313 research outputs found

    X-ray diffraction from shock-loaded polycrystals

    Full text link
    X-ray diffraction was demonstrated from shock-compressed polycrystalline metal on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25 to 125 microns thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, and the beam was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes

    Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams

    Get PDF
    Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor  , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB

    Numerical simulations of compressible Rayleigh-Taylor turbulence in stratified fluids

    Full text link
    We present results from numerical simulations of Rayleigh-Taylor turbulence, performed using a recently proposed lattice Boltzmann method able to describe consistently a thermal compressible flow subject to an external forcing. The method allowed us to study the system both in the nearly-Boussinesq and strongly compressible regimes. Moreover, we show that when the stratification is important, the presence of the adiabatic gradient causes the arrest of the mixing process.Comment: 15 pages, 11 figures. Proceedings of II Conference on Turbulent Mixing and Beyond (TMB-2009

    Hydrogen-Helium Mixtures at High Pressure

    Full text link
    The properties of hydrogen-helium mixtures at high pressure are crucial to address important questions about the interior of Giant planets e.g. whether Jupiter has a rocky core and did it emerge via core accretion? Using path integral Monte Carlo simulations, we study the properties of these mixtures as a function of temperature, density and composition. The equation of state is calculated and compared to chemical models. We probe the accuracy of the ideal mixing approximation commonly used in such models. Finally, we discuss the structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004

    Index

    Get PDF
    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell–Jüttner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.Original Publication: Antoine Bret, Laurent Gremillet and Mark Eric Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime, 2010, Physics of Plasmas, (17), 12, 120501-1-120501-36. http://dx.doi.org/10.1063/1.3514586 Copyright: American Institute of Physics http://www.aip.org/</p

    Ignition conditions for inertial confinement fusion targets with a nuclear spin-polarized DT fuel

    Get PDF
    The nuclear fusion cross-section is modified when the spins of the interacting nuclei are polarized. In the case of deuterium?tritium it has been theoretically predicted that the nuclear fusion cross-section could be increased by a factor d = 1.5 if all the nuclei were polarized. In inertial confinement fusion this would result in a modification of the required ignition conditions. Using numerical simulations it is found that the required hot-spot temperature and areal density can both be reduced by about 15% for a fully polarized nuclear fuel. Moreover, numerical simulations of a directly driven capsule show that the required laser power and energy to achieve a high gain scale as d-0.6 and d-0.4 respectively, while the maximum achievable energy gain scales as d0.9
    • …
    corecore