1,379 research outputs found

    Superconducting Fluctuations, Pseudogap and Phase Diagram in Cuprates

    Full text link
    We report transport measurements using pulsed magnetic fields to suppress the superconducting fluctuations (SCF) conductivity in a series of YBa_2Cu_3O_(6+x) samples. These experiments allow us altogether to measure the temperature T'c at which SCF disappear, and the pseudogap temperature T*. While the latter are consistent with previous determinations of T*, we find that T'c is slightly larger than similar data taken by Nernst measurements. A careful investigation near optimal doping shows that T* becomes smaller than T'c, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Studies of the incidence of disorder on both T'c and T* allow us to propose a phase diagram including disorder which explains most observations done in other cuprate families, and to discuss the available knowledge on the pseudogap line in the phase diagram.Comment: New version with minor correction

    Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling

    Full text link
    The recently discovered exoplanet Gl581d is extremely close to the outer edge of its system's habitable zone, which has led to much speculation on its possible climate. We have performed a range of simulations to assess whether, given simple combinations of chemically stable greenhouse gases, the planet could sustain liquid water on its surface. For best estimates of the surface gravity, surface albedo and cloud coverage, we find that less than 10 bars of CO2 is sufficient to maintain a global mean temperature above the melting point of water. Furthermore, even with the most conservative choices of these parameters, we calculate temperatures above the water melting point for CO2 partial pressures greater than about 40 bar. However, we note that as Gl581d is probably in a tidally resonant orbit, further simulations in 3D are required to test whether such atmospheric conditions are stable against the collapse of CO2 on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy & Astrophysic

    3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability

    Full text link
    The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be so relevant for inhomogeneously irradiated planets, or when the water content is limited (land planets). Here, based on results from our 3D global climate model, we find that the circulation pattern can shift from super-rotation to stellar/anti stellar circulation when the equatorial Rossby deformation radius significantly exceeds the planetary radius. Using analytical and numerical arguments, we also demonstrate the presence of systematic biases between mean surface temperatures or temperature profiles predicted from either 1D or 3D simulations. Including a complete modeling of the water cycle, we further demonstrate that for land planets closer than the inner edge of the classical habitable zone, two stable climate regimes can exist. One is the classical runaway state, and the other is a collapsed state where water is captured in permanent cold traps. We identify this "moist" bistability as the result of a competition between the greenhouse effect of water vapor and its condensation. We also present synthetic spectra showing the observable signature of these two states. Taking the example of two prototype planets in this regime, namely Gl581c and HD85512b, we argue that they could accumulate a significant amount of water ice at their surface. If such a thick ice cap is present, gravity driven ice flows and geothermal flux should come into play to produce long-lived liquid water at the edge and/or bottom of the ice cap. Consequently, the habitability of planets at smaller orbital distance than the inner edge of the classical habitable zone cannot be ruled out. Transiting planets in this regime represent promising targets for upcoming observatories like EChO and JWST.Comment: Accepted for publication in Astronomy and Astrophysics, complete abstract in the pdf, 18 pages, 18 figure

    Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere

    Full text link
    High-resolution spectra of Pluto in the 1.66 um region, recorded with the VLT/CRIRES instrument in 2008 (2 spectra) and 2012 (5 spectra), are analyzed to constrain the spatial and vertical distribution of methane in Pluto's atmosphere and to search for mid-term (4 year) variability. A sensitivity study to model assumptions (temperature structure, surface pressure, Pluto's radius) is performed. Results indicate that (i) no variation of the CH4 atmospheric content (column-density or mixing ratio) with Pluto rotational phase is present in excess of 20 % (ii) CH4 column densities show at most marginal variations between 2008 and 2012, with a best guess estimate of a ~20 % decrease over this time frame. As stellar occultations indicate that Pluto's surface pressure has continued to increase over this period, this implies a concomitant decrease of the methane mixing ratio (iii) the data do not show evidence for an altitude-varying methane distribution; in particular, they imply a roughly uniform mixing ratio in at least the first 22-27 km of the atmosphere, and high concentrations of low-temperature methane near the surface can be ruled out. Our results are also best consistent with a relatively large (> 1180 km) Pluto radius. Comparison with predictions from a recently developed global climate model GCM indicates that these features are best explained if the source of methane occurs in regional-scale CH4 ice deposits, including both low latitudes and high Northern latitudes, evidence for which is present from the rotational and secular evolution of the near-IR features due to CH4 ice. Our "best guess" predictions for the New Horizons encounter in 2015 are: a 1184 km radius, a 17 ubar surface pressure, and a 0.44 % CH4 mixing ratio with negligible longitudinal variations.Comment: 21 pages, 6 figure

    BaCu3O4: High Temperature Magnetic Order in One-Dimensional S=1/2 Diamond-Chains

    Full text link
    The magnetic properties of the alkaline earth oxocuprate BaCu3O4 are investigated. We show that the characteristic Cu3O4 layers of this material can be described with diamond chains of antiferromagnetically coupled Cu 1/2 spins with only a weak coupling between two adjacent chains. These Cu3O4 layers seem to represent a so far unique system of weakly coupled one-dimensional magnetic objects where the local AF ordering of the Cu2+ ions leads to an actual net magnetic moment of an isolated diamond chain. We demonstrate a magnetic transition at a high N\'eel temperature T_{N}=336 K

    Unconventional high-energy-state contribution to the Cooper pairing in under-doped copper-oxide superconductor HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta}

    Full text link
    We study the temperature-dependent electronic B1g Raman response of a slightly under-doped single crystal HgBa2_2Ca2_2Cu3_3O8+δ_{8+\delta} with a superconducting critical temperature Tc=122 K. Our main finding is that the superconducting pair-breaking peak is associated with a dip on its higher-energy side, disappearing together at Tc. This result hints at an unconventional pairing mechanism, whereas spectral weight lost in the dip is transferred to the pair-breaking peak at lower energies. This conclusion is supported by cellular dynamical mean-field theory on the Hubbard model, which is able to reproduce all the main features of the B1g Raman response and explain the peak-dip behavior in terms of a nontrivial relationship between the superconducting and the pseudo gaps.Comment: 7 pages 4 figure

    Multiorbital effects on the transport and the superconducting fluctuations in LiFeAs

    Full text link
    The resistivity, Hall effect and transverse magnetoresistance (MR) have been measured in low residual resistivity single crystals of LiFeAs. A comparison with angle resolved photoemission spectroscopy and quantum oscillation data implies that four carrier bands unevenly contribute to the transport. However the scattering rates of the carriers all display the T^2 behavior expected for a Fermi liquid. Near Tc low field deviations of the MR with respect to a H^2 variation permit us to extract the superconducting fluctuation contribution to the conductivity. Though below Tc the anisotropy of superconductivity is rather small, the superconducting fluctuations display a quasi ideal two-dimensional behavior which persists up to 1.4 Tc. These results call for a refined theoretical understanding of the multiband behavior of superconductivity in this pnictide.Comment: 8pages with supplementary material, 6 figure
    • …
    corecore