37 research outputs found

    Cosmology and Brane Worlds: A Review

    Full text link
    Cosmological consequences of the brane world scenario are reviewed in a pedagogical manner. According to the brane world idea, the standard model particles are confined on a hyper--surface (a so--called brane), which is embedded in a higher--dimensional spacetime (the so--called bulk). We begin our review with the simplest consistent brane world model: a single brane embedded in a five--dimensional Anti-de Sitter space--time. Then we include a scalar field in the bulk and discuss in detail the difference with the Anti-de Sitter case. The geometry of the bulk space--time is also analysed in some depth. Finally, we investigate the cosmology of a system with two branes and a bulk scalar field. We comment on brane collisions and summarize some open problems of brane world cosmology.Comment: 37 pages; invited topical review for Classical and Quantum Gravity; to appea

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Casimir dark energy, stabilization of the extra dimensions and Gauss–Bonnet term

    Get PDF
    A Casimir dark energy model in a five-dimensional and a six-dimensional spacetime including non-relativistic matter and a Gauss–Bonnet term is investigated. The Casimir energy can play the role of dark energy to drive the late-time acceleration of the universe while the radius of the extra dimensions can be stabilized. The qualitative analysis in four-dimensional spacetime shows that the contribution from the Gauss–Bonnet term will effectively slow down the radion field at the matter-dominated or radiation-dominated epochs so that it does not pass the point at which the minimum of the potential will arise before the minimum has formed. The field then is trapped at the minimum of the potential after the formation leading to the stabilization of the extra dimensions
    corecore