53 research outputs found

    En-route to the fission-fusion reaction mechanism: a status update on laser-driven heavy ion acceleration

    Full text link
    The fission-fusion reaction mechanism was proposed in order to generate extremely neutron-rich nuclei close to the waiting point N = 126 of the rapid neutron capture nucleosynthesis process (r-process). The production of such isotopes and the measurement of their nuclear properties would fundamentally help to increase the understanding of the nucleosynthesis of the heaviest elements in the universe. Major prerequisite for the realization of this new reaction scheme is the development of laser-based acceleration of ultra-dense heavy ion bunches in the mass range of A = 200 and above. In this paper, we review the status of laser-driven heavy ion acceleration in the light of the fission-fusion reaction mechanism. We present results from our latest experiment on heavy ion acceleration, including a new milestone with laser-accelerated heavy ion energies exceeding 5 MeV/u

    High deuteron and neutron yields from the interaction of a petawatt laser with a cryogenic deuterium jet

    Get PDF
    A compact high-flux, short-pulse neutron source would have applications from nuclear astrophysics to cancer therapy. Laser-driven neutron sources can achieve fluxes much higher than spallation and reactor neutron sources by reducing the volume and time in which the neutron-producing reactions occur by orders of magnitude. We report progress towards an efficient laser-driven neutron source in experiments with a cryogenic deuterium jet on the Texas Petawatt laser. Neutrons were produced both by laser-accelerated multi-MeV deuterons colliding with Be and mixed metallic catchers and by d (d,n)³He fusion reactions within the jet. We observed deuteron yields of 10¹³/shot in quasi-Maxwellian distributions carrying ∼ 8 − 10 % of the input laser energy. We obtained neutron yields greater than 10¹⁰/shot and found indications of a deuteron-deuteron fusion neutron source with high peak flux (> 10²² cm⁻² s⁻¹). The estimated fusion neutron yield in our experiment is one order of magnitude higher than any previous laser-induced dd fusion reaction. Though many technical challenges will have to be overcome to convert this proof-of-principle experiment into a consistent ultra-high flux neutron source, the neutron fluxes achieved here suggest laser-driven neutron sources can support laboratory study of the rapid neutron-capture process, which is otherwise thought to occur only in astrophysical sites such as core-collapse supernova, and binary neutron star mergers

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore