724 research outputs found

    The impact of anticipation in dynamical systems

    Full text link
    Collective motion in biology is often modelled as a dynamical system, in which individuals are represented as particles whose interactions are determined by the current state of the system. Many animals, however, including humans, have predictive capabilities, and presumably base their behavioural decisions---at least partially---upon an anticipated state of their environment. We explore a minimal version of this idea in the context of particles that interact according to a pairwise potential. Anticipation enters the picture by calculating the interparticle forces from linear extrapolations of the particle positions some time τ\tau into the future. Simulations show that for intermediate values of τ\tau, compared to a transient time scale defined by the potential and the initial conditions, the particles form rotating clusters in which the particles are arranged in a hexagonal pattern. Analysis of the system shows that anticipation induces energy dissipation and we show that the kinetic energy asymptotically decays as 1/t1/t. Furthermore, we show that the angular momentum is not necessarily conserved for τ>0\tau >0, and that asymmetries in the initial condition therefore can cause rotational movement. These results suggest that anticipation could play an important role in collective behaviour, since it induces pattern formation and stabilises the dynamics of the system.Comment: Major revision compared to previous version. All figures replaced. Only introduction and discussion remain intac

    Two King Lears: The meaning potentials of writing and speech for talking books

    Get PDF
    The talking book is a type of assistive technology where original print text is audio recorded and marked-up in order to make it accessible for people with print-disabilities, such as visual impairments or dyslexia. In this pilot study, we explore the implications of remediating a written text, the script of Shakespeare’s King Lear, into spoken text. We compare two readings of the play: a talking book version; and a commercial audiobook recording. We examine intonation choices in an excerpt from the play in the two readings. The analysis shows significant variation in choices of intonation, and thus the meanings that are produced in the two versions, resulting in not one but two King Lear plays. One implication of such variation might be that different styles of narration demand different ways of reading. The results point to the need to explore how intonation makes meaning for actual talking book readers in situ, where meaning-potentials are realised through the interaction and encounter between the text, the reader(s), the social settings in which they are reading, and the material properties of talking books

    Automating Security Analysis: Symbolic Equivalence of Constraint Systems

    Get PDF
    We consider security properties of cryptographic protocols, that are either trace properties (such as confidentiality or authenticity) or equivalence properties (such as anonymity or strong secrecy). Infinite sets of possible traces are symbolically represented using deducibility constraints. We give a new algorithm that decides the trace equivalence for the traces that are represented using such constraints, in the case of signatures, symmetric and asymmetric encryptions. Our algorithm is implemented and performs well on typical benchmarks. This is the first implemented algorithm, deciding symbolic trace equivalence

    The Surface of a Bose-Einstein Condensed Atomic Cloud

    Full text link
    We investigate the structure and collective modes of a planar surface of a trapped Bose-Einstein condensed gas at zero temperature. In the long-wavelength limit we find a mode similar to the gravity wave on the surface of a fluid with the frequency ω\omega and the wavenumber qq related by ω2=Fq/m\omega^2=Fq/m. Here FF is the force due to the confining potential at the surface and mm is the particle mass. At shorter wavelengths we use a variational approach and find corrections to ω2\omega^2 of order q4lnqq^4 \ln{q}. We demonstrate the usefulness of the concept of an effective surface tension for describing both static and dynamic properties of condensed atomic clouds.Comment: 8 pages, REVTEX, submitted to Phys. Rev.

    Relating two standard notions of secrecy

    Get PDF
    Two styles of definitions are usually considered to express that a security protocol preserves the confidentiality of a data s. Reachability-based secrecy means that s should never be disclosed while equivalence-based secrecy states that two executions of a protocol with distinct instances for s should be indistinguishable to an attacker. Although the second formulation ensures a higher level of security and is closer to cryptographic notions of secrecy, decidability results and automatic tools have mainly focused on the first definition so far. This paper initiates a systematic investigation of the situations where syntactic secrecy entails strong secrecy. We show that in the passive case, reachability-based secrecy actually implies equivalence-based secrecy for digital signatures, symmetric and asymmetric encryption provided that the primitives are probabilistic. For active adversaries, we provide sufficient (and rather tight) conditions on the protocol for this implication to hold.Comment: 29 pages, published in LMC

    YAPA: A generic tool for computing intruder knowledge

    Full text link
    Reasoning about the knowledge of an attacker is a necessary step in many formal analyses of security protocols. In the framework of the applied pi calculus, as in similar languages based on equational logics, knowledge is typically expressed by two relations: deducibility and static equivalence. Several decision procedures have been proposed for these relations under a variety of equational theories. However, each theory has its particular algorithm, and none has been implemented so far. We provide a generic procedure for deducibility and static equivalence that takes as input any convergent rewrite system. We show that our algorithm covers most of the existing decision procedures for convergent theories. We also provide an efficient implementation, and compare it briefly with the tools ProVerif and KiSs

    Vortices in Bose-Einstein-Condensed Atomic Clouds

    Full text link
    The properties of vortex states in a Bose-Einstein condensed cloud of atoms are considered at zero temperature. Using both analytical and numerical methods we solve the time-dependent Gross-Pitaevskii equation for the case when a cloud of atoms containing a vortex is released from a trap. In two dimensions we find the simple result that the time dependence of the cloud radius is given by (1+ω2t2)1/2(1+\omega^2t^2)^{1/2}, where ω\omega is the trap frequency. We calculate and compare the expansion of the vortex core and the cloud radius for different numbers of particles and interaction strengths, in both two and three dimensions, and discuss the circumstances under which vortex states may be observed experimentally.Comment: Revtex, 11 pages including 5 eps figures, submitted to Phys. Rev. A; new reference added, remark added in Sec. IIIB, axis label added in Fig.

    Vortex nucleation in Bose-Einstein condensates in time-dependent traps

    Full text link
    Vortex nucleation in a Bose-Einstein condensate subject to a stirring potential is studied numerically using the zero-temperature, two-dimensional Gross-Pitaevskii equation. It is found that this theory is able to describe the creation of vortices, but not the crystallization of a vortex lattice. In the case of a rotating, slightly anisotropic harmonic potential, the numerical results reproduce experimental findings, thereby showing that finite temperatures are not necessary for vortex excitation below the quadrupole frequency. In the case of a condensate subject to stirring by a narrow rotating potential, the process of vortex excitation is described by a classical model that treats the multitude of vortices created by the stirrer as a continuously distributed vorticity at the center of the cloud, but retains a potential flow pattern at large distances from the center.Comment: 22 pages, 7 figures. Changes after referee report: one new figure, new refs. No conclusions altere

    Temperature dependence of the energy of a vortex in a two-dimensional Bose gas

    Get PDF
    We evaluate the thermodynamic critical angular velocity Omega_c(T) for creation of a vortex of lowest quantized angular momentum in a strictly two-dimensional Bose gas at temperature T, using a mean-field two-fluid model for the condensate and the thermal cloud. Our results show that (i) a Thomas-Fermi description of the condensate badly fails in predicting the particle density profiles and the energy of the vortex as functions of T; and (ii) an extrapolation of a simple Thomas-Fermi formula for Omega_c(0) is nevertheless approximately useful up to T = 0.5 T_c.Comment: 9 pages, 4 figure

    Laser-driven plasma waves in capillary tubes

    Full text link
    The excitation of plasma waves over a length of up to 8 centimeters is, for the first time, demon- strated using laser guiding of intense laser pulses through hydrogen filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift, measured as a function of filling pressure, capillary tube length and incident laser energy, is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range 1 -10 GV/m
    corecore