50 research outputs found
Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon
Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no experimental input other than the structure of the material. We apply our approach to study the relaxation time and mean free path of hot carriers in Si, and map the band and k dependence of these quantities. We demonstrate that a hot carrier distribution characteristic of Si under solar illumination thermalizes within 350 fs, in excellent agreement with pump-probe experiments. Our work sheds light on the subpicosecond time scale after sunlight absorption in Si, and constitutes a first step towards ab initio quantification of hot carrier dynamics in materials
Resonant and bound states of charged defects in two-dimensional semiconductors
A detailed understanding of charged defects in two-dimensional semiconductors is needed for the development of ultrathin electronic devices. Here, we study negatively charged acceptor impurities in monolayer WS2 using a combination of scanning tunneling spectroscopy and large-scale atomistic electronic structure calculations. We observe several localized defect states of hydrogenic wave function character in the vicinity of the valence band edge. Some of these defect states are bound, while others are resonant. The resonant states result from the multivalley valence band structure of WS2, whereby localized states originating from the secondary valence band maximum at Î hybridize with continuum states from the primary valence band maximum at K/KâČ. Resonant states have important consequences for electron transport as they can trap mobile carriers for several tens of picoseconds
Optimizing hot electron harvesting at planar metalâsemiconductor interfaces with titanium oxynitride thin films
Understanding metal-semiconductor interfaces is critical to the advancement of photocatalysis and sub-bandgap solar energy harvesting where electrons in the metal can be excited by sub-bandgap photons and extracted into the semiconductor. In this work, we compare the electron extraction efficiency across Au/TiO2 and titanium oxynitride (TiON)/TiO2-x interfaces, where in the latter case the spontaneously forming oxide layer (TiO2-x) creates a metal-semiconductor contact. Time-resolved pump-probe spectroscopy is used to study the electron recombination rates in both cases. Unlike the nanosecond recombination lifetimes in Au/TiO2, we find a bottleneck in the electron relaxation in the TiON system, which we explain using a trap-mediated recombination model. Using this model, we investigate the tunability of the relaxation dynamics with oxygen content in the parent film. The optimized film (TiO0.5N0.5) exhibits the highest carrier extraction efficiency (NFC â 2.8 Ă 1019 m-3), slowest trapping, and an appreciable hot electron population reaching the surface oxide (NHE â 1.6 Ă 1018 m-3). Our results demonstrate the productive role oxygen can play in enhancing electron harvesting and prolonging electron lifetimes, providing an optimized metal-semiconductor interface using only the native oxide of titanium oxynitride
Impact of complex adatom-induced interactions on quantum spin Hall phases
Adsorbate engineering offers a seemingly simple approach to tailor spin-orbit interactions in atomically thin materials and thus to unlock the much sought-after topological insulating phases in two dimensions. However, the observation of an Anderson topological transition induced by heavy adatoms has proved extremely challenging despite substantial experimental efforts. Here, we present a multiscale approach combining advanced first-principles methods and accurate single-electron descriptions of adatom-host interactions using graphene as a prototypical system. Our study reveals a surprisingly complex structure in the interactions mediated by random adatoms, including hitherto neglected hopping processes leading to strong valley mixing. We argue that the unexpected intervalley scattering strongly impacts the ground state at low adatom coverage, which would provide a compelling explanation for the absence of a topological gap in recent experimental reports on graphene. Our conjecture is confirmed by real-space Chern number calculations and large-scale quantum transport simulations in disordered samples. This resolves an important controversy and suggests that a detectable topological gap can be achieved by increasing the spatial range of the induced spin-orbit interactions on graphene, e.g., using nanoparticles
Many-body calculations of plasmon and phonon satellites in angle-resolved photoelectron spectra using the cumulant expansion approach
The interaction of electrons with crystal lattice vibrations (phonons) and
collective charge-density fluctuations (plasmons) influences profoundly the
spectral properties of solids revealed by photoemission spectroscopy
experiments. Photoemission satellites, for instance, are a prototypical example
of quantum emergent behavior that may result from the strong coupling of
electronic states to plasmons and phonons. The existence of these spectral
features has been verified over energy scales spanning several orders of
magnitude (from 50 meV to 15-20 eV) and for a broad class of compounds such as
simple metals, semiconductors, and highly-doped oxides. During the past few
years the cumulant expansion approach, alongside with the GW approximation and
the theory of electron-phonon and electron-plasmon coupling in solids, has
evolved into a predictive and quantitatively accurate approach for the
description of the spectral signatures of electron-boson coupling entirely from
first principles, and it has thus become the state-of-the-art theoretical tool
for the description of these phenomena. In this chapter we introduce the
fundamental concepts needed to interpret plasmon and phonon satellites in
photoelectron spectra, and we review recent progress on first-principles
calculations of these features using the cumulant expansion method
Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science
It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the âSeattle Implementation Research Conferenceâ; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRCâs membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRCâs primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term âEBP championsâ for these groups) â and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleaguesâ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations