1,762 research outputs found
Simple Front End Electronics for Multigap Resistive Plate Chambers
A simple circuit for the presentation of the signals from Multi-gap Resistive
Plate Chambers (MRPCs) to standard existing digitization electronics is
described. The circuit is based on "off-the-shelf" discrete components. An
optimization of the values of specific components is required to match the
aspects of the MRPCs for the given application. This simple circuit is an
attractive option for the initial signal processing for MRPC prototyping and
bench- or beam-testing efforts, as well as for final implementations of
small-area Time-of-Flight systems with existing data acquisition systems.Comment: submitted to Nucl. Inst. and Methods, Section
Black hole head-on collisions and gravitational waves with fixed mesh-refinement and dynamic singularity excision
We present long-term-stable and convergent evolutions of head-on black hole
collisions and extraction of gravitational waves generated during the merger
and subsequent ring-down. The new ingredients in this work are the use of fixed
mesh-refinement and dynamical singularity excision techniques. We are able to
carry out head-on collisions with large initial separations and demonstrate
that our excision infrastructure is capable of accommodating the motion of the
individual black holes across the computational domain as well as their their
merger. We extract gravitational waves from these simulations using the
Zerilli-Moncrief formalism and find the ring-down radiation to be, as expected,
dominated by the l=2, m=0 quasi-normal mode. The total radiated energy is about
0.1 % of the total ADM mass of the system.Comment: Revised version, 1 figure added, accepted for publication in
Phys.Rev.D, 15 pages, 10 figures, revtex 4.
Implementing an apparent-horizon finder in three dimensions
Locating apparent horizons is not only important for a complete understanding
of numerically generated spacetimes, but it may also be a crucial component of
the technique for evolving black-hole spacetimes accurately. A scheme proposed
by Libson et al., based on expanding the location of the apparent horizon in
terms of symmetric trace-free tensors, seems very promising for use with
three-dimensional numerical data sets. In this paper, we generalize this scheme
and perform a number of code tests to fully calibrate its behavior in
black-hole spacetimes similar to those we expect to encounter in solving the
binary black-hole coalescence problem. An important aspect of the
generalization is that we can compute the symmetric trace-free tensor expansion
to any order. This enables us to determine how far we must carry the expansion
to achieve results of a desired accuracy. To accomplish this generalization, we
describe a new and very convenient set of recurrence relations which apply to
symmetric trace-free tensors.Comment: 14 pages (RevTeX 3.0 with 3 figures
Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations
We present a set of well-posed constraint-preserving boundary conditions for
a first-order in time, second-order in space, harmonic formulation of the
Einstein equations. The boundary conditions are tested using robust stability,
linear and nonlinear waves, and are found to be both less reflective and
constraint preserving than standard Sommerfeld-type boundary conditions.Comment: 18 pages, 7 figures, accepted in CQ
Grazing Collisions of Black Holes via the Excision of Singularities
We present the first simulations of non-headon (grazing) collisions of binary
black holes in which the black hole singularities have been excised from the
computational domain. Initially two equal mass black holes are separated a
distance and with impact parameter . Initial data are
based on superposed, boosted (velocity ) solutions of single black
holes in Kerr-Schild coordinates. Both rotating and non-rotating black holes
are considered. The excised regions containing the singularities are specified
by following the dynamics of apparent horizons. Evolutions of up to are obtained in which two initially separate apparent horizons are present
for . At that time a single enveloping apparent horizon forms,
indicating that the holes have merged. Apparent horizon area estimates suggest
gravitational radiation of about 2.6% of the total mass. The evolutions end
after a moderate amount of time because of instabilities.Comment: 2 References corrected, reference to figure update
Introducing Isomad, a Compilation of Isotopic Datasets for Madagascar
Abstract We present the first open-access, island-wide isotopic database (IsoMad) for modern biologically relevant materials collected on Madagascar within the past 150 years from both terrestrial and nearshore marine environments. Isotopic research on the island has increasingly helped with biological studies of endemic organisms, including evaluating foraging niches and investigating factors that affect the spatial distribution and abundance of species. The IsoMad database should facilitate future work by making it easy for researchers to access existing data (even for those who are relatively unfamiliar with the literature) and identify both research gaps and opportunities for using various isotope systems to answer research questions. We also hope that this database will encourage full data reporting in future publications
Nonquantum Gravity
One of the great challenges for 21st century physics is to quantize gravity
and generate a theory that will unify gravity with the other three fundamental
forces of nature. This paper takes the (heretical) point of view that gravity
may be an inherently classical, i.e., nonquantum, phenomenon and investigates
the experimental consequences of such a model. At present there is no
experimental evidence of the quantum nature of gravity and the liklihood of
definitive tests in the future is not at all certain. If gravity is, indeed, a
nonquantum phenomenon, then it is suggested that evidence will most likely
appear at mesoscopic scales.Comment: essentially the same as the version that appears in Foundations of
Physics, 39, 331 (2009
Limits on WWgamma and WWZ Couplings from W Boson Pair Production
The results of a search for W boson pair production in pbar-p collisions at
sqrt{s}=1.8 TeV with subsequent decay to emu, ee, and mumu channels are
presented. Five candidate events are observed with an expected background of
3.1+-0.4 events for an integrated luminosity of approximately 97 pb^{-1}.
Limits on the anomalous couplings are obtained from a maximum likelihood fit of
the E_T spectra of the leptons in the candidate events. Assuming identical
WWgamma and WWZ couplings, the 95 % C.L. limits are -0.62<Delta_kappa<0.77
(lambda = 0) and -0.53<lambda<0.56 (Delta_kappa = 0) for a form factor scale
Lambda = 1.5 TeV.Comment: 10 pages, 1 figure, submitted to Physical Review
Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions
We present measurements of and elliptic flow, , at
midrapidity in Au+Au collisions at 200, 62.4, 39, 27,
19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry,
, based on data from the STAR experiment at RHIC. We find that
() elliptic flow linearly increases (decreases) with charge asymmetry
for most centrality bins at and higher.
At , the slope of the difference of
between and as a function of exhibits a
centrality dependence, which is qualitatively similar to calculations that
incorporate a chiral magnetic wave effect. Similar centrality dependence is
also observed at lower energies.Comment: 6 pages, 4 figure
- âŠ