1,168 research outputs found
Extending higher dimensional quasi-cocycles
Let G be a group admitting a non-elementary acylindrical action on a Gromov
hyperbolic space (for example, a non-elementary relatively hyperbolic group, or
the mapping class group of a closed hyperbolic surface, or Out(F_n) for n>1).
We prove that, in degree 3, the bounded cohomology of G with real coefficients
is infinite-dimensional. Our proof is based on an extension to higher degrees
of a recent result by Hull and Osin. Namely, we prove that, if H is a
hyperbolically embedded subgroup of G and V is any G-module, then any n-quasi
cocycle on H with values in V may be extended to G. Also, we show that our
extensions detect the geometry of the embedding of hyperbolically embedded
subgroups, in a suitable sense.Comment: Minor revisions. This version has been accepted for publication by
the Journal of Topolog
Monojet searches for momentum-dependent dark matter interactions
We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb−1, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints. For a specific dark matter mass, the LHC turns out to be sensitive to smaller signal cross-sections in the momentum-dependent case, by virtue of the harder jet transverse-momentum distribution
Probing the seesaw mechanism with neutrino data and leptogenesis
In the framework of the seesaw mechanism with three heavy right-handed
Majorana neutrinos and no Higgs triplets we carry out a systematic study of the
structure of the right-handed neutrino sector. Using the current low-energy
neutrino data as an input and assuming hierarchical Dirac-type neutrino masses
, we calculate the masses and the mixing of the heavy neutrinos.
We confront the inferred properties of these neutrinos with the constraints
coming from the requirement of a successful baryogenesis via leptogenesis. In
the generic case the masses of the right-handed neutrinos are highly
hierarchical: ; the lightest mass is GeV and the generated baryon-to-photon ratio is
much smaller than the observed value. We find the special cases which
correspond to the level crossing points, with maximal mixing between two
quasi-degenerate right-handed neutrinos. Two level crossing conditions are
obtained: (1-2 crossing) and (2-3
crossing), where and are respectively the 11-entry and the
12-subdeterminant of the light neutrino mass matrix in the basis where the
neutrino Yukawa couplings are diagonal. We show that sufficient lepton
asymmetry can be produced only in the 1-2 crossing where GeV, GeV and .Comment: 30 pages, 2 eps figures, JHEP3.cls, typos corrected, note (and
references) added on non-thermal leptogenesi
Diabetes-associated mitochondrial DNA mutation A3243G impairs cellular metabolic pathways necessary for beta cell function
Aims/hypothesis: Mitochondrial DNA (mtDNA) mutations cause several diseases, including mitochondrial inherited diabetes and deafness (MIDD), typically associated with the mtDNA A3243G point mutation on tRNALeu gene. The common hypothesis to explain the link between the genotype and the phenotype is that the mutation might impair mitochondrial metabolism expressly required for beta cell functions. However, this assumption has not yet been tested. Methods: We used clonal osteosarcoma cytosolic hybrid cells (namely cybrids) harbouring mitochondria derived from MIDD patients and containing either exclusively wild-type or mutated (A3243G) mtDNA. According to the importance of mitochondrial metabolism in beta cells, we studied the impact of the mutation on key parameters by comparing stimulation of these cybrids by the main insulin secretagogue glucose and the mitochondrial substrate pyruvate. Results: Compared with control mtDNA from the same patient, the A3243G mutation markedly modified metabolic pathways leading to a high glycolytic rate (2.8-fold increase), increased lactate production (2.5-fold), and reduced glucose oxidation (−83%). We also observed impaired NADH responses (−56%), negligible mitochondrial membrane potential, and reduced, only transient ATP generation. Moreover, cybrid cells carrying patient-derived mutant mtDNA exhibited deranged cell calcium handling with increased cytosolic loads (1.4-fold higher), and elevated reactive oxygen species (2.6-fold increase) under glucose deprivation. Conclusions/interpretation: The present study demonstrates that the mtDNA A3243G mutation impairs crucial metabolic events required for proper cell functions, such as coupling of glucose recognition to insulin secretio
On Composite Two Higgs Doublet Models
We investigate composite two Higgs doublet models realized as pseudo
Goldstone modes, generated through the spontaneous breaking of a global
symmetry due to strong dynamic at the TeV scale. A detailed comparative survey
of two possible symmetry breaking patterns, SU(5) -> SU(4) x U(1) and SU(5) x
SU(4), is made. We point out choices for the Standard Model fermion
representations that can alleviate some phenomenological constraints, with
emphasis towards a simultaneous solution of anomalous Zb\bar{b} coupling and
Higgs mediated Flavor Changing Neutral Currents. We also write down the kinetic
lagrangian for several models leading to Two Higgs Doublets and identify the
anomalous contributions to the T parameter. Moreover, we describe a model based
on the breaking in which there is no tree-level breaking of
custodial symmetry, discussing also the possible embeddings for the fermion
fields.Comment: 17 pages. Mistake corrected, added one section on a T- and flavor
safe model based on SO(9)/SO(8). Matches published versio
A Detailed Analysis of One-loop Neutrino Masses from the Generic Supersymmetric Standard Model
In the generic supersymmetric standard model which had no global symmetry
enforced by hand, lepton number violation is a natural consequence.
Supersymmetry, hence, can be considered the source of experimentally demanded
beyond standard model properties for the neutrinos. With an efficient
formulation of the model, we perform a comprehensive detailed analysis of all
one-loop contributions to neutrino masses.Comment: 27 pages Revtex, no figur
Non-commutative Geometry and Kinetic Theory of Open Systems
The basic mathematical assumptions for autonomous linear kinetic equations
for a classical system are formulated, leading to the conclusion that if they
are differential equations on its phase space , they are at most of the 2nd
order. For open systems interacting with a bath at canonical equilibrium they
have a particular form of an equation of a generalized Fokker-Planck type. We
show that it is possible to obtain them as Liouville equations of Hamiltonian
dynamics on with a particular non-commutative differential structure,
provided certain geometric in character, conditions are fulfilled. To this end,
symplectic geometry on is developped in this context, and an outline of the
required tensor analysis and differential geometry is given. Certain questions
for the possible mathematical interpretation of this structure are also
discussed.Comment: 22 pages, LaTe
Probing for Invisible Higgs Decays with Global Fits
We demonstrate by performing a global fit on Higgs signal strength data that
large invisible branching ratios Br_{inv} for a Standard Model (SM) Higgs
particle are currently consistent with the experimental hints of a scalar
resonance at the mass scale m_h ~ 124 GeV. For this mass scale, we find
Br_{inv} < 0.64 (95 % CL) from a global fit to individual channel signal
strengths supplied by ATLAS, CMS and the Tevatron collaborations. Novel tests
that can be used to improve the prospects of experimentally discovering the
existence of a Br_{inv} with future data are proposed. These tests are based on
the combination of all visible channel Higgs signal strengths, and allow us to
examine the required reduction in experimental and theoretical errors in this
data that would allow a more significantly bounded invisible branching ratio to
be experimentally supported. We examine in some detail how our conclusions and
method are affected when a scalar resonance at this mass scale has couplings
deviating from the SM ones.Comment: 32pp, 15 figures v2: JHEP version, ref added & comment added after
Eq.
Non-equilibrium states of a photon cavity pumped by an atomic beam
We consider a beam of two-level randomly excited atoms that pass one-by-one
through a one-mode cavity. We show that in the case of an ideal cavity, i.e. no
leaking of photons from the cavity, the pumping by the beam leads to an
unlimited increase in the photon number in the cavity. We derive an expression
for the mean photon number for all times. Taking into account leaking of the
cavity, we prove that the mean photon number in the cavity stabilizes in time.
The limiting state of the cavity in this case exists and it is independent of
the initial state. We calculate the characteristic functional of this
non-quasi-free non-equilibrium state. We also calculate the energy flux in both
the ideal and open cavity and the entropy production for the ideal cavity.Comment: Corrected energy production calculations and made some changes to
ease the readin
The little flavons
Fermion masses and mixing matrices can be described in terms of spontaneously
broken (global or gauge) flavor symmetries. We propose a little-Higgs inspired
scenario in which an SU(2)xU(1) gauge flavor symmetry is spontaneously (and
completely) broken by the vacuum of the dynamically induced potential for two
scalar doublets (the flavons) which are pseudo-Goldstone bosons remaining after
the spontaneous breaking--at a scale between 10 and 100 TeV--of an approximate
SU(6) global symmetry. The vacuum expectation values of the flavons give rise
to the texture in the fermion mass matrices. We discuss in detail the case of
leptons. Light-neutrino masses arise by means of a see-saw-like mechanism that
takes place at the same scale at which the SU(6) global symmetry is broken. We
show that without any fine tuning of the parameters the experimental values of
the charged-lepton masses,the neutrino square mass differences and the
Pontecorvo-Maki-Nakagawa-Sakata mixing matrix are reproduced.Comment: 13 pages, revTeX4. Version to be published in PR
- …
