to the entropy statistical solution. We also prove that there is a considerable gain in efficiency resulting from the multi-level Monte Carlo method over the standard Monte Carlo method. Numerical experiments illustrating the ability of both methods to accurately compute multi-point statistical quantities of interest are also presented
    corecore