347 research outputs found

    Josephson (001) tilt grain boundary junctions of high temperature superconductors

    Full text link
    We calculate the critical current IcI_c across in-plane (001) tilt grain boundary junctions of high temperature superconductors. We solve for the electronic states corresponding to the electron-doped cuprates, two slightly different hole-doped cuprates, and an extremely underdoped hole-doped cuprate in each half-space, and weakly connect the two half-spaces by either specular or random quasiparticle tunneling. We treat symmetric, straight, and fully asymmetric junctions with s-, extended-s-, or dx2−y2_{x^2-y^2}-wave order parameters. For symmetric junctions with random grain boundary tunneling, our results are generally in agreement with the Sigrist-Rice form for ideal junctions that has been used to interpret ``phase-sensitive'' experiments consisting of such in-plane grain boundary junctions. For specular grain boundary tunneling across symmetric juncitons, our results depend upon the Fermi surface topology, but are usually rather consistent with the random facet model of Tsuei {\it et al.} [Phys. Rev. Lett. {\bf 73}, 593 (1994)]. Our results for asymmetric junctions of electron-doped cuparates are in agreement with the Sigrist-Rice form. However, ou resutls for asymmetric junctions of hole-doped cuprates show that the details of the Fermi surface topology and of the tunneling processes are both very important, so that the ``phase-sensitive'' experiments based upon the in-plane Josephson junctions are less definitive than has generally been thought.Comment: 13 pages, 10 figures, resubmitted to PR

    Critical Fidelity

    Full text link
    Using a Wigner Lorentzian Random Matrix ensemble, we study the fidelity, F(t)F(t), of systems at the Anderson metal-insulator transition, subject to small perturbations that preserve the criticality. We find that there are three decay regimes as perturbation strength increases: the first two are associated with a gaussian and an exponential decay respectively and can be described using Linear Response Theory. For stronger perturbations F(t)F(t) decays algebraically as F(t)∼t−D2F(t)\sim t^{-D_2}, where D2D_2 is the correlation dimension of the critical eigenstates.Comment: 4 pages, 3 figures. Revised and published in Phys. Rev. Let

    The Open Cluster NGC 7789: I. Radial Velocities for Giant Stars

    Full text link
    A total of 597 radial-velocity observations for 112 stars in the ~1.6 Gyr old open cluster NGC 7789 have been obtained since 1979 with the radial velocity spectrometer at the Dominion Astrophysical Observatory. The mean cluster radial velocity is -54.9 +/- 0.12 km/s and the dispersion is 0.86 km/s, from 50 constant-velocity stars selected as members from this radial-velocity study and the proper motion study of McNamara and Solomon (1981). Twenty-five stars (32%) among 78 members are possible radial-velocity variable stars, but no orbits are determined because of the sparse sampling. Seventeen stars are radial-velocity non-members, while membership estimates of six stars are uncertain. There is a hint that the observed velocity dispersion falls off at large radius. This may due to the inclusion of long-period binaries preferentially in the central area of the cluster. The known radial-velocity variables also seem to be more concentrated toward the center than members with constant velocity. Although this is significant at only the 85% level, when combined with similar result of Raboud and Mermilliod (1994) for three other clusters, the data strongly support the conclusion that mass segregation is being detected.Comment: 16 pages (including 3 figures) and 3 table

    Clothoid-Based Three-Dimensional Curve for Attitude Planning

    Get PDF
    Interest in flying robots, also known as unmanned aerial vehicles (UAVs), has grown during last years in both military and civil fields [1, 2]. The same happens to autonomous underwater vehicles (AUVs) [3]. These vehicles, UAVs and AUVs, offer a wide variety of possible applications and challenges, such as control, guidance or navigation [2, 3]. In this sense, heading and attitude control in UAVs is very important [4], particularly relevant in airplanes (fixed-wing flying vehicles), because they are strongly non-linear, coupled, and tend to be underactuated systems with non-holonomic constraints. Hence, designing a good attitude controller is a difficult task [5, 6, 7, 8, 9], where stability must be taken into account by the controller [10]. Indeed, if the reference is too demanding for the controller or non-achievable because its dynamics is too fast, the vehicle might become unstable. In order to address this issue, autonomous navigation systems usually include a high-level path planner to generate smooth reference trajectories to be followed by the vehicle using a low-level controller. Usually a set of waypoints is given in GPS coordinates, normally from a map, in order to apply a smooth point-to-point control trajectory [11, 12]

    Future Boundary Conditions in De Sitter Space

    Get PDF
    We consider asymptotically future de Sitter spacetimes endowed with an eternal observatory. In the conventional descriptions, the conformal metric at the future boundary I^+ is deformed by the flux of gravitational radiation. We however impose an unconventional future "Dirichlet" boundary condition requiring that the conformal metric is flat everywhere except at the conformal point where the observatory arrives at I^+. This boundary condition violates conventional causality, but we argue the causality violations cannot be detected by any experiment in the observatory. We show that the bulk-to-bulk two-point functions obeying this future boundary condition are not realizable as operator correlation functions in any de Sitter invariant vacuum, but they do agree with those obtained by double analytic continuation from anti-de Sitter space.Comment: 16 page

    American Astronomical Society logo iop-2016.png Nature of Faint Radio Sources in GOODS-North and GOODS-South Fields. I. Spectral Index and Radio–FIR Correlation

    Get PDF
    We present the first results from the deep and wide 5 GHz radio observations of the Great Observatories Origins Deep Survey (GOODS)-North (σ = 3.5 μJy beam−1, synthesized beam size θ = 147 × 142, and 52 sources over 109 arcmin2) and GOODS-South (σ = 3.0 μJy beam−1, θ = 098 × 045, and 88 sources over 190 arcmin2) fields using the Karl G. Jansky Very Large Array. We derive radio spectral indices α between 1.4 and 5 GHz using the beam-matched images and show that the overall spectral index distribution is broad even when the measured noise and flux bias are considered. We also find a clustering of faint radio sources around α = 0.8, but only within S 5 GHz \u3c 150 μJy. We demonstrate that the correct radio spectral index is important for deriving accurate rest-frame radio power and analyzing the radio–FIR correlation, and adopting a single value of α = 0.8 leads to a significant scatter and a strong bias in the analysis of the radio–FIR correlation, resulting from the broad and asymmetric spectral index distribution. When characterized by specific star formation rates, the starburst population (58%) dominates the 5 GHz radio source population, and the quiescent galaxy population (30%) follows a distinct trend in spectral index distribution and the radio–FIR correlation. Lastly, we offer suggestions on sensitivity and angular resolution for future ultra-deep surveys designed to trace the cosmic history of star formation and AGN activity using radio continuum as a probe
    • …
    corecore