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Abstract

We evaluate the thermodynamic critical angular velogity(T') for creation of a vortex of lowest quantized angular momen-
tum in a strictly two-dimensional Bose gas at temperafiyeising a mean-field two-fluid model for the condensate and the
thermal cloud. Our results show that (i) a Thomas—Fermi description of the condensate badly fails in predicting the particle
density profiles and the energy of the vortex as functiong;aéind (ii) an extrapolation of a simple Thomas—Fermi formula
for £2.(0) is nevertheless approximately useful ug@ito- 0.57.
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1. Introduction therein). As the gas approaches the 2D limit, its col-
lisional properties start to influence the boson—boson

der?lﬁjs"g’vzd”gggmﬁ:le(izénB;f;_;'nnSt% Icnr-ggn'-n coupling parameter, which becomes dependent on the
sed gases ( ) hav ng | S| ggas density2,3]. Understanding the behaviour of vor-

attention in recent years. Elat_ter and flatter cpnden- tices in this regime is important, since they reflect
sates have been produced inside magneto-optical har-,

monic tr b 2ing the anisotr rameter the superfluid nature of the condenspte6] and are
onic traps by squeezing the anisotropy paramete 'expected to play a role in the transition from the su-
measured as the ratio between the radial and axial

. . perfluid to the normal stafg].
trap frequencies (see Gorlitz et §] and references An experimental method for the creation of quan-

tized vortices in a trapped BEC has made use of an
* Corresponding author. “optical spoon”[8,9], whereby the condensate in an
E-mail address: p.vigholo@sns.itP. Vignolo). elongated trap is set into rotation by stirring with laser
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beams. This experiment on a confined boson gas ismomentum/x per particle is written asd(r) =
conceptually the analogue of the rotating bucket exper- v (r) exp(ix ¢), with ¢ the azimuthal angle. The wave
iment on bulk superfluid helium, with the difference function ¢ (r) then obeys the nonlinear Schrédinger
that the thermal cloud is inhomogeneously distributed equation (NLSE)

and lies mostly outside the condensate cloud. A quan-
tized vortex first appears in the condensate at a critical [
angular frequency of stirring which corresponds to an

2, B 1, .,
_%V + o + SMmeLr + gone(r)
instability of the vortex-free state. A lower bound for
the critical frequency can be assessed from the energy T zglnT(r)]w(r) = uy (), @)
of a vortex, defined as the difference in the internal
energy of the gas with and without a vortex. Observa-
tion of a vortex in a trapped gas is difficult since the
vortex core is small in comparison to the size of the
boson cloud, but the size of the core increases during
free expansion and indeed vortices were first observed
experimentally by releasing the trap and allowing bal-
listic expansion of the cloufB]. A h?/m

In this Letter we consider a 2D rotating condensate §j = mv
at finite temperature and evaluate the particle density
profiles and the energy of a vortex within a strictly 2D Wherea is thes-wave scattering leng{2,3]. In Eq.(2)
model for the boson—boson coupling. This is appropri- We have omitted a term due to thermal excitatifirig,
ate to a situation in which thewave scattering length ~ Which is negligible in the temperature range of present
starts to exceed the vertical confinement length. Pre- interest (" < 0.57¢, with T, the critical temperature).
vious work has established that the dimensionality of N our model the atoms in the thermal cloud are
the scattering collisions strongly affects the equilib- Not put directly into rotation, but feel the rotating
rium density profiled10,11] and the process of free condensate through the mean-field interactions. In the
expansion of a BEC containing a vortg]. A sim- Hartree—Fock approximatiofi4] the thermal cloud is
ilar study of the density profiles of a rotating BEC in treated as an ideal gas subject to the effective potential
3D geometry at finite temperature has been carried out 1 9,
by Mizushima et al[13], who also determined the ~ Vefi(r) = Smw]r® +2ginc(r). (3)
location of various dynaral instabilities within the
Bogoliubov—Popov theory.

whereu is the chemical potentiat; the atomic mass,
ne(r) = |¥(r)|? the condensate density, amd (r)
the density distribution of the thermal cloud. The 2D
coupling parameterg;, with j = 2 for condensate—
condensate repulsions and= 1 for condensate—
noncondensate repulsions, are given by

2

The density distribution of the thermal cloud is then

We begin, therefore, by introducing our description given by
of a 2D BEC containing a vortex at finite tempera- np(r) = — m
tureT. This uses a mean-field two-fluid model for the 272
condensate and the thermal cloud. 2
i onf (s v - )]
2m
2. The model (4)

with 8 = 1/(kgT). The momentum cut-offpg in

The BEC is subject to an anisotropic harmonic con- Eg. (4) is a simple expedient to eliminate discon-
finement characterized by the radial trap frequaency tinuities in the density profiles that can occur near
and by the axial frequencyw; with A > 1. Motions the Thomas—Fermi radius of the condensate. We take
along thez direction are suppressed and the conden- po = 2,/mgint (see, for instance[15]) which is
sate wave function is determined by a 2D equation of equivalent to adding the termgz:r to the effective
motion in the{x, y} plane. potential in Eq(3).

The order parameter for a 2D condensate ac-  We solve self-consistently the coupled E(l9—(4)
commodating a quantized vortex state of angular together with the condition that the areal integral of
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ne(r) +nr(r) is equal to the total numbe¥ of parti-
cles. The differential equatiofl) is solved iteratively
by discretization, using a two-step Crank-Nicholson g, . — 1
schemg16]. In Section3 we shall also compare the 2

the interaction energy

/ d?r [ganZ(r) + 4ganc (r)nt (r)

results with those obtained in the Thomas—Fermi ap- +2g1n3.(r)], (10)
proximation by dropping the radial kinetic energy term o
in Eq. (1). and the kinetic energy of the thermal cloud
2.1. The energy of a vortex Ekin.T = /d2r e Zm{ p[ﬁ<2m
The critical angular velocity measured in experi-
ments where vortex nucleation occurs from a dynami- + Vert(r) — )} - 1} (11)

cal instability[8] depends strongly on the shape of the
perturbation. However, a lower bound for the angu- In Section3 we compare the angular frequency ob-
lar velocity required to produce a single-vortex state tained by the calculation of the total energy of the gas
can be estimated once the energies of the states withwith and without a vortex with those obtained from

and without the vortex are known. Since the angular @ Thomas—Fermi calculation and from extrapolating

momentum per particle is«, the critical (thermody-
namic) angular velocity is given by
%. (5)
K

This expression follows by equating the energy of the
vortex state in the rotating frame, thatds — £2.L.,
to the energye,—o of the vortex-free state.

In the noninteracting case at zero temperature, the
energy difference per particle is simpiyw, , so that
2. is just the trap frequency in thier, y} plane. For
the interacting gas at zererhperature in the Thomas—
Fermi approximation, Eq(5) reduces to the expres-
sion[4,17]

2

2h 0.888R
2 Fo In . 6
o= ( . ) (6)
Here R = (2u/mw?)Y/? and& = Rhw, /21 are the

Thomas—Fermi radius and the healing length, respec-
tively.

In the general case of anteracting gas at finite
temperature, we have to evaluate numerically the total
energy as the sum of four terrfis3],

Ey = Exin,c + Etrap+ Eint + Ekin,7- @)
These terms are the kinetic energy of the condensate

2 hZKZ
me=/d%W(ﬂ<

h
_Vz rz)'(ﬂ(r% (8)
the energy of conflnement

1
Etrap= meL/dzrr [ne(r) +n7r ()], 9)

Eq. (6) at finite temperature through the temperature
dependence of the chemical potential.

3. Resultsand discussion

For a numerical illustration we have taken= 1
and chosen values of the system parameters as appro-
priate to the gas of*Na atoms studied in the experi-
ments of Gorlitz et al[1], namelyw; =2 x 1884 Hz,
a=28nm, andN =5 x 10%. We are implicitly
assuming, however, that the trap has been axially
squeezed to reach the strictly 2D scattering regime.

The density profiles obtained from EqEL)—(4)
for the gas at three different values of the tem-
perature (in units of the critical temperatufe =
(V6N /mkp)hw, of the ideal Bose gas) are shown in
Figs. 1 and 2In the absence of a vortekig. 1), the
main point to notice is that the growth of the thermal
cloud exerts an increasing repulsion on the outer parts
of the condensate, constricting it towards the central
region of the trap. This effect is seen only when the
condensate is treated by the NLSE and persists in the
presence of a vortex{g. 2) but, as we shall see be-
low, is missed in the Thomas—Fermi approximation
where the radial kinetic energy of the condensate is
neglected. In addition, the thermal cloud penetrates
the core of the vortex and enhances the expulsion of
the condensate from the core region (inseFigf. 2),
in a manner which again is governed in its details by
the radial kinetic energy term in the NLSE.



K.K. Rejagopal et al. / Physics Letters A 328 (2004) 500-504

0.007
0.006 - "
0.005
0.004

0.003

n(r) x a3, /N

0.002

0.001

Ry Bk

12

14

Fig. 1. Density profiles:(r) for the condensate and the thermal
cloud (in units Ofa}zw/N, with aj,, = «/h/mw ) versus radial dis-
tancer (in units ofay,,) at temperatur& /7. = 0.05 (full line), 0.25
(long-dashed line), and 0.50 (short-dashed line).
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Fig. 2. Density profiles for the condensate and for the thermal cloud
in the presence of a vortex. Units and symbols are &gnl The
inset shows an enlarged view of the profiles near the center of the
trap.

The profiles obtained for a BEC containing a vortex
at T = 0.57, by the full numerical calculation using
the NLSE are compared fig. 3with those obtained
in the Thomas—Fermi approximation. The constriction
of the condensate in its outer parts and its expulsion
from the core region by the thermal cloud are clearly
underestimated in the Thomas—Fermi theory.

Finally, Fig. 4 reports our results for the energy of
the vortex as a function of’'/T,. The inaccuracies
arising in the density profiles from the Thomas—Fermi
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Fig. 3. Density profiles for a BEC containing a vortex at
T/T. = 0.50 in the full calculation using the NLSE (full lines) and
in the Thomas—Fermi approximatiodashed lines). The units are as
in Fig. 1L The inset shows an enlarged view of the profiles near the
center of the trap.
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Fig. 4. The energy of a vortex, expressed as the thermodynamic
critical frequency$2. in units of the radial trap frequency |,

as a function ofT'/T.. The results from the full calculation us-
ing the NLSE (full line) are compared with those obtained from
Eq. (6) with the corresponding values @f(7) (dotted line) and
with the Thomas—Fermi values @f(7) (short-dashed line). The
long-dashed line shows the results obtained in a calculation using
the Thomas—Fermi theory.

proximation or from the full calculation using the

NLSE, gives a reasonable account of the vortex energy
upto7 ~0.57,.

4. Summary and futuredirections

treatment of the interplay between the condensate and

the thermal cloud clearly lead to large errors in the es-
timation of 2.(7).

On the other hand the simple expression given in
Eq. (6), with the two alternatives of using in it the
chemical potentialt(7") from the Thomas—Fermi ap-

In summary, we have calculated the density profiles
and the thermodynamic critical frequency for vortex
nucleation in a strictly 2D Bose—Einstein-condensed
gas at various temperatures. Our calculations have
demonstrated the interplay between the thermal cloud
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