9,738 research outputs found

    Dynamic magnetic reconnection in three space dimensions: Fan current solutions

    Get PDF
    The problem of incompressible, nonlinear magnetic reconnection in three-dimensional "open" geometries is considered. An analytic treatment shows that dynamic "fan current" reconnection may be driven by superposing long wavelength, finite amplitude, plane wave disturbances onto three-dimensional magnetic X-points. The nonlinear reconnection of the field is preceded by an advection phase in which magnetic shear waves drive large currents as they localize in the vicinity of the magnetic null. Analytic arguments, reinforced by detailed simulations, show that the ohmic dissipation rate can be independent of the plasma resistivity if the merging is suitably driven

    Exact solutions for steady-state, planar, magnetic reconnection in an incompressible viscous plasma

    Get PDF
    The exact planar reconnection analysis of Craig and Henton [Astrophys. J. 450, 280 (1995)] is extended to include the finite viscosity of the fluid and the presence of nonplanar components in the magnetic and velocity fields. It is shown that fast reconnection can be achieved for sufficiently small values of the kinematic viscosity. In particular, the dissipation rate is sustained by the strong amplification of planar magnetic field components advected toward the neutral point. By contrast, nonplanar field components are advected without amplification and so dissipate energy at the slow Sweet–Parker rate

    Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    Get PDF
    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots

    Band Gap and Edge Engineering via Ferroic Distortion and Anisotropic Strain: The Case of SrTiO3_{3}

    Full text link
    The effects of ferroic distortion and biaxial strain on the band gap and band edges of SrTiO3_{3} (STO) are calculated using density functional theory and many-body perturbation theory. Anisotropic strains are shown to reduce the gap by breaking degeneracies at the band edges. Ferroic distortions are shown to widen the gap by allowing new band edge orbital mixings. Compressive biaxial strains raise band edge energies, while tensile strains lower them. To reduce the STO gap, one must lower the symmetry from cubic while suppressing ferroic distortions. Our calculations indicate that for engineered orientation of the growth direction along [111], the STO gap can be controllably and considerably reduced at room temperature.Comment: 5 pages, 5 figures. To be published in Phys. Rev. Let

    Variable-Frequency QPOs from the Galactic Microquasar GRS 1915+105

    Get PDF
    We show that the galactic microquasar GRS 1915+105 exhibits quasi-periodic oscillations (QPOs) whose frequency varies continuously from 1-15 Hz, during spectrally hard dips when the source is in a flaring state. We report here analyses of simultaneous energy spectra and power density spectra at 4 s intervals. The energy spectrum is well fit at each time step by an optically thick accretion disk plus power law model, while the power density spectrum consists of a varying red noise component plus the variable frequency QPO. The features of both spectra are strongly correlated with one another. The 1-15 Hz QPOs appear when the power law component becomes hard and intense, and themselves have an energy spectrum consistent with the power law component (with root mean square amplitudes as high as 10%). The frequency of the oscillations, however, is most strikingly correlated with the parameters of the thermal disk component. The tightest correlation is between QPO frequency and the disk X-ray flux. This fact indicates that the properties of the QPO are not determined by solely a disk or solely a corona.Comment: Accepted to ApJ Letters, 12 pages, 3 figures, AASTEX forma

    Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    Get PDF
    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole

    Effect of crystallization time on the hydrothermal synthesis of zeolites from kaolin and bauxite

    Full text link
    Kaolin and bauxite were used as alumina and silica sources to synthesize zeolites hydrothermally. The source mate-rials as well as the synthesized zeolites were characterized by X-ray diffraction (XRD) scanning electron microscopy (SEM), en-ergy dispersive x-ray analysis (EDX) and Fourier transformed infrared spectroscopy (FTIR). XRD spectra of the bauxite showed Gibbsite phase whereas that of kaolin gave 32.4 % quartz and 67.6 %. The main phases of zeolites obtained after hydrothermal crystallizations were zeolite types LTA, analcime and zeolite X. Longer crystallization time resulted in phase change of the zeo-lites into sodalite. Hence, natural raw materials such as bauxite and kaolin have the attractive features of providing the staring reagents for the synthesis of ultrapure synthetic zeolites

    Empirical Geographic Modeling of Switchgrass Yields in the United States

    Get PDF
    Switchgrass (Panicum virgatum L.) is a perennial grass native to the United States that has been studied as a sustainable source of biomass fuel. Although many field‐scale studies have examined the potential of this grass as a bioenergy crop, these studies have not been integrated. In this study, we present an empirical model for switchgrass yield and use this model to predict yield for the conterminous United States. We added environmental covariates to assembled yield data from field trials based on geographic location. We developed empirical models based on these data. The resulting empirical models, which account for spatial autocorrelation in the field data, provide the ability to estimate yield from factors associated with climate, soils, and management for both lowland and upland varieties of switchgrass. Yields of both ecotypes showed quadratic responses to temperature, increased with precipitation and minimum winter temperature, and decreased with stand age. Only the upland ecotype showed a positive response to our index of soil wetness and only the lowland ecotype showed a positive response to fertilizer. We view this empirical modeling effort, not as an alternative to mechanistic plant‐growth modeling, but rather as a first step in the process of functional validation that will compare patterns produced by the models with those found in data. For the upland variety, the correlation between measured yields and yields predicted by empirical models was 0.62 for the training subset and 0.58 for the test subset. For the lowland variety, the correlation was 0.46 for the training subset and 0.19 for the test subset. Because considerable variation in yield remains unexplained, it will be important in the future to characterize spatial and local sources of uncertainty associated with empirical yield estimates
    corecore