338 research outputs found

    Signatures of Electronic Correlations in Optical Properties of LaFeAsO1−x_{1-x}Fx_x

    Full text link
    Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} (TcT_c = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 ≀T≀\leq T \leq 350 K. The free charge carrier response in both samples is heavily damped with the effective carrier density as low as 0.040±\pm0.005 electrons per unit cell. The spectral weight transfer in the undoped LaFeAsO associated with opening of the pseudogap at about 0.65 eV is restricted at energies below 2 eV. The spectra of superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} reveal a significant transfer of the spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.Comment: 4 pages, 4 figures, units in Fig.2 adde

    Effect of annealing on the specific heat of optimally doped Ba(Fe0.92_{0.92}Co0.08_{0.08})2_{2}As2_{2}

    Full text link
    We report the temperature dependence of the low-temperature specific heat down to 400 mK of the electron-doped Ba(Fe0.92_{0.92}Co0.08_{0.08})2_{2}As2_{2} superconductors. We have measured two samples extracted from the same batch: first sample has been measured just after preparation with no additional heat treatment. The sample shows TcT_{c}=20 K, residual specific heat Îł0\gamma_{0}=3.6 mJ/mol K2^{2} and a Schottky-like contribution at low temperatures. A second sample has been annealed at 800 oC^{o}C for two weeks and shows TcT_{c} = 25 K and Îł0\gamma_{0}=1.4 mJ/mol~K2^{2}. By subtracting the lattice specific heat, from pure BaFe2_{2}As2_{2}, the temperature dependence of the electronic specific heat has been obtained and studied. For both samples the temperature dependence of Cel(T)C_{el}(T) clearly indicate the presence of low-energy excitations in the system. Their specific heat data cannot be described by single clean s- or d-wave models and the data requires an anisotropic gap scenario which may or may not have nodesComment: SCES 2010, 5 pages, 2 figure

    Ferromagnetism and Lattice Distortions in the Perovskite YTiO3_3

    Full text link
    The thermodynamic properties of the ferromagnetic perovskite YTiO3_3 are investigated by thermal expansion, magnetostriction, specific heat, and magnetization measurements. The low-temperature spin-wave contribution to the specific heat, as well as an Arrott plot of the magnetization in the vicinity of the Curie temperature TC≃27T_C\simeq27 K, are consistent with a three-dimensional Heisenberg model of ferromagnetism. However, a magnetic contribution to the thermal expansion persists well above TCT_C, which contrasts with typical three-dimensional Heisenberg ferromagnets, as shown by a comparison with the corresponding model system EuS. The pressure dependences of TCT_C and of the spontaneous moment MsM_s are extracted using thermodynamic relationships. They indicate that ferromagnetism is strengthened by uniaxial pressures p∄a\mathbf{p}\parallel \mathbf{a} and is weakened by uniaxial pressures p∄b,c\mathbf{p}\parallel \mathbf{b},\mathbf{c} and hydrostatic pressure. Our results show that the distortion along the aa- and bb-axes is further increased by the magnetic transition, confirming that ferromagnetism is favored by a large GdFeO3_3-type distortion. The c-axis results however do not fit into this simple picture, which may be explained by an additional magnetoelastic effect, possibly related to a Jahn-Teller distortion.Comment: 12 pages, 13 figure

    Dipole-active optical phonons in YTiO_3: ellipsometry study and lattice-dynamics calculations

    Full text link
    The anisotropic complex dielectric response was accurately extracted from spectroscopic ellipsometry measurements at phonon frequencies for the three principal crystallographic directions of an orthorhombic (Pbnm) YTiO_3 single crystal. We identify all twenty five infrared-active phonon modes allowed by symmetry, 7B_1u, 9B_2u, and 9B_3u, polarized along the c-, b-, and a-axis, respectively. From a classical dispersion analysis of the complex dielectric functions \tilde\epsilon(\omega) and their inverses -1/\tilde\epsilon(\omega) we define the resonant frequencies, widths, and oscillator strengths of the transverse (TO) and longitudinal (LO) phonon modes. We calculate eigenfrequencies and eigenvectors of B_1u, B_2u, and B_3u normal modes and suggest assignments of the TO phonon modes observed in our ellipsometry spectra by comparing their frequencies and oscillator strengths with those resulting from the present lattice-dynamics study. Based on these assignments, we estimate dynamical effective charges of the atoms in the YTiO_3 lattice. We find that, in general, the dynamical effective charges in YTiO_3 lattice are typical for a family of perovskite oxides. By contrast to a ferroelectric BaTiO_3, the dynamical effective charge of oxygen related to a displacement along the c-axis does not show the anomalously large value. At the same time, the dynamical effective charges of Y and ab-plane oxygen exhibit anisotropy, indicating strong hybridization along the a-axis.Comment: 8 pages, 7 figure

    Large single crystal growth of BaFe1.87Co0.13As2 using a nucleation pole

    Full text link
    Co-doped iron arsenic single crystal of BaFe1.87Co0.13As2 with dimension up to 20 x 10 x 2 mm3 were grown by a nucleation pole: an alumina stick served as nucleation center during growth. The high quality of crystalline was illustrated by the measurements of neutron rocking curve and X-ray diffraction pattern. A very sharp superconducting transition temperature Tc~25 K was revealed by both resistivity and susceptibility measurements. A nearly 100% shielding fraction and bulk nature of the superconductivity for the single crystal were confirmed using magnetic susceptibility data.Comment: 4 pages, 5 figure

    Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices

    Get PDF
    The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated superlattices of the paramagnetic metal LaNiO3 and the wide-gap insulator LaAlO3 with atomically precise layer sequences. Using optical ellipsometry and low-energy muon spin rotation, superlattices with LaNiO3 as thin as two unit cells are shown to undergo a sequence of collective metalinsulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO3 layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems

    Specific-heat study of superconducting and normal states in FeSe1-xTex (0.6<=x<=1) single crystals: Strong-coupling superconductivity, strong electron-correlation, and inhomogeneity

    Full text link
    The electronic specific heat of as-grown and annealed single-crystals of FeSe1-xTex (0.6<=x<=1) has been investigated. It has been found that annealed single-crystals with x=0.6-0.9 exhibit bulk superconductivity with a clear specific-heat jump at the superconducting (SC) transition temperature, Tc. Both 2Delta_0/kBTc [Delta_0: the SC gap at 0 K estimated using the single-band BCS s-wave model] and Delta C/(gamma_n-gamma_0)Tc [Delta C$: the specific-heat jump at Tc, gamma_n: the electronic specific-heat coefficient in the normal state, gamma_0: the residual electronic specific-heat coefficient at 0 K in the SC state] are largest in the well-annealed single-crystal with x=0.7, i.e., 4.29 and 2.76, respectively, indicating that the superconductivity is of the strong coupling. The thermodynamic critical field has also been estimated. gamma_n has been found to be one order of magnitude larger than those estimated from the band calculations and increases with increasing x at x=0.6-0.9, which is surmised to be due to the increase in the electronic effective mass, namely, the enhancement of the electron correlation. It has been found that there remains a finite value of gamma_0 in the SC state even in the well-annealed single-crystals with x=0.8-0.9, suggesting an inhomogeneous electronic state in real space and/or momentum space.Comment: 22 pages, 1 table, 6 figures, Version 2 has been accepted for publication in J. Phys. Soc. Jp

    Upper critical magnetic field in Ba_0.68K_0.32Fe_2As_2 and Ba(Fe_0.93Co_0.07)_2As_2

    Get PDF
    We report measurements of the temperature dependence of the radio-frequency magnetic penetration depth in Ba_0.68K_0.32Fe_2As_2 and Ba(Fe_0.93Co_0.07)_2As_2 single crystals in pulsed magnetic fields up to 60 T. From our data, we construct an H-T phase diagram for the inter-plane (H || c) and in-plane (H || ab) directions for both compounds. For both field orientations in Ba_0.68K_0.32Fe_2As_2, we find a concave curvature of the Hc2(T) lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism we can describe Hc2(T) and its anisotropy. In contrast, we find that Pauli paramagnetic pair breaking is not essential for Ba(Fe_0.93Co_0.07)_2As_2. For this electron-doped compound, the data support a Hc2(T) dependence that can be described by the Werthamer Helfand Hohenberg model for H || ab and a two-gap behavior for H || c.Comment: 7 pages, 8 figure

    Iron pnictides: Single crystal growth and effect of doping on structural, transport and magnetic properties

    Full text link
    We demonstrate the preparation of large, free standing iron pnictide single crystals with a size up to 20 x 10 x 1 mm3 using solvents in zirconia crucibles under argon atmosphere. Transport and magnetic properties are investigated to study the effect of potassium doping on the structural and superconducting property of the compounds. The spin density wave (SDW) anomaly at Ts ~138 K in BaFe2As2 single crystals from self-flux shifts to Ts ~85 K due to Sn solvent growth. We show direct evidence for an incorporation of Sn on the Fe site. The electrical resistivity data show a sharp superconducting transition temperature Tc~38.5 K for the single crystal of Ba0.68K0.32Fe2As2. A nearly 100% shielding fraction and bulk nature of the superconductivity for the single crystal were confirmed by magnetic susceptibility data. A sharp transition Tc~25 K occurred for the single crystal of Sr0.85K0.15Fe2As2. There is direct evidence for a coexistence of the SDW and superconductivity in the low doping regime of Sr1-xKxFe2As2 single crystals. Structural implications of the doping effects as well as the coexistence of the two order parameters are discussed.Comment: 22 pages, 9 figure
    • 

    corecore