11,940 research outputs found

    Entanglement-enhanced measurement of a completely unknown phase

    Full text link
    The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.Comment: 6 pages, 4 figure

    Quantum-enhanced capture of photons using optical ratchet states

    Get PDF
    Natural and artificial light harvesting systems often operate in a regime where the flux of photons is relatively low. Besides absorbing as many photons as possible it is therefore paramount to prevent excitons from annihilation via photon re-emission until they have undergone an irreversible energy conversion process. Taking inspiration from photosynthetic antenna structures, we here consider ring-like systems and introduce a class of states we call ratchets: excited states capable of absorbing but not emitting light. This allows our antennae to absorb further photons whilst retaining the excitations from those that have already been captured. Simulations for a ring of four sites reveal a peak power enhancement by up to a factor of 35 under ambient conditions owing to a combination of ratcheting and the prevention of emission through dark-state population. In the slow extraction limit the achievable power enhancement due to ratcheting alone exceeds 20%.Comment: major revision with improved model (all data and figures updated

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc

    Superabsorption of light via quantum engineering

    Get PDF
    Almost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N^2. Even for moderate N this represents a significant increase over the prediction of classical physics, and the effect has found applications ranging from probing exciton delocalisation in biological systems, to developing a new class of laser, and even in astrophysics. Structures that super-radiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that modern quantum control techniques can overcome this restriction. Our theory establishes that superabsorption can be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state while extracting energy into a non-radiative channel. The effect offers the prospect of a new class of quantum nanotechnology, capable of absorbing light many times faster than is currently possible; potential applications of this effect include light harvesting and photon detection. An array of quantum dots or a porphyrin ring could provide an implementation to demonstrate this effect

    Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    Get PDF
    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model

    Mixed state discrimination using optimal control

    Get PDF
    We present theory and experiment for the task of discriminating two nonorthogonal states, given multiple copies. We implement several local measurement schemes, on both pure states and states mixed by depolarizing noise. We find that schemes which are optimal (or have optimal scaling) without noise perform worse with noise than simply repeating the optimal single-copy measurement. Applying optimal control theory, we derive the globally optimal local measurement strategy, which outperforms all other local schemes, and experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures supplementary materia

    Using weak values to experimentally determine "negative probabilities" in a two-photon state with Bell correlations

    Full text link
    Bipartite quantum entangled systems can exhibit measurement correlations that violate Bell inequalities, revealing the profoundly counter-intuitive nature of the physical universe. These correlations reflect the impossibility of constructing a joint probability distribution for all values of all the different properties observed in Bell inequality tests. Physically, the impossibility of measuring such a distribution experimentally, as a set of relative frequencies, is due to the quantum back-action of projective measurements. Weakly coupling to a quantum probe, however, produces minimal back-action, and so enables a weak measurement of the projector of one observable, followed by a projective measurement of a non-commuting observable. By this technique it is possible to empirically measure weak-valued probabilities for all of the values of the observables relevant to a Bell test. The marginals of this joint distribution, which we experimentally determine, reproduces all of the observable quantum statistics including a violation of the Bell inequality, which we independently measure. This is possible because our distribution, like the weak values for projectors on which it is built, is not constrained to the interval [0, 1]. It was first pointed out by Feynman that, for explaining singlet-state correlations within "a [local] hidden variable view of nature ... everything works fine if we permit negative probabilities". However, there are infinitely many such theories. Our method, involving "weak-valued probabilities", singles out a unique set of probabilities, and moreover does so empirically.Comment: 9 pages, 3 figure

    Steep sharp-crested gravity waves on deep water

    Full text link
    A new type of steady steep two-dimensional irrotational symmetric periodic gravity waves on inviscid incompressible fluid of infinite depth is revealed. We demonstrate that these waves have sharper crests in comparison with the Stokes waves of the same wavelength and steepness. The speed of a fluid particle at the crest of new waves is greater than their phase speed.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Complementary Organic Logic Gates on Plastic Formed by Self-Aligned Transistors with Gravure and Inkjet Printed Dielectric and Semiconductors

    No full text
    Complementary organic field-effect transistors, inverters, NAND and NOR logic on plastic are demonstrated using a combination of nanoimprint lithography, self-alignment, gravure, and inkjet printing. Sub-micrometer channel lengths, electrode overlaps and sub-100 nm dielectrics are compared to photolithographically patterned equivalents, as are inkjet and gravure printed semiconductors
    • …
    corecore