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Abstract

The most prevalent criticism of fission-fusion hybrids is simply that they are too
exotic - that they would exacerbate the challenges of both fission and fusion. This is not
really true. Intriguingly, hybrids could actually be more viable than stand-alone fusion
reactors while mitigating many challenges of fission. This work develops a conceptual
design for a fission-fusion hybrid reactor in steady-state L-mode tokamak configuration
with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-
lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction.
Subcritical operation could obviate the most challenging fuel cycle aspects of fission.
The fission blanket augments the fusion power such that the fusion core itself need
not have a high power gain, thus allowing for fully non-inductive (steady-state) low
confinement mode (L-mode) operation at relatively small physical dimensions.

A neutron transport Monte Carlo code models the natural uranium fission blanket.
Maximizing the fission power while breeding sufficient tritium allows for the selection
of an optimal set of blanket parameters, which yields a maximum prudent fission power
gain of 7.7.

A 0-D tokamak model suffices to analyze approximate tokamak operating condi-
tions. If the definition of a “reactor” is a device with a total power gain of 40, then
this fission blanket would allow the fusion component of a hybrid reactor with the
same dimensions as ITER to operate in steady-state L-mode very comfortably with a
fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can
determine the approximate minimum scale for a steady-state L-mode tokamak hybrid
reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum
scale device operates barely within the steady-state L-mode realm with a thermal fusion
power of 1.7 GW.

This hybrid, with its very fast neutron spectrum, could be superior to pure fission
reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It
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could operate either as a breeder, producing fuel for pure fission reactors from natural or
depleted uranium, or as a deep burner, fissioning heavy metal and transmuting waste
with a cycle time of decades. Despite a plethora of potential functions, its primary
mission is deemed to be that of a deep burner producing baseload commercial power
with a once-through fuel cycle. Although hybrids are often purported a priori to pose
an elevated proliferation risk, this reactor breeds plutonium that could actually be more
proliferation-resistant than that bred by fast reactors. Furthermore, a novel method
(the “variable fixed source method”) can maintain constant total hybrid power output
as burnup proceeds by varying the neutron source strength.

As for engineering feasibility, basic thermal hydraulic analysis demonstrates that
pressurized helium could cool the pebble bed fission blanket with a flow rate below 10
m/s. The Brayton cycle thermal efficiency is 41%.

This device is dubbed the Steady-State L-Mode Non-Enriched Uranium Tokamak
Hybrid (SLEUTH). The purpose of this work is not any sort of elaborate design, but
rather the exploration of an idea coupled with corroborating numerical analysis. At
this point in the hybrid debate, viable conceptual designs are persuasive while intricate
build-ready designs are superfluous. This work conceives such a conceptual design,
demonstrates its viability, and will perhaps, incidentally, spur a profusion of pro-fusion
sentiment!
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1 The Fission-Fusion Concept

Fusion boasts a neutron plethora; fission copes with a neutron dearth. Fission requires
neutrons; fusion produces neutrons. This is why people talk about fission-fusion hybrids:
they couple a deficit with a surplus. D-T fusion reactions produce 14 MeV neutrons that
serve no purpose other than to breed tritium from lithium (through a primarily thermal
reaction!). These uncommonly-high-energy neutrons are essentially wasted. On the other
hand, fission reactions require neutrons and are limited completely and utterly by a delicate
neutron balance. So there is clearly some mutual benefit to exploit from these two branches
of nuclear engineering - the challenge is how to optimally configure the fission and fusion
components.

The geometry of a fission-fusion hybrid is usually constrained by the fusion component,
as the magnetic topology necessary to confine the plasma overrides any geometric constraints
in fission. Thus, the fission component conforms to the geometry of the fusion component
in such a way as to maximize the neutron fluence it intercepts. In the case of tokamaks, the
fission component is usually some sort of “blanket” coating the outer surface of the toroid.

It is essential to understand that the interaction between fusion and fission components
is not two-way but one-way. Fusion drives fission. Fusion produces neutrons, which drive
fission, while fission produces nothing that influences fusion. The procession of burnup
within fission component will not alter the fusion reaction, but any perturbation of the
fusion reaction will have a direct and immediate affect on the fission reaction. Thus, the flow
of information is exclusively from fusion to fission. Fusion is the master, fission the slave.

1.1 Hybrid History

This is not a new idea. Scientists began pondering hybrids little more than ten years after
they first achieved fission beneath those fabled bleachers in Chicago. To date, the only fission-
fusion hybrid actually constructed is the hydrogen bomb, first tested in 1952. Less excitingly,
the history of peaceable fission-fusion hybrids has consisted entirely of design proposals. Here
we will briefly outline some of the history.

1.1.1 Nascence

Lawrence M. Lidsky best chronicles the early evolution of the hybrid concept from its in-
ception in the early 1950’s until 1975 [34]. The concept of a power-multiplying blanket
surrounding a fusion reactor first arose from attempts to breed sufficient tritium to replenish
that consumed by D-T fusion. From this, the natural train of thought was to consider what
else such a marvelous 14 MeV neutron source could accomplish. People soon realized that
fissionable material in the blanket would have the effect of both multiplying and slowing the
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neutrons in order to facilitate tritium breeding from °Li (which occurs primarily at thermal
energies). Most of these very early studies proposed depleted uranium, which is ideally suited
for (very) fast fission. In 1955, J. D. Lawson published a report claiming that fast fission of
a 28U blanket could augment a tokamak’s power approximately fivefold.

Subsequently, for the remainder of the 1950’s and throughout the 1960’s, a host of elab-
orate designs burst onto the scene. There were proposals for aqueous liquid fuel (UO3-SOy)
circulating annularly about a stellarator. There were proposals for UF, salt doubling as
a coolant and a power-multiplier. There were proposals for thorium blankets doubling as
a breeders and power-multipliers. There were proposals for breeding blankets cooled with
lithium metal. There were proposals for graphite-moderated thermal blankets intended pri-
marily for breeding. Some designs in this litany were clearly more practical than others.
Many ignored such crucial considerations as corrosion and fission product buildup. See
Lidsky’s 1975 review paper for details and references for all of these [34].

Lidsky classifies fission-fusion systems into three categories: hybrid, symbiotic, and
augean. All three of these contain a fusion reactor and at least some surrounding fissionable
material. Hybrid systems contain fissile or fissionable material and produce power. Symbi-
otic systems contain fissionable material and utilize the fusion neutron source to breed fissile
material for pure fission reactors. Augean systems contain spent nuclear fuel and dispose of
waste through the transmutation of fission products or the fission of actinides. These three
categories overlap, as any fission-fusion system will accomplish each to at least some degree.
However, each fission-fusion system will likely tout only one of these as its primary mission.

1.1.2 Renaissance

The eminent physicist Hans Bethe became interested in fission-fusion hybrids and continued
to advocate them until the end of the 1970’s [40]. Subsequently, enthusiasm for hybrids
waned. Surprisingly, it was their least-touted augean mission of that revived them. Beginning
in the late 1990’s, woes of the Yucca Mountain political stagnation spurred renewed interest in
fast neutron sources to transmute high-level waste. However, this renaissance has blossomed
into studies with breeding or power-producing missions as well. At the Georgia Institute of
Technology, Professor Weston Stacey has led a series of hybrid design projects over the past
ten years culminating in the Subcritical Advanced Burner Reactor (SABR) [32]. Here at the
MIT Plasma Science and Fusion Center, Vincent Tang wrote a 2002 master’s thesis under
the auspices of Professor Ronald Parker analyzing a pebble bed blanket for ITER [22] and
went as far as to quantify temperature transients in loss of coolant accidents (LOCAs) [44].
He also investigated the viability of thorium tokamak blankets [39]. The University of Illinois
has also looked into the thorium blanket idea [41]. Beyond magnetic confinement, Lawrence
Livermore National Laboratory (LLNL) and the University of California at Berkeley have
conceived the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Reactor [31]. At the
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conclusion of this work, we will compare our conceptual design to those proposed by Stacey,
Tang, and LLNL.

Most recently, MIT Professors Jeffrey Freidberg and Andrew Kadak broached the hybrid
topic with a 2009 article in Nature Physics [46]. They concluded that the most effective
short-term (25-30 years) mission of hybrids is to transmute waste. The most effective long-
term (50-100 years) mission is to breed fissile fuel for pure fission reactors as natural uranium
reserves begin to run low.

A few months later, Freidberg chaired a conference entitled “Research Needs for Fusion-
Fission Hybrid Systems” in Gaithersburg, Maryland [21]. This produced a comprehensive
report on the current status of hybrid research and debate. This report identifies three
potential hybrids missions: energy production, fuel supply, and waste management. Note
that these correspond precisely to Lidsky’s prescient classification of hybrid, symbiotic, and
augean systems.

1.2 Present Limitations

The fission-fusion hybrid is a plausible solution for an existing set of problems, not (as some
would claim) a rogue solution that begs for a problem. Here we will outline the limitations
of both fusion and fission and articulate how hybrids could overcome or at least mitigate
them.

1.2.1 The Limitation of Fusion: Plasma Stability

Putting things together is harder than tearing things apart. To fission heavy atoms, the
atoms need only be stationary neutron targets. To fuse light atoms, the atoms themselves
must be in high-energy motion. This requires plasma, which we must confine. The great
challenge of fusion is simply to confine the plasma such that it is stable.

We will focus on magnetic confinement in the tokamak configuration. Tokamaks have two
distinct “modes” of operation: low confinement mode (L-mode) and high confinement mode
(H-mode). We will expound on these in Section 4.4, but for now we will state that H-mode
yields higher power densities while L-mode yields lower power densities. Unfortunately, H-
mode is also vulnerable to cantankerous instabilities called edge-localized modes (ELMs)
near the plasma “edge”. These ELMs are the bane of current fusion research. Operating in
L-mode would circumvent ELMs, but L-mode does not allow for large enough power gain to
constitute a reactor [7].

However, the addition of a fission blanket would multiply the fusion power such that the
hybrid system could operate in L-mode while still achieving a sufficiently high power gain.
We will show this with rudimentary physics in Section 1.3.1 and far more rigorously with
our 0-D tokamak model in Sections 6.3 and 6.4. We certainly do not claim that L-mode is
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any sort of panacea for fusion, but we do contend that it would ease certain constraints and
thus enhance the viability of fusion.

1.2.2 The Limitation of Fission: Criticality

This subtitle might seem strange to some readers. Criticality is not a limitation of fission
- it is precisely what makes fission possible! This is true if we take the narrow-minded
approach of considering only pure fission systems with no external neutron sources. In those
systems, criticality is clearly a constraint but not really a limitation. However, if we think
outside the box and take on a broader perspective of all possible fission systems (critical
and subcritical), we see that criticality is indeed a severe limitation on what fission can
accomplish. In a pure fission reactor, criticality dictates nearly everything - enrichment
level, flux shape, moderator choice, reactivity control systems, burnup level, fuel cycle, and
waste composition. Subcritical fission obviates all of these constraints.

Critics often claim that subcritical operation has no real advantage over critical operation
in terms of power production, because criticality accidents are not a major concern for pure
fission reactors. Light water reactors (LWRs) have negative fuel and coolant temperature
coefficients of reactivity. Most fast reactors have very small positive coolant temperature
coefficients but preponderantly negative fuel temperature coefficients. Loss of coolant acci-
dents (LOCAs) are much more ominous. This is all very true, and we accept that subcritical
operation offers only marginal safety improvements (although it does completely eliminate
the complexity and cost associated with reactivity control). However, subcritical operation
is not preferable due to safety - rather, it is preferable due to the numerous constraints it
lifts.

With subcritical operation, neither enrichment nor moderation is necessary. Only mate-
rials limit burnup and cycle time. As we will see in Section 7.3, it opens up the fuel cycle in
such a way as to allow for breeding tremendous quantities of fissile fuel.

Subcritical operation also facilitates transmutation of nuclear waste. The fusion neu-
tron source can bombard mixtures of actinides and fission products that are very far below
criticality. Additionally, a fission-fusion hybrid spectrum, which contains 14 MeV neutrons,
would transmute fission products and fission actinides more effectively than a typical fast
reactor spectrum. We will show this quantitatively in Section 7.6.

1.3 A New Conceptual Design

We have argued that fission-fusion hybrids could be mutually beneficial for both fission and
fusion, that they could obviate significant constraints and challenges for both. We now
propose a new conceptual fission-fusion hybrid design that takes advantage of these mutual
benefits. The primary mission of this design is to produce power, although we will also
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explore its potential to breed fissile fuel and transmute waste. Here we will outline its
distinguishing features.

1.3.1 Geometry and Fission Power Gain

Tokamaks are the most advanced, well-understood fusion devices. Although we will not
assume any specific tokamak design in this thesis, we will at least need to assume that the
fusion component is in fact some sort of tokamak. All the more specific properties of the
tokamak (size, geometry, magnetic field strength, etc.) will be free parameters. The fission
blanket will coat the tokamak surface. Figure 1.1 shows this very basic geometry.

Figure 1.1: A fission blanket (green) coats a tokamak. This is a very simple conceptual diagram.
Practically, the fission blanket would not coat the entire tokamak surface.

To show how a fission blanket could dramatically increase the power gain of a tokamak,
we need only to walk through some simple physics. In the D-T fusion reaction, the neutron
and a-particle carry 4/5 and 1/5 of the total energy, respectively. The a-particle is confined
by the magnetic fields and deposits its energy within the plasma. The neutron, however,
exits the plasma and deposits its energy in the blanket materials. As tokamak plasmas are
many orders of magnitude less dense than typical solids, it is reasonable to assume that the
neutrons never collide in the plasma.
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2H +3 H —4 He(3.5MeV) +1 n(14.1MeV) (1.1)

It is common to express the fusion power gain Qs as a ratio of the total produced fusion
power P to the total externally applied auxiliary power P,... Here all powers have units
of Watts.

total fusion power P

qus = (12)

total supplied auxiliary power P

Let us express fission power gain Qg as the ratio of the total fission power Py produced
in the blanket to the total power of all the D-T neutrons that enter the fission blanket.
Of course, not all the neutrons will enter the fission blanket. The fission blanket cannot
practically coat the entire tokamak, and many neutrons are needed for tritium breeding. We
will call the fraction of all D-T neutrons that enter the fission blanket 1, which will depend
on the geometry and materials of the particular device. Also, not all neutrons that enter
the blanket will spur fission, but Qs accounts for that. Now we can say that the total D-T
neutron power entering the fission blanket is (4/5)nPrs and write a simple expression for

Qﬁs-

total fission power Pss

Qfis (1.3)

~ total power of all D-T neutrons entering fission blanket B %nPqu

Now let us define Qpny1, as the total power gain for the entire fission-fusion device. The
total power produced has three components: the fusion power from a-particles, the fusion
power from neutrons that do not enter the fission blanket, and the fission power Pss. The
total power consumed is still just the tokamak auxiliary power Pyy.

%Pfus + %(1 - U)Pfus + Pﬁs
thb = 2

Some simple algebra yields various expressions for Qg in terms of Qps, Qrs, and 7.

(1.4)

Below are two of them, the first more intuitive and the second more beautiful. Note that
when Qgs = 1, Quy, = Qrus as if the tokamak were bare and had no fission blanket.

Qnyb = Qtus E + %(1 —n) + %nQﬁs:| (1.5)
Qnyb = Qrus E (n(Qss — 1) +1) + %] (1.6)

This is the crux of this thesis. We can clearly see that the fission blanket augments
the power gain of a pure fusion tokamak. The fission blanket multiplies the pure fusion
power gain by a factor that is linearly dependent upon the fission power gain. This means
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that for a given set of tokamak parameters, Quny, can be much greater than Qs such that a
relatively small L-mode tokamak could operate at high Quy1,. The main goal of this thesis is to
determine approximately how small such an L-mode tokamak could be while still producing
a high Quyb.

A fission blanket, which essentially augments the fusion power gain, could allow a fairly
small L-mode tokamak to achieve a power gain sufficient to operate as a reactor. So instead
of complicating the already difficult challenges of fusion with a fission blanket, hybrids could
actually simplify a major challenge of fusion by allowing for L-mode operation.

1.3.2 Pebble Bed Blanket

Due to the unusual nature of toroidal geometry, which is unheard of in fission design, conven-
tional cylindrical fuel elements would be an awkward choice. Instead, we opt for small fuel
pebbles (spheres), which can be “poured” into any odd-shaped volume. Given our geometric
constraints, pebbles are the natural choice and perhaps the only feasible choice.

However, while the choice of fuel shape might be straightforward, the choice of fuel
composition is more open-ended. Pure fission pebble bed reactors use numerous tristructural-
isotropic (TRISO) particles embedded within graphite matrix pebbles. Each TRISO particle
is coated with silicon carbide to retain fission products, and the graphite matrix is impervious
to melting.

As we discussed above, a larger fission power multiplication Qg would allow for a smaller
fusion power multiplication Qy,s, which is our goal. Thus, we will choose UO5 pebbles over
graphite matrix pebbles due to their significantly higher power density (which naturally
corresponds to higher power multiplication). There are a number of engineering concerns
with this choice, which we will discuss in Section 8.1. We will compare and contrast UO,
pebbles with graphite matrix pebbles in Section 9.1.1.

1.3.3 Subcritical Operation

We have already lauded the advantages of subcritical operation. In short, criticality accidents
are impossible (as long as keg is not near 1), and no traditional criticality control systems
(such as control rods or neutron poison injection) are necessary. The whole science of point-
kinetics and delayed neutrons is irrelevant.

In our introductory statement, we emphasized that fusion drives fission. Indeed, the
fission power level is proportional to the tokamak power level. We can control the fission
reaction indirectly through control of the fusion reaction.
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1.3.4 Fast Spectrum

Since we have no desire to achieve criticality, there is no reason to moderate neutrons in order
to exploit the 1/v region of the 23U fission cross-section. We are free to shape our spectrum
however we please. Although our primary mission is power production, we would still like
to leave our options open in terms of fissile fuel breeding and waste transmutation. Ss we
will see in Section 7.6, fast spectra are likely preferable for transmuting hazardous fission
products. They are also superior for fissioning actinides that are fissionable (as opposed to
fissile). The very fast 14 MeV neutrons are precisely why fission-fusion hybrids are touted as
prolific waste transmuters, and it would be a shame to weaken that argument by softening
the spectrum. We prefer the spectrum to be hard.

Since we wish to avoid moderation, we will select helium gas as the blanket coolant.
This is also the coolant of choice (along with molten salt) for pure fission pebble beds,
so its thermal hydraulic aspects have already been analyzed in this geometry. Although
supercritical COy has the potential to increase Brayon cycle efficiency, we will stick with
helium because it is inert and virtually transparent to neutrons.

1.3.5 Natural or Depleted Uranium

A lack of concern for criticality also leaves us no compelling reason to enrich uranium.
Fission-fusion hybrids could run on natural or depleted uranium. At 14.1 MeV, the fission
cross-sections for ?*U and 23U are not significantly different. Let us examine them.

Figure 1.2 shows the total 23®U cross-section with constituent parts as a function of
energy. Fission virtually never occurs below approximately 1.3 MeV, and the fission cross-
section increases monotonically with energy.

Figure 1.3 shows the same data as Figure 1.2, but this time the total neutron cross-section
is normalized to 1.0. We can interpret this plot as showing the probability of each type of
neutron interaction (given that a collision occurs) as a function of energy. We have also
overlaid the fission x(E) spectrum and the 14 MeV neutrons in red. Although fast reactors
(and all reactors, really) will fission ?**U to some extent, it is the 14 MeV neutrons that
make fissioning 2**U worthwhile. We will see in Section 3.2 that the initial generation of
fusion-born 14 MeV neutrons actually fissions enough 2*¥U to produce a larger number of
second generation fission-born neutrons. Also, the 14 MeV neutrons also induce (n,2n) and
(n,3n) reactions on 23U that complicate the uranium transmutation-decay chains (and thus
the whole fuel cycle) in ways that pure fission neutron spectra do not. We will analyze this
in Section 7.3.

Figure 1.4 shows for the same information for 22°U. Although it is fissile, it will still fission
more readily in the presence of 14 MeV neutrons than in a typical fast spectrum.

As we will show conclusively in Section 7.3, natural uranium (0.7% 235U) is sufficient to
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yield significant power multiplication due primarily to the fissioning of 238U with 14 MeV
neutrons. Thus, we have no need for 2°U. Even pure ?**U would be sufficient. Although we
will perform our quantitative analysis with natural uranium, our design would not change
in any significant way were we to select depleted uranium (0.2% - 0.4% 235U) instead.

barns
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Figure 1.2: The total 23%U cross-section showing constituent parts as a function of energy. The
total cross-section is in red.
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Figure 1.3: Normalized constituent parts of the total 238U cross-section as a function of energy.
Here the total cross-section is always 1.0. We have outlined the fission x(F) spectrum and the 14
MeV fusion-born neutrons in red. 233U is fissionable.



A Fission-Fusion Hybrid Reactor

(N, 3N}

1 T T T T
09k .
08k elastic scattering .
07+ _
Lostr -
8
5]
b
=] 05 -
| =
=
g
E o4t 3
03k i . -
inelastic scattering °
{n,n"
02
01r (Y :
fission
o] 1 1 1 1
-15 -1 05 0 05
log{MeV)

23

Figure 1.4: Normalized constituent parts of the total ?3*U cross-section as a function of energy.
Here the total cross-section is always 1.0. We have outlined the fission x(F) spectrum and the 14

MeV fusion-born neutrons in red. 23°U is fissile.
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1.3.6 Tritium Breeding

Tritium is a precious and hazardous commodity. Since it is difficult to obtain and decays
with a half-life of 12.3 years, we must produce just as much of it as we consume. Since it
is hazardous, we must not produce much more of it than we consume. So for every triton
consumed in a D-T fusion reaction, we must breed one triton in the blanket. Thus, our
fission blanket must contain not only uranium fuel but also a tritium-breeding material. The
only viable choice is lithium, which is naturally composed of 92.5% "Li and 7.5% °®Li. Both
isotopes breed tritium, but %Li breeds much more than “Li. We will discuss these reactions
and show how to meet the tritium breeding requirement in Section 3.

1.3.7 Shielding

We must note that the superconducting magnets (which must be exterior to the fission
blanket) can tolerate very little neutron fluence. The limit for NbsSn magnets is 3 x 102
n/m? [5]. Thus, we will need to incorporate an effective shield between the fission blanket
and the magnets. This will increase the required total blanket thickness

1.4 Mission

The primary mission of this fission-fusion hybrid is to produce power, which could be used for
electricity, hydrogen production, or any other suitable purpose. Our goal is to maximize the
power multiplication of a natural uranium blanket such that we can minimize the physical
size of a steady-state L-mode tokamak while still achieving a net hybrid power gain worthy of
a commercial reactor. Steady-state L-mode operation is advantageous for plasma stability,
and smaller size is economically advantageous. Subcritical operation is advantageous for
fission, primarily in the context of fuel cycle. It obviates enrichment and allows for extremely
high burnup through 23U fission. Fission-fusion hybrids can extract more than an order of
magnitude more energy from the world’s uranium resources than pure fission reactors. We
will dub this conceptual design the Steady-State L-Mode Non-Enriched Uranium Tokamak
Hybrid (SLEUTH).

Plausible alternative missions include (1) transmuting long-lived waste products in order
to reduce the necessary storage capacity of geologic waste repositories and (2) breeding fissile
fuel for pure fission reactors to solve the future fuel supply problem. Although these two
alternative missions do not constitute our main focus, we will analyze them as well and
demonstrate that they are indeed worthy pursuits.
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1.5 Scope and Outline

We will accomplish our mission by creating two models: a Monte Carlo fission blanket
model coupled with a 0-D tokamak fusion model. We will develop an original Monte Carlo
simulation in MATLAB that determines fission power and tritium breeding given a neutron
source in the plasma. Section 2 describes this methodology in detail. We will perform some
basic tests to ensure that it matches our intuition, and we will benchmark it with MCNP.

In Section 3, we will optimize various parameters (such as blanket layer thickness and
lithium enrichment) to maximize the fission power multiplication. We will also perform
detailed neutronics analysis to show that 238U alone can substantially multiply the fission
power.

In Section 4, we will turn to fusion and describe our 0-D tokamak model.

We will demonstrate how this model applies to pure fusion reactors in Section 5. This
will cultivate intuition and understanding of how our 0-D model works. We will repeat some
results of earlier work for instructive purposes.

In Section 6, we will couple our fission and fusion models and show quantitatively how
a power-multiplying fission blanket allows for steady-state L-mode operation with relatively
small physical dimensions. This will be the crux of our work. We will specify two designs: a
steady-state L-mode hybrid the same size as ITER and a minimum-scale steady-state L-mode
hybrid dubbed SLEUTH.

Although we do not perform a blanket burnup calculation, we propose a novel method for
maintaining constant hybrid power as burnup proceeds. We will perform fuel cycle analysis
to show that this natural uranium hybrid could be a prolific breeder of fissile fuel as well as
an excellent transmuter of fission product waste. We will also touch on the possibility of a
thorium cycle as well as some non-proliferation implications.

Finally, we will justify the engineering feasibility of our fission blanket through basic
thermal hydraulic analysis. Although this is certainly not our focus, it is essential that we
at least demonstrate that the general tokamak hybrid configuration is thermally practical.
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2 Fission Blanket Monte Carlo Code

To perform reactor physics analysis, we develop a neutron transport Monte Carlo code
from scratch. This produces criticality and tally results that are very consistent with the
Monte Carlo N-Particle (MCNP) Transport Code. We will explain significant aspects of the
methodology, delving into more or less detail as we feel so inclined.

It is true that MCNP is capable of performing all the analysis that our new code performs.
We chose this arduous route for a number of reasons, some practical and some preferential.
First, we tailored this code specifically for this configuration, and so the structure is efficient.
Second, this code expedites data analysis, because we have written it entirely in MATLAB.
The data is simple to extract, and the code is simple to modify. It is flexible. Third,
the overarching reason was to acquire a deep understanding of reactor physics and Monte
Carlo methods as well as particular appreciation for this problem. Anyone can run MCNP
with minimal grasp of the underlying physics, but developing a code from scratch cultivates
insight.

Our Monte Carlo code is completely analog except for fission and (n,xn) reactions. We
can, however, introduce limited variance reduction through fission, which we will discuss
below.

2.1 Path Length Sampling in Toroidal Geometry

We must solve the problem of neutron path length sampling in toroidal geometry, which is
not trivial. Here we will develop from scratch and test our sampling algorithm.

2.1.1 Flight Distance in Toroidal Geometry

Figure 2.1 shows the basic toroidal geometry with which we model the tokamak configuration.
This is identical to the geometry in our 0-D fusion tokamak model. R is the major radius,
and a is the minor radius. The torus has an elongation s so that its poloidal cross-section
is an ellipse. ® is the toroidal angle, and © the poloidal angle. We can write a sample
expression for a toroidal surface in cartesian (x,y,z) coordinates.

2 2\ 2

(V7 () - e

The problem of neutron path length sampling boils down to solving the distance from a

given point to a toroidal surface in a given direction. When a neutron is born or scatters,

it has a known position (xg,y0,20) as well as a known direction that we can easily sample.

If we define the unknown quantity s as the distance such a neutron must travel to intersect
the toroidal surface, we can specify the (z,y,z) location of that intersection point.
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Figure 2.1: Simple toroidal geometry. R is the major radius and a the minor radius. The torus
has an elongation x so that its poloidal cross-section is an ellipse. ® is the toroidal angle and ©
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2.4
Here (fiy,/4,/t.) are the unit vector components of the neutron’s direction, and they are
simple to express in terms of 6 and ¢.

[z = sin @ cos ¢
[y = sin @ sin ¢

i, = cost 2.7)

We use this notation for elegance and algebraic convenience. p, is ubiquitous in neutron

transport theory, usually written as just p. To avoid confusion, we will always use (0,¢) for

a neutron’s direction in spherical coordinates and (0,®) for the fixed toroidal coordinates
shown above in Figure 2.1.

27
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We can combine Equations 2-4 with Equation 1 to yield a quartic equation in s with
coefficients A, B, C, D, and E.

As* + Bs* +Cs* + Ds+ E =0 (2.8)

Determining the five coefficients requires a bit of convoluted algebra, but the result is not so
ugly. The three parameters L, M, and N naturally arise and distinguish themselves. L is a
function of only the neutron’s initial position squared (z2,y2,22) with units of length squared.
N is a function of only the neutron’s initial direction squared (,ui,uz,uz) and is unitless. M
is a function of only the intermediate quantity (zofs,Yofty.204t-) With units of length.

2 2 2 .2 202
L=R"—a +:c0—|—y0+<—> (2.9)
K
Zofbs
M:2x0u1+2y0,uy+2< ?:; ) (2.10)
_ 2 2 %
N = Mo +:U’y + (?> (2.11)

Now we can compile L, M, and N to express the five quartic coefficients. We will not
attempt to impart much intuition here, although it is interesting to note that 3 + y2 = r2
and 2 + p2 = 2 if we define r* = 2% 4 y* and p, = sin6.

A= N? (2.12)
B=2NM (2.13)
C =2NL+ M*—4R* (12 + 112) (2.14)
D = 2ML — 8R? (xots + Yofiy) (2.15)
E=L*—4R* (2 +y3) (2.16)

Now that our equation is in standard form, there exists a plethora of techniques for
solving it. MATLAB has a function roots that solves any polynomial in standard form with
matrix eigenvalues. However, as we will show in Section 3.3.4, roots is not optimal for our
purposes. Instead, we will employ Ferrari’s method, conceived by the Italian mathematician
Lodovico Ferrari in the 16" century. This standard widely-known method can solve any
quartic equation with simple algebraic relationships, which constitute a mere 18 lines of
code (see Appendix B source code).

That the expression is quartic in s is intuitive, because a line can intersect a torus at a
maximum of four points. If we assume that a randomly sampled line will never be exactly
tangent to the torus, then we can say that an infinite line will always intersect the torus
at zero, two, or four points. This translates into zero, two, or four real values of s. In the
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context of neutrons, (zo,y0,20) and (fiz,fty,p1.) define an infinite neutron path. Positive real
values of s represent distances the neutron must travel forward along (p,1,,1t-) to intersect
the torus. Negative real values of s represent distances the neutron would travel backward
along (—fty,—fy,—ft-) to intersect the torus (if that were its direction). Naturally, we only
care about the positive real values of s. If the neutron begins inside the torus, there will be
either one or three intersection points. If the neutron begins outside the torus, there will be
zero, two, or four intersection points. Figure 2.2 illustrates this nicely.

v.

-..-‘.."'(lle; lvlyl liz)

. (X, Yo, Z
‘( o Yor Zo)

o,

...-..,._' (_ I“lXI - l-ly; - uz)

“a

Figure 2.2: A toroidal cross-section of a torus showing a neutron’s initial position (z¢,y0,20) and
direction (fig,py,pt-). Here all four solutions for s are real, three positive and one negative. Since
the negative solution corresponds to backward motion (—fu;,—py,—p), we are only interested in
the positive solutions.

2.1.2 Sampling Algorithm

Now that we have shown how to determine s, the distance a neutron must travel to intersect
a torus, let us specify the full path length sampling algorithm. Our fission-fusion hybrid
model consists of concentric tori. Referring back to Figure 2.1, the parameters R, a, and
k fully define an elongated torus. Our tori all have the same values R and x but different



30 Mark Reed

values of a. The poloidal cross-sections of concentric tori are concentric ellipses.

Suppose there are n concentric tori. These n tori enclose n finite regions: one solid toroid
and n — 1 annular toroids. Each of these regions has a different total neutron cross-section
Y. If each of these regions were infinite, we could sample the neutron path length like this,
where ¢ is a random number on [0,1].

_ ¢ (2.17)

Sco
2t

Now the basic algorithm proceeds like this:

1. Given an initial (2¢,y0,20) and (pz,py.pe-) for a neutron, solve the quartic equation for
all n tori. This will yield 4n values of s.

2. Discard imaginary and negative s values.

3. Sort all positive real values of s from smallest to largest, keeping track of which tori
each s value corresponds to.

4. Sample s.,1 with X4 for the initial region that (x,y0,20) falls within. Here subscripts
denote successive regions defined by successive tori intersections.

5. If 551 is less than the smallest value s;, the neutron travels a total distance s, ; and
stops in region 1. The sampling is complete. If s, is greater than s, sample s, in
region 2. If s, is less than s, — s1, the neutron travels a total distance so — $1 + Soo2
and stops in region 2. If s, is greater than s, — s1, sample s.3 in region 3. Keep
repeating this for all s values in ascending order.

6. If the neutron reaches the outermost torus, we kill it. In reality, a neutron could exit
the outermost torus and subsequently reenter it. However, given that the outermost
region is a shield, we will assume that the reentrant neutrons are negligible. Of course,
neutrons often exit and reenter the inner tori.

Here is a short code segment that shows the heart of this algorithm. Here points contains
the s values, and path contains the segment length of s within each region so that path(1)
= s; and path(2) = s — s1. reg contains the region index associated with each segment,
and shell contains the index associated with each shell. sigma t(n) is ¥; in region n.
points, path, reg, and shell have the same length. The rest of this code segment should
be self-explanatory. Figure 2.3 illustrates this algorithm.

pathlength_tot = O0;
for m = 1:length(points)



A Fission-Fusion Hybrid Reactor 31

if (reg(m) == 1)
% in plasma
pathlength_tot = pathlength_tot + path(m);
else
pathlength = -log(l-rand)/sigma_t(reg(m));
if (pathlength < path(m))
region = reg(m);
pathlength_tot = pathlength_tot + pathlength;
break;
else
pathlength_tot = pathlength_tot + path(m);
if (shell(m) == 5)
region = 6;
break;
end
end
end
end

Note that we do not sample s, in region 1. In our hybrid model, the innermost torus is
filled with plasma, which we approximate as a vacuum. A typical D-T plasma ion density
for ITER is 7.5x 10 m™2. At 1 MeV, this corresponds to a neutron mean free path of
about about 59,000 km, which is over 4.6 times the diameter of the earth. At 14 MeV, the
mean free path is about 152,000 km, approximately 40% of the distance from the earth to
the moon. Since we currently have no plans to build a device quite that large, we can safely
assume that no neutrons collide in the plasma.

2.1.3 Tokamak Wall Neutron Flux

Now that we have specified our geometry algorithm, it makes sense to test it independently
of other modules in our code (such cross-sections, scattering, and fission). Conveniently, our
model of neutron transport through the plasma is purely geometric - no collisions occur. We
can determine the 14-MeV neutron flux at any point on the toroidal plasma surface. This
constitutes the first step in each neutron history for our full Monte Carlo simulation.

1. Sample fusion sites uniformly in the plasma volume using rejection sampling. In real-
ity, the fusion power density is not quite spatially uniform, but this will be a decent
approximation for our purposes. Each 14 MeV neutron is emitted isotropically from
the fusion reaction.
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Figure 2.3: A poloidal cross-section of concentric tori showing neutron initial positions, directions,
and intersection points with the tori. Each region between tori has a different total cross-section
Y. If the quartic solution s, is the distance to a neutron’s n'” intersection point, then the total
distance that neutron would travel from its (n — 1) intersection point to its n'” intersection point
(if no collisions occur) is s, — s,—1. For convention, sy = 0. We kill neutrons at the outermost
torus.

2. Given the initial position and initial direction, solve the quartic equation for the point
of when the neutron first intersects the plasma surface.

3. Tally the neutron’s direction (#,¢) in association with that intersection point (©,®).

4. Transform and condense the intersection points according to toroidal symmetry. For
example, the torus is axisymmetric in ®, so the neutron’s directions at different ®
values must be transformed to be consistent relative to the surface the neutron’s path

intersects.

Of course, the actual flux at the plasma surface will include more than just the first
intersections of the fusion-born neutrons. Many fusion-born neutrons will travel back into
the plasma after leaving it, and many fission-born neutrons will also traverse the plasma.
However, this 14 MeV neutron flux is still useful for testing purposes, as it is easy to judge
whether the distributions accurately reflect toroidal geometry.



A Fission-Fusion Hybrid Reactor 33

Figure 2.4 shows the scalar neutron flux at the toroidal plasma surface as a function of
poloidal angle ©. The ratio of flux at the outermost point to flux at the innermost point
is about 2, which is consistent with toroidal geometry in that much more of the plasma is
“visible” to points on the outboard edge than to points on the inboard edge. See Figure 2.9 for
an illustration of this. There is also a maximum flux that occurs at approximately © = 1.2.
These two quantities of interest, the flux ratio and the angular location of maximum flux,
vary with geometric parameters. Figure 2.5 shows the flux ratio as a function of aspect ratio
R/a. As R/a grows very large, the toroid resembles a cylinder, and the flux ratio approaches
1. At low R/a, the ratio grows rapidly, because a greater portion of the toroid volume is
“visible” to a point on the outboard edge. Figure 2.6 shows the flux ratio as a function of
elongation x. The flux ratio has only a weak dependence on this. Figure 2.7 shows the © of
maximum flux as a function of elongation. When x = 1, the tokamak’s poloidal cross-section
is a circle, and the maximum flux occurs at the outermost point © = 0. Thus, Figure 2.4
would be a continuously decreasing function for k = 0. As k increases, the angle of maximum
flux approaches 1.2 radians. All these results match our geometric intuition and verify that
we have correctly derived and computed our quartic solutions.

We can proceed further by computing the angular neutron flux at the toroidal surface at
certain unique points of interest: the outermost point (2% + y? = (R + a)?), the innermost
point (22 + y? = (R — a)?), and the topmost point (z? + y* = R? 2z = +ka). We compute
all these distributions assuming the standard ITER parameters of R/a = 3.1 and k = 1.75.
Figures 2.8, 2.10, and 2.11 show the neutron flux distribution as a function of standard fixed
spherical coordinates 6 and ¢ at these three points of interest. The azimuthal ¢ distributions
at the outermost and topmost points exhibit Bactrian camelback shapes. These shapes
arise not from the barren steppes of central Asia but from simple geometry. These angular
distributions are really nothing more than muddled reflections of how much toroidal volume
is “visible” in each direction from the surface point under consideration. See Figure 2.9 for an
illustration of this. Since the practical purpose of these plots is to ensure that our numerical
solutions match our intuition, it is sufficient to grasp how the general shapes arise from
geometry.

A naive way to interpret the scalar distribution in Figures 2.8, 2.10, and 2.11 would be to
suppose that the relative flux magnitudes at each poloidal angle are precisely proportional
to the total plasma volume that is “visible” from that point. While the “visible” concept
provides general intuition, it is not actually precise. Fusion neutrons that are born far from
a surface point are less likely to hit the close vicinity of that surface point than neutrons
born closer. Since fusion reactions produce neutrons isotropically, the probability that a
fusion-born neutron will hit a small area dA on the plasma surface is dA/r?, where r is the
distance between that small area and the fusion reaction location. Thus, if we desire to
calculate neutron scalar fluxes based on “visible” volumes, we must weight the differential
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volume element dV with some factor that depends on distance.

Nevertheless, computing volumes “visible” to a point on a torus is still useful in that it
shows us the volume of plasma that contributes to the neutron flux at that point. Let us
begin with the innermost torus point defined by © = 0 or 2%+ 4? = (R — a)?. We can define
total toroidal volume “visible” to this point as the toroidal volume on one side of the plane
r=R-—a.

Slicing tori with planes is something people have thought about for a while, even predating
contemporary bagel shops. In fact, there exists an entire taxonomy for the various quartic
curves that comprise intersections of tori and planes. The intersection of a torus with any
plane is a toric section. The intersection of a torus with a plane parallel to the s axis is
a spiric section. Figure 2.12 illustrates various spiric sections. The unique spiric section
formed by the z = R — a plane is shaped like a figure-eight. We could also rightly call it a
lemniscate. This is the spiric section that bounds the toroidal volume that is “visible” to the
innermost point, which is z > R—a. For the dimensions of R/a = 3.1 and xk = 1, this volume
is is about 1/4 the total plasma volume. We determine this value by first determining spiric
sections as a function of z and then integrating the areas enclosed by those spiric sections
from z = R —a to 2z = R+ a. We could also determine the plasma volume “visible” to the
outermost point by evaluating other spiric sections. The ratio of the volumes “visible” to
the outermost and innermost points is approrimately the ratio we determined with Monte
Carlo in Figures 2.5 and 2.6. To analytically evaluate this ratio precisely, we would need
to introduce the convoluted distance weighting factors discussed above, but we will gladly
relegate that effort to a future study.

2.1.4 Quartic Solution Comparison

We have already described how to convert neutron path length sampling in toroidal coordi-
nates into a standard quartic equation. We have also stated that we employ Ferrari’s method
to solve it. However, it is worth comparing the performance of our direct implementation of
Ferrari’s method to reputable polynomial solvers.

MATLAB contains the built-in function roots, which computes the roots of any poly-
nomial in standard form. roots does this by solving eigenvalues of a companion matrix.
While this method might be superior for polynomials of higher degree, it is inferior to a
direct implementation of Ferrari’s method for quartic polynomials. Figures 2.13 and 2.14
show CPU runtime analyses for our tokamak neutron flux Monte Carlo code and our entire
hybrid Monte Carlo code, respectively. Ferrari’s method reduces the runtime of our entire
hybrid Monte Carlo simulation by about 27%, which is delightful.

The only drawback to an algebraic implementation of Ferrari’s method is that it intro-
duces rounding error. This is a problem for neutrons that just barely graze any of the toroidal
surfaces. Their paths are very nearly tangential to the tori. This causes some quartic solu-
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tions to be very slightly real or very slightly imaginary to the point where it is difficult to
resolve whether the solution is truly real or only real due to rounding error. We can intro-
duce tolerance thresholds, but with millions of flight paths, the error magnitudes will always
overlap with the actual values in a few cases. Thus, we must introduce error trapping. If a
neutron path’s intersections with successive tori becomes out-of-order or irrational in some
other specific way, we immediately kill that neutron. Fortunately, this only occurs a few
times for every ten thousand source neutrons. roots does not exhibit this problem at all,
but we judge that the runtime advantage overrides this issue.

2.1.5 Cylindrical Comparison

It is common practice to model a tokamak as a cylinder, which is most accurate for large
aspect ratios. This is the approach Vincent Tang took in his 2002 master’s thesis [22].
We have chosen to implement the full toroidal geometry. While there is no question that a
toroidal model is be more accurate than a cylindrical model, it is worth some time to examine
how much more accurate it is. Solving quartic equations in toroidal geometry is much more
computational expensive than solving quadratic equations in cylindrical geometry, and it is
important to ask whether the gain in precision is worth the computational expense.

Since we used elongated tori in our toroidal model, we will use elliptic cylindrical shells
in our cylindrical model. In this way, a radial cross-section of our cylinder will be identical
to a poloidal cross-section of our toroid. We can define the elliptic cylinder as

2+ (%)2 = ¢ (2.18)

We can follow the same general procedure as in toroidal geometry to derive expressions for
the three coefficients in a standard quadratic equation As? 4+ Bs + C = 0.

A=+ (%)2 (2.19)
B =2 |aon, + 25| (2.20)
C =12+ (%)2 —a? (2.21)

Now we can use the same basic toroidal geometry algorithm to determine neutron flight
paths, except that now there are only two solutions instead of four. Figure 2.15 shows the
scalar flux as a function of polar angle. The maximum flux occurs at the elongated end
of the ellipse. That this flux distribution is not flat utterly debunks any assertion that
“visible” plasma volume is an accurate predictor of neutron flux. In an elliptic cylinder, the
entire plasma is visible to every surface point. Yet the distribution is very far from flat due
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to distance weights of the form 1/r? as discussed in the previous section. Of course, the
distribution s flat for a circular cylinder (k = 1) due to symmetry.

In order to test cylindrical geometry in our full hybrid model, we replaced our quartic
solver method with this quadratic solver method while keeping shell radii all the same.
The total fission and tritium breeding tallies were not substantially different (within 10%)
than in the case of ITER aspect ratio (R/a = 3.1). However, while a cylindrical model
might yield very approximate values averaged throughout the entire device, it does not
yield accurate values in localized regions of the hybrid blanket. Comparing Figure 2.15
with Figure 2.4 shows that toroidal geometry yields many more fission and tritium breeding
events in the outboard blanket than in the inboard blanket, while cylindrical geometry yields
equal values on both sides. This consequence of the toroidal model is important in terms
of burnup, because the inboard blanket will need to be replaced less frequently than the
outboard blanket. Since the inboard blanket would be much more difficult to replace, this
is advantageous. We conclude that although cylindrical geometry is a decent approximation
in terms of cumulative values, it does not sufficiently capture spatial dependence.

2.2 Monte Carlo Methodology

Now that we have exhausted geometry concerns, we will turn to the more generic aspects of
neutron transport Monte Carlo, including cross-section evaluation, scattering, and fission.

2.2.1 ENDF Cross-Sections

We employ cross-section data from the Evaluated Nuclear Data File (ENDF). To evaluate
a cross-section, we perform a binary search of energy values and select the corresponding
cross-section value. In order to optimize our code performance, we align all cross-sections on
the same set of energy values, approximately 20,000 in number. In this way, we only need to
perform one binary search per collision. With a thermal neutron spectrum, the temperature
dependence of resonance broadening would be a major concern. However, our spectrum is
fast, and so the effects of this will be negligible.

2.2.2 Elastic Scattering

In any Monte Carlo transport simulation, when to approximate scattering (in the lab frame)
as isotropic is always an important question. Here will take an in-depth look at the angular
distribution of elastic scattering. It is common knowledge that elastic scattering is virtu-
ally isotropic for heavy nuclei but quite anisotropic for light nuclei. For hydrogen, elastic
backscattering is not even theoretically possible. However, it is instructive to perform some
analysis here to quantify how heavy a nucleus must be for scattering off it to be considered
isotropic.
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Let us begin with energy. The standard probability distribution for energy shift P(E —
E') is

L aF <E <E

P(E = E') = { (-a)B (2.22)

0 0< F' <aF
Here o = (A —1)?/(A + 1)? as usual, where A is the nuclide mass number. Given a certain
lab frame energy shift E}/FEp, we can conveniently derive the scattering angle in center
of mass coordinates, where everything is isotropic. The standard relationship between lab
frame energy shift and center of mass scattering angle is

By _(+a)+(1-a)ue
E;, 2

Here p = cos 6 as usual, and subscripts L and C denote lab and center of mass coordinates.

(2.23)

So once we sample the energy shift, we can quickly determine ¢, which will always be evenly
distributed on [-1,1]. However, since we are really only interested in p7,, we must employ the
law of cosines to relate scattering angles in the two frames.

sin 90

tanf, = ———— 2.24
anvL 1/A+ cosfc (224)

Now we have fully specified the sampling process for ., which is nothing new. Of course,
we always sample the azimuthal angle ¢ uniformly on [0,27]. To develop intuition for how
P(py) varies with A, we can run a simple Monte Carlo simulation to determine P(uy) for
various values of A. Figure 2.16 shows this for A = 1, 4, 16, and 56. Obviously, elastic
scattering for 'H is very anisotropic. Backscattering is not even possible. As A increases,
the scattering becomes more isotropic. For °°Fe, the scattering is nearly isotropic. These
distributions are well-known, and they are effective in providing insight into isotropy.

However, eyeing distribution shapes is quite arbitrary, and a much better measure of how
isotropic scattering is would be the quantity P(uy, = 1)/P(ur = —1), the ratio of forward
scattering to backward scattering. If this ratio is close to 1, the scattering is isotropic. If it is
much greater than 1, the scattering is anisotropic. There are a number of ways to calculate
this ratio as a function of A, but we will proceed with our own derivation. Since P(uy) and
P(uc) are the same distribution of two related variables, it is a mathematical fact that

P(pr)dpr = P(uc)dpc (2.25)

Now we know that P(uc) is a constant, because scattering is always isotropic in center
of mass coordinates. Its value is 1/2 on [-1,1]. So we say with confidence that P(ur) is
proportional to duc/du. Now we can reexamine our relationship between py and pe and
express it free of trigonometric functions to avoid phase and range ambiguity.
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1 — 2 1— 2
ViZp_ vi-pe (2.26)
fL 1/A+ pe
Now let the left side of this equation be f(ur) and the right side be g(uc). Since f and g
are equal, we can express duc/dug as

d df /d
dur  dg/dpc
For the sake of showing the convoluted explicit expression for P(uyz), here it is.
L VI
1d 1 —u2
dpe _ Vioe M (2.28)

Plu) = = -
(hz) 2dpy, 2 i A

C
(1/A+pc)\/1-p3 — (/Atnc)?

Of course, to practically evaluate this, we need to replace uc with puc(pr), which we can
solve numerically. We can also express this more elegantly in terms of 6, and 6.

1 [sin 90} [cot 0, + tan GL] (2.20)

Plug) = ~
(1) 2 | sinfy | |cotbc + tan by,

Although A no longer appears here directly, it is here implicitly in that A is necessary to
convert between 67, and fc. A bit more messy algebra and trigonometry can yield P(u) as
a function of only p; and A.

2
1 <,LLL—|—\/,U%+A2—1>
EY Ry

This is the standard form that appears in some new reactor physics textbook (such as

P(pr) = (2.30)

Applied Reactor Physics by Alain Hebert [32]) but is surprisingly absent from many older
ones.[32]. This satisfies Equation 2.25.

For the raw pleasure of it, we can now generate a surface plot of P(uz) as a function of
A. Figure 2.17 shows this surface, which is consistent with its four slices in Figure 2.16. We
can discern how the shape of P(u) smoothly evolves as A increases.

We must now painfully avert our eyes from the this mesmerizing surface to continue with
the task at hand - quantifying P(ur = 1)/P(ur = —1). The difficult way to do this is with
Equation 2.28. The limits are necessary, because df /du;, and df /duc both approach zero at
-1 and 1.

P( 1) i Zﬂc
nr = pr—1 HL
= 2.31

pr——1 e
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However, it is much more efficient to simply evaluate Equation 2.30, which yields a very
elegant result.

Plup=-1) [(A-1\>
Plur = 1) _(A+1) -« (2:32)

That the ratio of the probability of backward scattering (dp; about p;, = -1) to the prob-
ability of forward scattering (du; about p = 1) is « should not be terribly surprising. «
arises from simple collision kinematics, and « is also the ratio of the final and initial neu-
tron energies when p; = puc = —1. This is an interesting and instructive way to define a,
although few (if any) reactor physics texts touch on it.

Figure 2.18 shows P(u;, = 1)/P(ur, = —1) = « as a function of A from A = 4 to 200.
The ratio becomes less than 1.1 at A ~ 50. However, we will require that the ratio be less
than 1.05, which occurs at A ~ 100. Thus, we will treat all elastic scattering collisions with
A > 100 as isotropic and collisions with A < 100 as anisotropic.

Now that we have quantified isotropy and chosen a reasonable boundary between isotropic
and anisotropic scattering, we should explain how we transform angular coordinates in the
case of anisotropic scattering. In isotropic scattering, we can easily sample the post-collision
angles independently of the pre-collision angles. In anisotropic scattering, we can only sample
the angle shifts, and then we must transform those shifts into our fixed angular coordinate
system. We can derive the mathematical relationships that define such a coordinate trans-
formations from rotation matrices, but we will not delve into that here. The manual for
PENELOPE, an electron and photon transport code, explains this very well [27]. We will
simply write it down. Let p and ¢ represent the sampled angular shifts.

1— 2

M2 = g1 fb + ﬁ(/flml/ﬁzl COS (b — Hy1 sin (b) (233>
M2l
1— p? )
[hy2 = Hy1ft + W(Nyl;uzl COS ¢ + flp1 SN P) (2.34)
z1
e = paagt — (1= 2)(1 = i) cos & (2.35)

2.2.3 (n,xn) and (n,a) Reactions

There are a number of interactions that we must model very approximately, in far less intri-
cacy than elastic scattering. First let us consider (n,xn) reactions, in which a nucleus absorbs
a neutron and subsequently emits at least two. In our set of hybrid blanket materials, we
only encounter (n,2n) and (n,3n) reactions of significant magnitude. Since this is not a scat-
tering interaction, the neutrons are emitted isotropically. We do not kill or split the particle
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but simply increase its weight by x. Other than fission, this is the only circumstance under
which our Monte Carlo simulation is not strictly analog. For a crude approximation of the
emitted neutron energies, we sample them from a simple truncated Maxwellian distribution
with an average energy 10 times less than the incident neutron energy. This is very roughly
consistent with ENDF' energy distributions.

AQ+n -4 Q+Xn (2.36)

Now let us turn to the tritium breeding reactions. In the case of °Li, the incident neutron
is absorbed, and no neutrons are emitted. It is straightforward to tally tritium production.
This reaction produces 4.8 MeV, which contributes to the total hybrid power.

SLi+n —y He+3H (2.37)

In the case of the “Li reaction, a neutron is emitted along with the tritium and a-particle.
Interestingly, this reaction consumes 2.5 MeV and only occurs at incident energies above
that threshold. We compute the emitted neutron energy as inversely proportional to its
mass share, just as in a D-T fusion reaction. So the emitted neutron energy E in terms of
the incident neutron energy Ey is E = (Ej - 2.5 MeV)(12/19).

Li+n—sHe+2H+n (2.38)

2.2.4 Inelastic Scattering

From a quantum perspective, inelastic scattering is a misnomer. Physically, it is (n,1n). The
nucleus absorbs a neutron, forms a compound nucleus, and ejects a neutron. The ejected
neutron is not necessarily the same neutron that was absorbed - that is unknowable, because
identical nucleons are indistinguishable. In the case of elastic potential scattering, we know
that the incident and scattered neutron are one and the same.

Unlike (n,2n) and (n,3n) reactions, inelastic scattering comprises a substantial portion
of the uranium cross-sections at high energy. While elastic scattering by uranium has only
a very small effect on the flux energy distribution, inelastic scattering causes neutrons to
lose large fractions of their energies and thus has an enormous effect on the flux energy
distribution. In the case of 233U, inelastic scattering effectively “pushes” the neutron spectrum
away from the fissile threshold. If the 23®U cross-section were renormalized without inelastic
scattering, the natural uranium k. would be well above 1.0 (the actual value is less than
0.3).

We will assume that inelastic scattering is isotropic, just like the emission of secondary
neutrons in (n,2n) and (n,3n) reactions. The sampling of energy loss in inelastic scattering
is convoluted. The ENDF repository contains a plethora of applicable distributions, but



A Fission-Fusion Hybrid Reactor 41

in the interest of keeping our code clean and simple, we will introduce an average energy
loss parameter. This parameter is the ratio of the ejected neutron energy to the absorbed
neutron energy. We calibrate it with MCNP, and it is typically near 0.4.

2.2.5 Fission

Although our Monte Carlo simulation is largely analog, we do employ weights for fission and
(n,xn) reactions. In (n,xn) reactions, we simply multiply the neutron weight by x. This is
acceptable, because (n,xn) reactions constitute only a small portion of neutron multiplication.
However, in the case of fission, simply multiplying neutron weights by v would be extremely
problematic for k convergence. In this code, we define k as the ratio of the number of
neutrons produced by fission in each successive generation (except the first generation, which
is produced by fusion). We tally them at the instant they are produced. Imagine a situation
with £ = 1.2, v = 3.0, and 0.4 fissions per neutron in each generation. Then the number
of neutron histories in the nth generation would be 0.4", and the total weights of those
neutrons would be 1.2". Eventually, only a few particles would hold tremendous weight.
The simulation would end prematurely when the last particle, holding the entire weight of
the system, is absorbed. This would be ridiculous. It would be “variance expansion”, the
antithesis of variance reduction.

So we must split particles at fission. We could do this the purely analog way with a
discrete distribution function for the number of particles that are released in fission (this
would average to v). However, a more interesting and flexible way to manage fission is to
stipulate that each fission-inducing neutron splits into a fixed number of next-generation
neutrons. We will call this fixed integer ¥, because we like pictograms. We can vary ¥
depending on the criticality of our system and convergence preferences. Large ¥ values will
increase variance reduction, while small U values will decrease variance reduction (“variance
expansion”). If the weight of each fission-inducing particle is wy, then the weight of each
resulting fission-born neutron is

w = wy (%) (2.39)

For any given value of k, we can choose ¥ such that the number of particle histories (not
particle weights) increases or decreases with each subsequent generation. If W is below a
certain threshold, the number of particle histories will continually decrease to zero, ending
the simulation. If ¥ is above that same threshold, the number of particle histories will
increase, the simulation will be an infinite loop, and we will need to truncate it after a
certain number of generations. The threshold is

U= (2.40)

]| =
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Here 7 is v averaged over the energy spectrum. When this equality holds, the number of
histories will remain roughly constant in each generation. It now makes sense to define a
new kind of k, one that applies not to total particle weight but to the number of particle
histories. Let this be kg.

kW

ky = (2.41)

%
kg describes the number of particle histories in precisely the same way that k& describes the
total particle weight. kg is the ratio of particle histories in one generation to the previous
generation. When kg < 1, all particles will eventually be absorbed. When kg ~ 1, the
number of particle histories remains constant in each generation, and the system is “simu-
lation critical”. When ® = v, ky = k, and the system is nearly analog in the sense that
all particle weights remain near 1.0. In the case of our subcritical hybrid blanket, we know
that k is much less than 1, actually near 0.3. It makes sense for us to set ky much higher
at around 0.9. We would like to keep kg < 1 so that our simulation terminates itself when
all neutrons are absorbed, but we want kg to be higher than & in order to take advantage of
variance reduction. Otherwise, a much larger number of initial neutrons would be required
to converge a system with such a low k.

To summarize, there are two important properties of ky. First, variance reduction occurs
when ky > k. Second, a Monte Carlo simulation will terminate itself when kg < 1 regardless
of k, because all neutrons will eventually be absorbed.

Our Monte Carlo code tracks one generation at a time. When a fission occurs, we kill
the incident neutron, sample the emitted neutron properties, and store the fission location
until the subsequent generation.

2.3 MCNP Benchmark

Now that we have explained our Monte Carlo model, we must ensure that it is accurate. We
must compare it to a reputable code. We choose MCNP.

First, in order to test our cross-sections, tracking, and fission methodology, we compare
ko as a function of uranium enrichment for UO,; and pure U metal. Since k., is purely a
function of material properties (in a homogenous medium), this eliminates concerns relating
to our geometry model and algorithms. Figure 2.19 shows the results. Evidently, our code
yields results quite consistent with MCNP. UO, has a slightly lower k., because the oxygen
moderates neutrons enough to push the spectrum away from the high 23U cross-section
but not enough to push it anywhere near the thermal region. Infinite UO, becomes critical
at about 8% enrichment, while U metal becomes critical at about 6% enrichment. Both
materials have ko, ~ 2.25 at 100% enrichment.
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Now that we are confident that our cross-sections, tracking, and fission methodology are
correct, we can ensure that our geometry is correct by comparing our complete hybrid model
to MCNP. Figure 2.20 shows the results. Here we compare the initial neutron multiplication
ko and the asymptotic neutron multiplication & for varying uranium pebble layer thickness.
For an in-depth discussion of these quantities, see the Section 5.2. Clearly, these quantities
are in fair agreement with MCNP. There is certainly some deviation, but this is much smaller
than the deviation that would occur between cylindrical and toroidal models. We deem this
close enough for a scoping study.
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2.4 Pebble Homogenization

Until now, we have assumed that homogenizing our uranium pebbles and helium coolant
does not significantly affect the reactor physics. This is a reasonable assumption, because
the neutron mean free path in helium is orders of magnitude larger than that in UO,. Also,
since the neutron spectrum is fast, mean free paths will generally be larger than the pebble
diameter.

It is still interesting to quantify the validity of pebble bed homogenization. We perform
kcode calculations in MCNP for UO, pebbles of varying diameter in helium. These pebbles
are in an infinite standard cubic array. We find that pebble size and homogenization make
virtually no difference in this case of helium-cooled UO, pebbles, so there is no problem with
homogenization.

However, we were interested in studying pebble bed homogenization further, so we per-
formed the same MCNP runs with water in place of helium. Figure 2.21 shows k., as a
function of pebble size. Again, the pebbles are in infinite standard cubic formation. The
zero pebble radius limit corresponds to homogenization. k., initially increases as the peb-
bles grow larger, and the k.g for each individual pebble increases. When the pebble radius is
roughly equal to the 1 MeV neutron mean free path in UOy and HoO (which is approximately
1.8 cm for both), k. attains a maximum and subsequently decreases far below the homoge-
nized k.. This is because neutrons can no longer easily traverse the gaps between pebbles.
In this case of UO5 pebbles in H,O, a pebble radius of less than 0.1 c¢m is necessary for
homogenization to be an accurate approximation. Although this particular example is not
applicable to our hybrid, it provides physical insight into why homogenization is generally
valid.
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Figure 2.4: Scalar neutron flux at the plasma surface as a function of poloidal angle ©. © = 0
corresponds to the outermost point on the tori (2% + y? = (R + a)?), while © = 7 corresponds to
the innermost point (22 + y? = (R — a)?). The flux is about twice as large at the outermost point
than at the innermost point, and there is a maximum at approximately 1.2 radians.
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Figure 2.5: The ratio of scalar neutron flux at the outermost point (22 + y? = (R + a)?) to the
innermost point (z2 + y?> = (R — a)?) as a function of tokamak aspect ratio R/a. As R/a grows
very large, the toroid resembles a cylinder, and the flux ratio approaches 1. Here the elongation
is 1.75.
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Figure 2.6: The ratio of scalar neutron flux at the outermost point (2% + y? = (R + a)?) to the
innermost point (2% + y? = (R — a)?) as a function of tokamak elongation x. As r increases, the
flux ratio increases moderately. Here the aspect ratio R/a is 3.1.
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Figure 2.7: The poloidal angle © of maximum scalar neutron flux as a function of tokamak
elongation . Here the aspect ratio R/a is 3.1. When k = 1, the tokamak’s poloidal cross-section is
a circle, and the maximum flux occurs at the outermost point ©® = 0. Thus, Figure 2.4 would be a
continuously decreasing function for k = 0. As x increases, the angle of maximum flux approaches
1.2 radians.
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Figure 2.8: The angular neutron flux distribution in standard spherical coordinates (6,¢) at the

outermost point on the plasma surface (© = 0). The camelback shape of the azimuthal distribution

reflects the two “arms” of the toroid visible from this point. See Figure 2.9 for further illumination

on this.
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Figure 2.9: Neutrons that impinge on a given point on a tokamak surface originate from D-T
fusion reactions at all points in the plasma that are “visible” from that surface point. This clarifies
the camelback shape of the azimuthal distribution in Figure 2.8. Of course, this “visible” concept
only applies to neutrons that intersect the tokamak surface for the first time.
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Figure 2.10: The angular neutron flux distribution in standard spherical coordinates (6,¢) at the
innermost point on the plasma surface (© = 7). Now there is no camelback shape, because most
of the tokamak curvature is not visible from this point.
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Figure 2.11: The angular neutron flux distribution in standard spherical coordinates (6,¢) at the
topmost point on the plasma surface (© = 7/2). The camelback shape of the azimuthal distribution
reflects the two “arms” of the toroid visible from this point. See Figure 2.9 for further illumination
on this. The azimuthal distribution exhibits a camelback shape similar to Figure 8 and reveals the
inner curvature of the tokamak quite nicely. The polar angle distribution approaches at 6§ = 0 only
because the spherical integrand sin 8df approaches zero.
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Figure 2.12: Five spiric sections of a torus. These are the five general shapes that arise from
intersections of tori with planes parallel to the toroidal axis (the z direction).

Profile Summary
Generated 21-Jul-2010 18:13:45 using cou fime.

Function MName Calls Total Time Self Time™  Total Time Flot

{dark band = self time}
toroidalhatrix 1 3935025 1290715
toroidal®lgebraic 1 2356485 (1208915 N
roots 2000000 205619 s 2056195 |
quarticAlgebraic 2000000 59.968s 599685 M
toroidalMatrix=inplasma 4547590 57.945 5 579455 M
toroidal&lgebraic=inplasma 4543853 54.011 5 540Ms M

Figure 2.13: A CPU runtime analysis of our tokamak surface neutron flux Monte Carlo code com-
paring the MATLAB function roots to a direct calculation of Ferrari’s method. toroidalMatrix is
the entire code using roots, and toroidalAlgebraic is the entire code using quarticAlgebraic,
which contains Ferrari’s method. Clearly, a direct implementation of Ferrari’s method is superior
to roots and reduces runtime by 27%.
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Profile Summary
Genarafed 24-Jul-2010 16:08: 46 using cou fime.

Function Mame Calls Total Time Self Time*™ | Total Time Plot
{dark band = self time)

toroidal editS roots 1 28492 277 5 | 2570775 5 | mmmmmm——
toroidal edith roots>sample path 15357168 | 24184 381 5 | 3543 529 5 | M
toroidal editd 1 21617886 5| 2525610 5 | Mo
toroidal editd rocts>solvequartic TGETE5840 20640852 5| 7262.997 s | IS
toroidal editS>sample path 15337679 | 16409436 5 | 3451.095 5 |
roots 76735840 13377.855 5 13377.855 ¢
toroidal editS>solvequartic TEBEB385 12958341 5 | 6873371 5 | mmmm
toroidal editS>quarticzeros TEB88395 6034 9695 6034 9695 (M
bsearch 30694847 34484385 34484385 m

toroidal editd rocts=withintoroid 19584351 | 6591.087 5 591.087 5 1

toroidal editS=withintoroid 15565119 | BBOB18 5 BE0.G1Es |1

toroidal edits rocts>sample elastic B379514 2192589 5 219259 5 I

toroidal editS>sample elastic B378266 218263 s 218263 s I

Figure 2.14: A CPU runtime analysis of our entire hybrid Monte Carlo simulation comparing
the MATLAB function roots to a direct calculation of Ferrari’s method. toroidal_edit5_roots
is the entire code using roots, and toroidal_edit5 is the entire code using quarticAlgebraic,
which contains Ferrari’s method. Clearly, a direct implementation of Ferrari’s method is superior
to roots and reduces the total runtime time by over 25%.
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Figure 2.15: Scalar neutron flux at the plasma edge (an elliptic cylindrical surface) as a function
of polar angle ©. The flux achieves its maximum at the elongated ends of the elliptic cylinder.
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Figure 2.16: Elastic scattering P(uz) for 'H, *He, 160, and 56Fe. As A increases, the scattering
becomes more isotropic. In the case of 'H, scattering is anisotropic to the point that backscattering

is impossible.
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Figure 2.17: The analytical solution for P(ur) for A = 1 to 10. We display this as a surface
function of both py, and A. This is consistent with Figure 2.16, which we created with Monte Carlo.
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an excellent way to quantify the degree of isotropy of a nuclide. « becomes less than 1.1 at A = 50.
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Figure 2.19: k. as a function of uranium enrichment for UOy (blue) and pure U metal (red).
The solid lines represent our Monte Carlo model, and the asterisks represent MCNP.
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Figure 2.20: The initial neutron multiplication kg (red) and the asymptotic neutron multiplication
k (blue) in our hybrid model as a function of uranium pebble layer thickness. The solid lines
represent our Monte Carlo model, and the asterisks represent MCNP.
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Figure 2.21: k. for an infinite standard cubic array of UOs pebbles in an infinite HoO pool. For
very small pebble sizes, ks, corresponds to the homogenized k... As the pebbles grow larger, koo
initially increases but subsequently decreases after the pebble size exceeds the neutron mean free
path in HsO.
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3 Fission Blanket Analysis

Now that we have expounded on our Monte Carlo fission blanket model, all that remains is to
run it repeatedly to ascertain how fissioning and tritium breeding change with various system
parameters. In this section, we will focus on toroidal layer thicknesses, relative positioning
of toroidal layers, lithium enrichment, and lithium content in the Li-Pb alloy.

3.1 Blanket Parameter Analysis

Our neutronics model consists of five concentric tori that bound layers of SiC (the first wall),
UO; pebbles (natural uranium) immersed in helium coolant, liquid Li-Pb tritium breeder,
and a steel and HyO shield. Figure 3.1 shows a poloidal cross-section of this model. Of course,
an actual device would include additional structural components, but this will suffice as a
simple model. It is sufficient for our purposes. See Section 1 for a more detailed description
as well as our motivation for choosing this conceptual design.
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shield

Figure 3.1: A basic schematic of a poloidal cross-section of our neutron transport hybrid model.
The toroidal plasma is incased within four toroidal layers: a silicon carbide first wall, a UO9 pebble
fission layer with helium coolant, a liquid lithium-lead alloy, and a steel shield. Five concentric tori
bound these layers. Layer thicknesses and pebble sizes are not to scale.
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3.1.1 Uranium Layer Thickness

First we will show what happens when we vary the uranium pebble layer thickness while
holding all other parameters constant. Figure 3.2 shows the two quantities of most in-
terest - fissions per fusion neutron and bred tritons per fusion neutron - as a function of
the uranium pebble layer thickness. We will call these two quantities the fission ratio and
tritium breeding ratio. When there is no uranium layer, each fusion neutron breeds about
0.65 tritons. As the uranium layer thickens, the each fusion neutron can spur up to about
0.75 fissions. However, after a thickness of about 25 cm, there is little to gain from further
thickening. The effect on tritium breeding is much more interesting. When the uranium
layer thickens, two competing effects are at play. First, the uranium multiplies the fusion
neutrons. Second, the uranium pushes the lithium away from the fusion neutron source. For
thin uranium layers (less than 8 cm), the first effect is preponderant such that the tritium
breeding per fusion neutron more than doubles. However, as the uranium layer thickness
surpasses a certain threshold, the second effect dominates such that the tritium breeding per
fusion neutron gradually decreases. A uranium layer thickness of 27 cm would yield the same
tritium breeding ratio as in the case of no uranium layer at all. This neat fact is convenient
for us. We can insert a sizable fissionable layer without any cost in terms of tritium breeding.

Figure 3.3 shows the initial fission multiplication factors kq (first generation) and k (suc-
cessive generations) as a function of uranium pebble layer thickness. kg is the ratio of the
number of neutrons in the first fission-born generation to the number of neutrons in the
initial fusion-born generation. Due to the high fission cross-section of 23*U at high energies,
ko is well above 1. k is the standard multiplication factor for fission-born neutrons in all
successive generations when the flux distribution has converged. k is precisely equivalent to
ko, which is the common denotation in reactor physics texts. Since we use natural uranium
and rely mostly on the fusion-born neutrons to achieve a larger power gain, k is much lower
than kg. The fission ratio in Figure 3.2 is an increasing function of both kg and £, and it is
directly proportional to k.

Our goal in this analysis is to maximize the fission ratio while still achieving a tritium
breeding ratio slightly greater than 1. It is paramount that we breed at least one recoverable
triton per every triton consumed in a fusion reaction (or per fusion-born neutron). Looking
at Figure 3.2, we could easily breed a plethora of tritium, but our fission ratio would be
fairly low. We could also achieve a high fission ratio with a very thick uranium layer, but
that would thwart tritium breeding altogether. It is simple to see that a uranium layer
thickness of slightly less than 20 cm is optimal. This would produce a fission ratio of about
0.5 (which corresponds to a power gain of about 7) while satisfying the tritium breeding
requirements. Of course, here we have held other parameters constant, and so these curves
will shift around a bit when we vary those. However, the basic shapes of the curves will not
significantly change.
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Figure 3.2: Fissions and bred tritons per fusion-born neutron as a function of uranium pebble

layer thickness. Here the lithium layer is 30 cm thick with 90% YLi enrichment. The error bars

represent Monte Carlo uncertainty.



66

1.6

Mark Reed

1.2

086

04

02

first
generation

successive
generations

]
]

|
0.05

01

| | | | |
015 0z 025 03 035
Uranium layer thickness (m)

04

|
045

05

Figure 3.3: The fission multiplication factors ko (first generation) and k (successive generations)

as a function of uranium pebble layer thickness. Here the lithium layer is 30 cm thick with 90%

61,i enrichment.



A Fission-Fusion Hybrid Reactor 67

3.1.2 Lithium Layer Thickness

Now we will vary the lithium layer thickness while holding the fission layer thickness constant
at our favored 15 cm. See Figure 3.4. Unsurprisingly, a thicker lithium layer produces a higher
tritium breeding ratio. Somewhat less unsurprising, the lithium layer thickness has virtually
no effect on the fission ratio. Of course, a small number of neutrons do backscatter into the
uranium layer from the fission layer, but these neutrons, having scattered from lithium, are
nearly all below the fissionable energy of ?**U. Of course, there is also lead in the lithium
layer, but lead has a sizable inelastic scattering cross-section that is comparable to its elastic
scattering cross-section. Under the conditions in Figure 3.4, we would need the lithium layer
to be at least 15 cm thick to achieve a tritium breeding ratio of 1.
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Figure 3.4: Fissions and bred tritons per fusion-born neutron as a function of lithium layer
thickness. Here the uranium layer is 15 cm thick, and the °Li enrichment is 90%.
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3.1.3 Lithium Enrichment

Beyond physical dimensions of the layers, we must also consider the material compositions
of the layers. We have decided that the uranium layer should be UOy pebbles with natural
uranium, so we must only examine the Li-Pb composition in detail. First we will analyze
the effect of lithium enrichment.Natural lithium is 92.5% "Li and 7.5% SLi (atomic fraction).
Both isotopes breed tritium. In pure fusion reactors, the lithium is enriched to 90% Li. The
reason for this is evident from the cross-sections.

Figure 3.5 shows the SLi total cross-section broken down into constituent parts as a
function of energy. The tritium breeding component, denoted °Li(n,t)c, is small at high
energies but extremely large at low energies. There is a large elastic scattering component at
high energies that serves to scatter neutrons to lower energies where they can more readily
breed tritium. Figure 3.6 shows the same °Li cross-section, but now we have normalized it
so that the total cross-section is always 1. Here the scale is not linear (not logarithmic),
so we can see the relative probabilities of various reactions as a function of energy. We
have outlined the fission energy spectrum y(E) and the 14 MeV neutrons with dotted red
lines. The unscattered (14 MeV) fusion-born neutrons will breed only a negligible quantity
of tritium. However, since the total scattering cross-section comprises over 90% of the total
cross-section above 3 MeV, the fusion-born neutrons will scatter to lower energies where the
tritium breeding cross-section comprises over half of the total scattering-cross-section.

Figure 3.7 shows the normalized constituent parts of the °Li total cross-section as a
function of energy. The tritium breeding reaction "Li(n,t+n)a only occurs at very high
energies, above 4 MeV. In this high energy range, tritium breeding is actually a bit more
probable per n-“Li collision than per n-5Li collision. However, virtually no fission-born
neutrons will breed tritium with “Li. Even in a pure fusion reactor, the neutrons scatter and
slow down far below 4 MeV such that it is difficult to breed tritium with natural lithium.
Thus, pure fusion reactors usually enrich lithium to 90% SLi, a near reversal of the natural
abundances. We strongly prefer SLi to “Li.

However, there is one caveat in the case of fission-fusion hybrids. Although °Li tritium
breeding consumes a neutron, ’Li tritium breeding does not. Here are the reactions for both
isotopes.

OLi +n —5 He +2 H + 4.8MeV
ILi+n —5 He+{ H+n — 2.5MeV

In pure fusion reactors, no one cares about the extra neutron. In fact, eliminating neutrons
is preferable. Furthermore, 5Li(n,t)a produces energy, while "Li(n,t+n)a consumes energy.
In contrast, we prefer more neutrons in a fission-fusion hybrid. Although "Li(n,t+n)a only
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Figure 3.5: The total °Li cross-section showing constituent parts as a function of energy. The
total cross-section is in red.

occurs at high energies, the extra neutron per bred triton will spur more fission. The question
is whether this extra neutron is worth the drawbacks of 7Li.

Figure 3.8 shows the fission and tritium breeding ratios as a function of lithium enrichment
(atomic fraction °Li). Clearly, SLi is vastly superior to “Li in terms of tritium breeding. In
terms of fission, the effect seems to be negligible, because backscattering into the uranium
layer from the lithium layer is rare to begin with. Given all these facts, we will prudently
stick with the lithium enrichment of 90% °Li in pure fusion reactors. More °Li is always
better, but there comes a point where the cost of enrichment outweighs the benefits. As
enrichment becomes very high (above 90%), it becomes exponentially more difficult to filter
out the rarefied “Li atoms.
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Figure 3.6: Normalized constituent parts of the total 5Li cross-section as a function of energy.
Here the total cross-section is always 1.0. We have outlined the fission x(£) spectrum and the 14
MeV fusion-born neutrons in red.
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Figure 3.7: Normalized constituent parts of the total "Li cross-section as a function of energy.
Here the total cross-section is always 1.0. We have outlined the fission x(£) spectrum and the 14
MeV fusion-born neutrons in red.
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Figure 3.8: Fissions and bred tritons per fusion-born neutron as a function of %Li enrichment.

Here the uranium and lithium layers are 20 cm and 30 cm thick, respectively.
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3.1.4 Layer Positioning

Until now, we have assumed that the lithium layer is exterior to the uranium layer. This
works well, because the uranium layer acts like both a neutron multiplier and a neutron
“moderator’ in the sense that fission-born neutrons are much slower than fusion-born neutrons
(the ®Li(n,t)a cross-section is exponentially higher at lower energies). It is a nice little
system. However, to be thorough, we should at least quantify how much more favorable this
arrangement is than the reverse - uranium exterior to lithium.

Figure 3.9 shows the fission and tritium breeding ratios as a function of lithium enrichment
for a 7 cm lithium layer interior to 40 cm uranium layer so that the lithium abuts the tokamak
first wall. While we saw that lithium enrichment has only a negligible effect on fission when
the lithium is exterior to the uranium, in this case there is a noticeable difference. In this
case, all fusion-born neutrons that spur fission must traverse the lithium layer. The extra
neutron from "Li(n,t+n)a contributes to the number of neutrons that fully traverse the
lithium layer. Of course, this neutron is emitted isotropically, but even if its direction is
directly away from the uranium, it will simply traverse the plasma and enter the uranium
layer on the opposite side (if it does not collide in the lithium a second time). Furthermore,
"Li(n,t+n)a is more likely to occur in the very fast neutron spectrum that forms when the
lithium abuts the plasma. However, even though the "Li(n,t+n)a neutron contributes to
fission, “Li still has no advantage in terms of tritium breeding. As Figure 3.9 shows, even
though pure “Li yields a fission ratio about 30% higher than pure SLi, "Li is devastating for
tritium breeding. Even in this reversed layer positioning, we prefer the lithium enrichment
to be as high as possible.

Figure 3.10 shows the fission and tritium breeding ratios as a function of uranium layer
thickness for a 30 cm lithium layer. Here we hold lithium enrichment constant at the favored
90%. As the uranium layer (which is exterior to the lithium layer) thickens, more fissions
occur and more tritium is bred. This is similar to Figure 3.2, except that there is no
subsequent drop in tritium production, because the uranium does not separate the lithium
from the fusion-born neutron source. However, it is very difficult to achieve both a tritium
breeding ratio of 1 and a reasonably high fission ratio. Note that the tritium breeding ratio
just barely reaches 1 and that the fission ratio is only about 0.1, which would correspond
to a measly power gain of 1.4. If we make the tritium layer much thinner and the uranium
layer much thicker, as in Figure 3.9, then it is possible to achieve a fission ratio of 0.3 with
a tritium breeding ratio of 1. However, this requires more than twice as much UOs fuel (40
cm at a larger poloidal radius versus 20 cm at a smaller poloidal radius). It also poses a
technical challenge in that the liquid Li-Pb would be asinine to periodically remove if it is
interior to the uranium layer. Lastly, 0.3 is still significantly less than the 0.5 we achieve
with the uranium layer abutting the first wall.

Figure 3.11 shows the fission and tritium breeding ratios as a function of lithium layer
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Figure 3.9: Fissions and bred tritons per fusion-born neutron as a function of %Li enrichment.
Here the uranium layer is exterior to the lithium layer. The uranium and lithium layers and 40 cm
and 7 cm thick, respectively.

thickness for a 20 cm lithium layer. Interestingly, the tritium breeding ratio rises precipitously
to 0.75 with a thickness of only 5 cm, while a thickness of 25 c¢m is necessary for a breeding
ratio of 1. In that same thickness range, the fission ratio falls exponentially to approach
zero. This plot capture exactly why this positioning of layers is unworkable - it pits fission
and tritium breeding at odds with each other. Compare this to Figure 3.2, in which fission
enhances the tritium breeding (for thin uranium layers). We conclude that a uranium layer
abutting the first wall and an exterior lithium layer is the superior option.
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90% OLi enrichment.
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Figure 3.11: Fissions and bred tritons per fusion-born neutron as a function of lithium layer

thickness. Here the uranium layer is exterior to the lithium layer. The uranium layer is 20 cm
thick, and the lithium is enriched to 90% SLi.
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3.1.5 Li-Pb Content

Now one last parameter remains - the lithium content in the liquid Li-Pb alloy. Li-Pb
is standard in pure fusion tokamak designs, because it is chemically benign and relatively
easy to extract the bred tritium from. Pure lithium would pose safety issues due to its
ravenous corrosive behavior. Pure fusion designs use the eutectic PbgsLig (84% lead by
atomic fraction) for its low melting point. Li-Pb with lead content below 5% also has a low
melting point, but then there might be corrosive danger.

Figure 3.12 shows the fission and tritium breeding ratios as a function of lithium content
in Li-Pb (atomic fraction). Here we fix the layer thickness near our optimal values of 20 cm
for uranium and 30 cm for lithium. The fission ratio increases very slightly for higher lead
content, because the lead causes more backscattering (inelastic as well as isotropic elastic)
from the lithium layer to the uranium layer. However, high lead content is devastating to
tritium breeding. PbgsLig yields a tritium breeding ratio that is less than half that of pure
lithium. If we were designing a pure fusion reactor, this could be overcome with a much
thicker Li-Pb layer. However, with a 20 cm uranium layer between the neutron source and
the Li-Pb, there is no thickness of PbgsLi¢ that will yield a breeding ratio of 1. The lithium
atomic density is too low, and the isotropic lead scattering prevents deep neutron diffusion.
Thus, we cannot use PbgyLijg for this hybrid. An addition of a neutron multiplier (such as
beryllium) might help the situation somewhat, but we leave that analysis to future work.
Tang’s 2002 thesis uses solid lithium titanate as a tritium breeder with a beryllium neutron
multiplier [22]. These were also in pebble form, so his design is a “double pebble bed”. We
chose to stick with the more conventional liquid Li-Pb material for this thesis, because it is
more expedient to remove the bred tritium from a liquid than from solid pebbles.

Since PbgyLiig is not feasible, we will need to use a lower lead content. As we will discuss
in more depth in our thermal hydraulic analysis (see Section 12), the Li-Pb melting point
becomes far too large at lead contents between 5% and 60%. Consequently, we are forced
to work with 5% lead. Corrosion could be a problem, although we do not know the lead
content at which Li-Pb becomes benign.
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Figure 3.12: Fissions and bred tritons per fusion-born neutron as a function of lithium atomic
fraction in Li-Pb. Here the uranium and lithium layers are 20 cm and 30 cm thick, respectively,
and the SLi enrichment is 90%. The lithium layer is exterior to the uranium layer.
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3.2 The Optimal Fission Blanket

Now that we have performed the bulk of our blanket analysis, we can settle on an approximate
set of optimal parameters as shown in Table 3.1. A uranium thickness of 18 cm and a lithium
thickness of 25 ¢m produces the highest fission ratio while maintaining a tritium breeding
ratio above 1. The fission ratio is 0.47, and the total fission gain Qgs is 7.7. Qg is a bit higher
than the fission ratio indicates, because tritium breeding also produces substantial energy.
We tally the energy generation very precisely in our Monte Carlo code. The fusion-born
neutron multiplication kg is 1.16, while the converged k is a mere 0.27.

Table 3.1: Optimal Blanket Parameters

UQOs pebble layer thickness 18 cm
Li-Pb layer thickness 25 cm

Li enrichment 90%

Li atomic fraction in Li-Pb  10%
fission ratio 0.47

Qsis 7.7

tritium breeding ratio 1.05
ko 1.19

k 0.27

Even though we have selected an approximate set of optimal parameters, our work is
not yet done. Since this is an unusual type of fission reactor, and since we have developed
our own code from scratch to model it, we should perform additional analysis to convince
ourselves that what we have done is correct. We must perform a “sanity check”. From here
forward, we will assume the optimal blanket parameters shown in Table 3.1.

Figure 3.13 shows the relative number of neutrons in each neutron generation, beginning
with the fusion-born neutrons (generation 1). As we expect, the first generation of fission-
born neutrons (generation 2) are a factor of kg = 1.2 greater in number than the fusion-born
neutrons. After generation 2, each successive generation of neutrons is smaller by a factor
of k = 0.27. Of course, the fission-born neutron spectrum does not converge precisely at
generation 2. Instead, & will not converge to precisely 0.27 until after many generations.
However, k£ does come quite close to its asymptotic value beginning with generation 2. The
most interesting thing about this plot is that it reveals just how tremendously important
the fusion-born neutrons are. It is clear that they produce a huge portion of the total
fission power. These fusion-born neutrons are not merely a source that spurs something
more interesting - they are the real engine of this system. The fission-born neutrons are a
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convenient side-effect.

Figure 3.14 shows this from a different perspective. This shows the entire hybrid power
broken down into sources. We tally these quantities with our Monte Carlo code. Fission
spurred by fusion-born neutrons comprise 55% of the total system power, while all sub-
sequent generations of fission-born neutrons comprise less than half that (27%). This is
consistent with Figure 3.13. The large 238U cross-section at high energies empowers the
fusion-born neutrons. Continuing on, the next-largest energy source is the slowing-down
energy of fusion-born neutrons prior to fission. Many of these neutrons do not spur fission,
and many of those that do slow significantly beforehand. The total energy deposition of
fusion-born neutrons prior to fission comprises 10%. Amazingly, this means that the fusion-
born neutrons directly produce 65% of the total hybrid power. The net energy production
of the exothermic tritium breeding reaction °Li(n,t)a and the endothermic tritium breeding
reaction "Li(n,t+n)a comprises 4%. The fusion a-particles comprise 3%, which is deposited
directly in the plasma.

Some might still be skeptical of these data, especially the huge amount of energy produced
by the fusion-born neutrons. To dispel this, we have created Figure 3.15, which shows the
fate of the fusion-born neutrons. 8% spur fission without any scattering. 23% spur fission
after at least one scattering event. Note that these neutrons can backscatter, traverse the
plasma, and still spur fission on the opposite side of the blanket. So a total of 31% of
fusion-born neutrons eventually spur fission. Since v is near 4 at these high energies, this
is consistent with kg in Figure 3.13. A surprisingly large fraction (41%) breed tritium but
nearly all do so after multiple scattering events. The fraction of fusion-born neutrons that
breed tritium without prior scattering is negligible. Finally, 28% leak to freedom or (more
likely) eventually succumb to absorption.

To further corroborate our data, we should note that the neutron mean free paths in our
homogenized UO; pebble layer are 7.1 cm (14 MeV) and 2.7 cm (1 MeV). These numbers
are consistent with our analysis here.

Figure 3.16 shows the full neutron energy spectrum in the uranium pebble layer. We
derive this from a collision tally in our Monte Carlo code and then construct this weighted
histogram. The large spike at 14 MeV represents the fusion-born neutrons before collision.
The smaller spike to its left is an artificial result of our inelastic scattering approximation.
Oxygen resonances cause conspicuous flux dips at lower energies. The average energy is 0.94
MeV, and so we can rightfully call this spectrum fast. This average energy is significantly
higher than typical fast spectrum energies due to the 14 MeV neutrons and the very low k.
The spectrum peak occurs at 0.1 MeV, which is more typical.

It serves our intuition to take this further by superimposing the fission-inducing energy
spectrum on top of the total energy spectrum. We compute this fission-inducing energy
spectrum by tallying each incident neutron energy in all fission events. Figure 3.17 shows
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Figure 3.13: The number of neutrons in each generation throughout the hybrid system. The
first generations contains only fusion-born neutrons, and all subsequent generations contain only
fission-born neutrons. The multiplication factor kg is the ratio of generation 2 to generation 1,
while the multiplication factor k is the ratio of generation n to generation n — 1 for n > 2.

this superposition. The total spectrum (identical to Figure 3.15) is in red, and the fission-
inducing spectrum is in blue. The magnitudes of the two spectra are not to scale - we only
wish to analyze their distributions. The average fission-inducing energy is 9.9 MeV! This is
consistent with Figures 3.14 and 3.15, from which we can infer that fusion-born neutrons
spur 67% of all fissions. Furthermore, 17% of all fissions are spurred by virgin fusion-born
neutrons at 14 MeV (no scattering).

Figure 3.18 shows the total neutron energy spectrum in the Li-Pb layer. The fusion-
born neutrons spike is evident but not nearly as prominent as in the uranium layer. The
massive chasm centered around 0.3 MeV is the result of a large resonance in °Li. The average
neutron energy here is 0.77 MeV, so the spectrum is a bit slower than in the uranium layer.
Figure 3.19 shows a superposition of the tritium-breeding spectrum (blue) on top of the total
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spectrum (red). The tritium-breeding spectrum is notably slower with an average energy of
0.29 MeV. This is due to the high ®Li(n,t)a cross-section at lower energies.

Although we can infer form Figures 3.15 and 3.17 that the fission-inducing neutrons do
not undergo many scattering events, we can demonstrate that the tritium-breeding neutrons
undergo numerous scattering events. Figure 3.20 shows a distribution of the number of
collisions a tritium-breeding fusion-born neutron undergoes prior to breeding tritium. The
average value is about 33. This shows that the fusion-born neutrons scatter off the lead and
lithium numerous times until they reach lower energies where the %Li(n,t)a cross-section is
high.

The main thing to take away from this is that our neutron spectrum straddles the high
SLi tritium breeding cross-section at low energies and the high 23%U fission cross-section at
high energies. The uranium layer capitalizes on the high-energy fusion-born neutrons to
induce fission, while the lithium layer slows the neutrons to breed tritium. The spectrum
slows as it moves further away from the fusion source. This is the fundamental reason why
the lithium layer should be external to the uranium layer. It just makes sense.

Finally, we can perform a bit of analysis with the spatial distribution of the neutron flux.
Figure 3.21 shows the poloidal angular distribution of neutron flux in the uranium layer. We
produce this with a collision tally. This figure is very important, because it shows how our
toroidal model captures what a cylindrical model does not. This distribution is similar to
the tokamak wall neutron flux distribution we computed in Section 2. This distribution is
similar to the fission power distribution, which we would need to take into account were we
to perform detailed thermal hydraulic analysis. Since the flux magnitude varies by a factor
of 2, this distribution would also be very important for spatially-depenent burnup analysis.

Figure 3.22 shows the radial distribution of neutron flux. Here we have corrected for
elongation by normalizing the radii as if k = 1.

)
r = r\/sm © + cos? © (3.3)

12
We have plotted the distribution as a function of 7/, and © is the poloidal angle of each tally
at poloidal radius r. In diffusion theory, the shape of this curve would be a superposition
of modified Bessel functions Io(r) and Koy(r). It is noteworthy that the flux magnitude
attenuates by a factor of 6 through the 20 cm layer, which is consistent with what we expect
for a subcritical reactor with a source coming from the left. This also shows that there would
be paltry gain from thickening the layer any further. These spatially-dependent flux plots
are the only place in the subsection where we use a uranium layer thickness of 20 cm instead
of the optimal 18 cm, but there is little substantial difference.
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Figure 3.14: The composition of the total hybrid power from various sources. Astonishingly,
fission spurred by the 1st generation fusion-born neutrons generates over half the total hybrid
power. Fission spurred by all other (fission-born) neutrons accounts for only about one quarter.
A substantial fraction (1/10) is due to the slowing down of fusion-born neutrons prior to fission.
The remainder is from exothermic tritium breeding reactions and a-particles, which deposit their

energy in the plasma.
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Figure 3.15: The fate of fusion-born (1st generation) neutrons. 8% spur fission on their first
collision, while 31% eventually spur fission. 41% pass through the uranium layer to breed tritium,
and the remaining 28% are absorbed or leaked.
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Figure 3.16: The total neutron energy spectrum in the uranium pebble layer. The large spike
at 14 MeV represents the fusion-born neutrons before collision. The smaller spike to its left is an
artificial result of our inelastic scattering approximation. Oxygen resonances cause conspicuous flux
dips at lower energies. The average energy is 0.94 MeV, and so we can rightfully call this spectrum
fast.
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Figure 3.17: The total neutron energy spectrum (red) and the fission-inducing neutron energy
spectrum (blue) in the uranium pebble layer. To obtain the latter, we tally the energies of all
incident neutrons in fission events. While the average neutron energy is 0.94 MeV, the average
fission-inducing neutron energy is 9.90 MeV! The spectra magnitudes are not to scale with each
other.
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Figure 3.18: The total neutron energy spectrum in the Li-Pb layer. The fusion-born neutrons
spike is evident but not nearly as prominent as in the uranium layer. The massive chasm centered
around 0.3 MeV is the result of a large resonance in 5Li. The average neutron energy here is 0.77
MeV, so the spectrum is a bit slower than in the uranium layer.
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Figure 3.19: The total neutron energy spectrum (red) and the tritium-breeding neutron energy
spectrum (blue) in the Li-Pb layer. To obtain the latter, we tally the energies of all incident
neutrons in tritium breeding events. While the average neutron energy is 0.77 MeV, the average
fission-inducing neutron energy is 0.29 MeV. The spectra magnitudes are not to scale with each
other.



A Fission-Fusion Hybrid Reactor 89

400 I I I I I I I

350

300

250

200

150

relative neutron number

100

50

0 20 40 60 a0 100 120 140 160
number of collisions before tritium breeding

Figure 3.20: A distribution of the number of collisions a fusion-born neutron undergoes before
breeding tritium (considering only the neutron that do eventually breed tritium, of course). The
neutrons typically scatter off the lead and lithium numerous times until they reach lower energies
where the SLi tritium breeding cross-section is high.
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Figure 3.21: The total neutron flux in the uranium pebble layer as a function of poloidal angle.

This generally reflects the neutron flux distribution on toroidal surfaces that we computed in Section
2.
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Figure 3.22: The total neutron flux in the uranium pebble layer as a function of radius (normalized

as if kK = 1). This is consistent with what we expect for a subcritical reactor with a source coming
from the left.
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4 A Tokamak Fusion Core Model

We have completed our fission blanket analysis in toroidal geometry, but we have not yet said
anything substantial about the fusion core. We have optimized the blanket layer thicknesses,
but we have not optimized the basic physical dimensions of the tokamak (R, a, and k). In
order to proceed, we have developed a simple model to relate various tokamak parameters
such as total fusion power, magnetic field strength, physical dimensions, and input auxiliary
power. We explain that model here in this section.

We originally developed this model as part of the Fall 2008 MIT Nuclear Science and
Engineering Design Project, which produced the HYPERION conceptual design [4]. We
expanded it for our May 2009 Bachelor of Science thesis in the Department of Physics [28].
In those studies, we analyzed various tokamak parameters as well as economic concerns to
determine the optimal tokamak size and minimum tokamak size that allow for steady-state
L-mode operation. In subsequent sections of this thesis, we will couple this tokamak model
to our new fission blanket model to explore how the fission power gain eases constraints on
tokamak operation.

4.1 Concept and Geometry

Tokamaks are toroidal chambers which magnetically confine plasma. Figure 4.1 shows the
basic geometry of a tokamak. We also used this in Section 2, but it is pertinent again here.
R is the major radius, and a is the minor radius. ® and © represent the toroidal and poloidal
angular directions, respectively. In practice, tokamaks usually have D-shaped poloidal cross-
sections to achieve favorable magnetic topologies. For simplicity, we will model the poloidal
cross-section as an ellipse with elongation , which is equal to the ratio of the major axis xa
to the minor axis a.

Superconducting coils are wound around the tokamak poloidally (not helically, as in
stellarators) to produce a purely toroidal (® direction) magnetic field. A large solenoid
filling the center of the tokamak produces flux swing and thus induces a toroidal current in
the plasma. This toroidal current in turn produces a poloidal (O direction) magnetic field.
The toroidal and poloidal magnetic fields confine the plasma such that it can, with sufficient
temperature and density, produce fusion reactions to generate enormous thermal power.

We will focus on deuterium-tritium (D-T') fusion reactions and assume that the plasma
consists of half deuterium and half tritium. The fusion reaction is

2H +3 H —4 He(3.5MeV) +4 n(14.1MeV) (4.1)

It is important to note that while the charged a-particle is confined by the magnetic fields,
the uncharged neutron is not. The plasma absorbs the a-particle energy, which is 1/5 the
total energy produced by the fusion reaction.
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Figure 4.1: An elliptical torus model for a tokamak. R is the major radius, a the minor radius,
and k the elongation. ® and © represent the toroidal and poloidal angular directions, respectively.
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4.2 0-D Core Model Overview

A “perfect” model of a tokamak would include 1-D or 2-D distributions. However, for the
purpose of obtaining a model that is computationally simple enough to perform extensive
analysis with, a 0-D model is the most efficient approach. Since we plan to formulate only an
approximate conceptual design, 0-D will both meet our design goals and allow us to provide
general insight into tokamak design.

0-D analysis assumes the plasma has only volume-averaged parameters, meaning that
all its properties (temperature, pressure, density, magnetic fields, etc.) are represented by a
single “average” 0-D value rather than by a spatial distribution. The plasma is fully ionized
and consists of half deuterium and half tritium with negligible densities of a-particles and
impurities.

Though not precise, the 0-D model greatly simplifies computational analysis so that we
can take more considerations into account and explore wider parameter spaces at higher
resolution. Later on, we will verify the chosen 0-D operating point with 1-D analysis.

4.3 0-D Core Model System Parameters

Here we will define specify all the interrelationships of our entire 0-D model. Let R/a be the
aspect ratio of the tokamak. The aspect ratio is the most distinguishing geometric parameter,
as it determines if the tokamak looks like sphere, a doughnut, or a hula hoop. Any tokamak
model will be very sensitive to R/a.

The poloidal cross-sectional area is simply

Acs = mka? (4.2)

The toroidal volume is approximately that area multiplied by the toroidal circumference:

V= (27TR)ACS (43)

Using a good approximation for the perimeter of an ellipse as 27a[(1 + x2)/2]'/2, the toroidal
surface area is

1 o\ 1/2
i ) (4.4)

As = (27 R)(27a) (

It is also important to note that a shielding blanket of width wp covers this entire toroidal
surface. In the case of a hybrid, wg is the fission blanket thickness.

Now that the geometry is defined, consider the toroidal magnetic field Bg. It is generated
by current-carrying coils wrapped around the torus in the poloidal plane. We can calculate
its magnitude in the toroidal direction using a simple application of Ampere’s law (with a
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toroidal loop) to find that Bg has a 1/R (inverse major radius) dependence. Assuming that
Bg has some value By, on the coil surface, By (R) is

R—a—
By = (%) Binax (45)

In 0-D analysis, this is the “average” Bg. For simplicity, we will often call it B.

A very important quantity is the safety factor ¢, which is a measure of how tightly wound
the magnetic field lines are about the torus. It is quantified as the inverse of the number of
poloidal revolutions per toroidal revolution (A©/27)~! along a magnetic field line [7]. This
is related to d®/dO along a field line. If ¢ is low, the magnetic field is primarily poloidal and
confines the plasma quite well but is potentially vulnerable to current-driven instabilities. If
q is high, the magnetic field is primarily toroidal and confines the plasma less well but is not
vulnerable to such instabilities. Essentially, the toroidal current (which the poloidal field is
proportional to) must not be too large relative to the toroidal field. Thus, ¢ is a measure
of how stable the plasma is against current-driven instabilities, and we prefer it to be high,
even at the expense of confinement.

. R()Bcp dﬁ@ - % @ o 2m
q(v) = s fRng ~ [@@] {B@} N |:<A@>:|ﬁeld line (0

Here Ry is the fixed major radius, and dfg the differential poloidal length. @e and @e

are the toroidal and poloidal cross-section perimeters, respectively. In order to make this
approximation, we have assumed that all magnetic fields have “average” 0-D values. We treat
this as a cylindrical “screw pinch”.

Although ¢ has only one value for a whole tokamak and is a function of the plasma
flux ¢(¢), we can define it locally as a function of poloidal radius ¢(r) if we assume that
each plasma flux ¢ contour maps directly to a unique radial position r. This assumes that
the flux contours are concentric with the plasma poloidal cross-section. Of course, this
cross-section is elliptic rather than circular, so we must also assume that the flux ¥ (r) in
the horizontal direction maps to the flux ¢ (kr) in the vertical direction and to the flux

Y(rvcos? © 4 k2sin? ©) in any arbitrary direction within the poloidal plane. These are
significant simplifications, but they are adequate for a 0-D or 1-D model. In 0-D analysis,
q is constant and equal to ¢*, which in turn is equal to ¢(r = a) as long as R/a is not too
large [7]. We can calculate the “average” Bg with another simple application of Ampere’s law
(this time with a poloidal loop) given that the total plasma current is Ip. Let the toroidal
and poloidal cross-section perimeters be pp = 27 R and pe = 2mal(1 + x2)/2]'/2. Equation
4.7 expresses ¢* in terms of Bg, Ip, and geometry.
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Given the total plasma current and the poloidal cross-section, the total ion density n is

n=n.=Fg <I—P) (4.8)

wa?
F¢ is the Greenwald fraction, the ratio of plasma density to the Greenwald empirical density
limit of Ip/ma?, with Ip in MA and n in 102°/m?. Fg can range from 0 to 1 and sets a limit
on the plasma density available without disruption [7].
Power balance requires that the total power lost P balance the total power consumed,
which is the auxiliary heating power P, and the a-particle power P, [15]. We neglect
radiative power in 0-D.

Paux + Pa = Ploss (49)

Since the a-particles are confined and eventually transfer all their energy to the plasma, we
can express P, as the product of the a-particle energy E, (J) and the reaction frequency
freac (571) [15]. The density of each colliding particle is n/2, and the D-T reactivity rate
coefficient (m3/s) is (ov). Equation 4.10 expresses n in single particles per cubic meter and
P, in watts.

n2

P, = FEy freac = Z(UU)EQV (4.10)
Pioss Trepresents the natural rate of internal energy loss in the plasma. The internal energy of
a plasma is 3nkT, where T' is the temperature in Kelvin and k is the Boltzmann constant.
T is the energy confinement time in seconds, the e-folding time of internal energy (W) decay
due to heat conduction [15].

W 3nkT

Poss = — (411)
Te Te
Then the explicit power balance is [15]
2 3nkT
Pas+ = (00) EaV = ==V (4.12)
Te

P,ux is the externally-applied power, and so the plasma must “ignite” and sustain itself when
P,ux = 0. The ignition condition (often called the Lawson criterion) is thus [15]
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(4.13)

NnT, >

(ov)E,

@ is the fusion power gain, the ratio of the total fusion power Pr to the total externally-
applied power P,.. It is important to note that Pr is always five times greater than P,,
because the energy released in each fusion reaction is five times the a-particle energy (see
Equation 4.1). Most of the fusion power does not contribute to heating, because the un-
charged product particles (neutrons) are not confined [15].

Pr 5P,  (n?/4){(ov)(5E,)V

= = = 4.14
=™ P P (4.14)

The fusion power per surface area Prp/Ag is another important quantity. The blanket

material will, after exhausting power for a long enough time, inevitably require replacement.
Also, the blanket must be feasible to cool from a thermal hydraulics perspective. This
puts a practical limit on Pr/Ag that the HYPERION team determined with economic and
sustainability analysis. Thus, fusion power is a function of the reactor size only.

A useful scaling parameter is the enhancement factor H, which defines the tokamak
operating mode (L-mode or H-mode) and has been empirically determined as a function
of operating parameters. Equation 4.15 shows the 1989 scaling for H, which we will use
throughout this analysis [7].

7o = (0.048) H RV Ip% K% MO%a% B** 0 (P + Pa) ™" (4.15)

M is the average atomic mass of the plasma nuclei, which is 2.5 amu for D-T fusion. Equation
4.15 expresses n in 10*°/m3, M in amu, Ip in MA, R and a in meters, B in Tesla, P, and
P, in MW, and 7, in seconds.

In 0-D analysis, the volume-averaged pressure (MJ/m?) is due to heating power. It is on
the order of a few bar.

2 (Paux + Po)e
(p) = = T ool (416
The normalized plasma pressure 3 is the ratio of the kinetic plasma pressure to the
magnetic pressure. It is a measure of how well the magnetic field confines the plasma and
thus how stable the plasma is. We can now calculate the toroidal and poloidal 5 values Sr

and Bp. We evaluate Bg(a) and Bg(a) as shown previously [7].

_ (p
br = 5 2 (4.17)
Bp = (p)  4r’®(1+w%)(p) (4.18)

Bg(a)/2m0 polf
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Another pressure parameter is Sy, which has been found to be the most useful measure
of stability in tokamaks. Sy is S normalized with a ratio of the poloidal field to the toroidal
field at the outermost edge of the toroid, where the toroidal field is weakest. Even though
the toroidal field is uniform in 0-D analysis, Sy is still quite important.

gy = ) _ alp)

= = 4.1
,lLo]p/CLB 5OIPB ( 9>

4.3.1 D-T Fusion Rate Coefficient

The D-T fusion reaction rate coefficient (ov) is a critical part of the 0-D model. It depends
only on T but has no simple analytic form. The Naval Research Laboratory (NRL) Plasma
Formulary lists empirical values of (ov) for values of T between 1 and 1000 keV [10]. We fit
a logarithmic polynomial to this data:
5 4 3

oy () =~ e - T S e (420)
(ov) is expressed in m3/s and T in keV. Figure 4.2 shows that this fit function and the NRL
data points are very consistent for 1 keV < T" < 1000 keV.

4.3.2 Elongation vs. Aspect Ratio

To reduce the number of free parameters, it is useful to express the elongation x in terms of
R/a by realizing that there is a maximum & that depends on R/a. When R/a is very large,
the tokamak can be treated like a cylindrical “screw pinch” with k = 1. As R/a decreases,
the maximum allowed k increases. Examining R/a and k for the C-Mod, the DIII-D, and
two NHTX tokamaks shows that an excellent model for the relationship is

—0.985
K < 5.276 <§> (4.21)

a

We desire high x, because it yields high surface area and thus high fusion power without
affecting the density-current relationship (Equation 4.8). We will set s at this limit.
4.3.3 Plasma Current and Sustainment

The total plasma current Ip is a sum of three currents from three different sources.

[P = IC’D + Iboot + Iinduced (422)

Linducea 18 the current induced by the solenoid. Icp is the externally-driven current from
the complex processes of electron-cyclotron heating and optical steering, which we will not
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log, (V) (m*/s)

1.5 2.5 3
log, /(T) (keV)

Figure 4.2: A log-log plot of the D-T reactivity coefficient (ov) as a function of temperature 7.
The polynomial fit function is shown in red, and the NRL data points are shown in blue. This fit
is valid for 1 keV < T' < 1000 keV. Note that (ov) has an absolute maximum at approximately 65

keV.

describe in detail here [6]. We can express Icp quantitatively as Pr/nR with a current-drive
efficiency nop, which is approximately constant at 0.3 x 10?° A/Wm? for temperatures above

20 keV [9] [12].

P,
_ Nlep”F (4.23)

Toot is the “bootstrap current”, which naturally arises from neoclassical transport through

density and temperature gradients [7]. A common expression for the total I, 1S

. ﬁN (12.5)635&23(1 + /12)
Thoot = (100) (R 2 (4.24)

cps s a fitting constant, and we can assume it is approximately 0.8 in 0-D analysis [12] [7].
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fep = 1op/Ip and fuoot = Ivoot/Ip are the current-drive and bootstrap fractions, respectively.
The non-inductive current fraction fy; (the fraction of current that is not induced by the
solenoid) is

Inr= IC%P[}JM = fep + fooot (4.25)

When fy; is 1 or greater, the tokamak is “fully non-inductive” and “steady-state”, because it

can recharge the solenoid without ceasing operation. fy; > 1 is also called “overdrive”, and
it is a primary design goal.

In order to externally drive current with electron-cyclotron heating, the electron-cyclotron

frequency w,. absolutely must be greater than the electron plasma frequency w,. so that the

electron-cyclotron waves can propogate without interference [7]. These two frequencies are

standard in basic plasma physics [3].

2\ 1/2
Wpe = ( ne ) (4.26)

€0Me
eB

— (4.27)

Wee =

The tokamak begins operating by “ramping up” induced current with the solenoid. For

this process to work, the solenoid flux swing A®,, must be sufficiently larger than the

plasma flux ®p. ITER studies suggest that Ady,/Pp must be at least ~ 2 [4]. We can
simply express Ad,, as

Ady, = (QBmaX)(WTszol) (4.28)

R

Tsol = R—a —wp — 6‘E(O.Sm) (4.29)
The maximum field within the solenoid is simply Bnax. The factor of 2 represents the
fact that the flux “swings” from -Bp.x t0 +Bpax. The maximum solenoid radius rg, is the
difference between R and the sum of a, the blanket width wg, and the coil thickness. Given
that the coil thickness for ITER (R = 6.2 m) is 0.5 m, we scale it up in proportion to R.
Determining ®p requires deriving the toroidal inductance of the tokamak. The result is
approximately [4]

®p = poRIp {m ((/{a—];ﬂ) + ﬂ (4.30)

Ensuring that we./wpe > 1 and Ay, /Pp ~ 2 is essential.
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4.4 L-mode and H-mode

Low confinement mode (L-mode) and high-confinement mode (H-mode) are two distinct
operating modes of a tokamak plasma. IL-mode is characterized by smooth temperature,
density, and power profiles. It is predictable and well-understood physically. At one time, it
was the only known operating mode. As one increases the auxiliary power P, in an L-mode
tokamak plasma, a sudden transition occurs in which the density profile becomes nearly flat
throughout the plasma. The temperature profile also flattens to a degree. The high edge
density and edge temperature cause a high edge pressure, called an “edge pedestal”. This in
turn slows energy loss through the plasma surface, increasing the energy confinement time
Te. These changes characterize H-mode, a high confinement mode [7]. The physical basis for
H-mode and the sudden L-H transition are not fully understood. The enhancement factor
H (see Equation 4.15) was developed in part to quantify this transition. There are different
scalings for H, but we will always use the 1989 scaling. Figure 4.3 shows that H-mode is
only possible for H greater than approximately 1.5.
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Figure 4.3: The 1989 ITER scaling for H vs. radiative power fraction. There is a distinct division
between H-mode (ELM-free and ELM,) and L-mode at approximately H = 1.5. Higher radiative
power fractions tend to drive H-mode plasmas into L-mode [8].

H-mode has natural advantages and disadvantages, and the choice of operating mode
depends on one’s design priorities. 7. is about twice as long in H-mode as in L-mode.
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However, the H-mode “edge pedestal” can cause instabilities known as edge-localized modes
(ELMs). Though ELMs are the focus of a large portion of current plasma physics research,
it is still not possible to predict ELM behavior. Thus, ELMs pose significant challenges for
H-mode tokamaks [7].

Since we intend to analyze large scale tokamaks, we can assume that 7., which generally
increases with size, will be sufficiently large regardless of operational mode. With that
consideration off the table, we prefer L-mode in order to avoid the challenges of ELMs. Also,
the addition of a fission blanket (which augments the fusion power) allows for lower (). Thus,
we will require H to be less than 1.5 throughout this analysis.
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5 Pure Fusion Core Analysis

Now that we have formulated a feasible 0-D model, we can apply it to any standard tokamak.
We could plunge headlong into our fission-fusion hybrid analysis, but that would obscure the
advantages of hybrids relative to pure fusion reactors. First we will show how to use this
model in the context of pure fusion tokamaks, and we will show how to determine the
minimum scale of a tokamak. Once we have done this in Section 5, our coupled fission-fusion
analysis in Section 6 will be much more lucid. This analysis follows our 2009 Bachelor of
Science thesis in the Department of Physics [28].

5.1 0-D Allowable Parameter Space

The first step in the analysis is to determine which combinations of system parameters yield
“allowable” plasma conditions given our design specifications. It is most efficient to narrow
down the parameter space in this way before we do any optimization work. In order to avoid
eliminating any potentially favorable parameter space, we impose only the most essential
constraints. Of course, all physical parameters must be real and positive, and the other
constraints are:

e T > 10 keV is necessary to achieve a sufficient D-T fusion rate coefficient (see Figure
4.2).

e ¢* > 2 is necessary to ensure confinement and prevent current-driven instabilities. The
toroidal field must be sufficiently large relative to the poloidal field [7].

e Oy < 3is the f “no-wall” Troyon stability limit that applies when no conducting wall
is present near the plasma [7].

e [ < 1.5 is necessary to operate in L-mode and thus avoid instabilities and other
complications associated with H-mode (see Section 4.4) [8].

To determine a preliminary allowable parameter space, we first stipulate that many pa-
rameters have values consistent with existing tokamaks. We will hold these values constant
throughout the 0-D allowable parameter space analysis.

e Bi.x = 13 T is the peak on-coil magnetic field possible with niobium-tin superconduc-
tors (see Section 5.3.1) [11] [7].

e wp = 1 m is necessary to stop a high fraction of 14.1 MeV neutrons from D-T fusion
reactions [7]. Later on, we will match this to our optimal fission blanket thickness.

e Pr/As=5MW/m?is areasonable limit for the blanket material (see Section 5.3.2) [13] [12].
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Given these constants, we can manipulate the equations in Section 4.3 to write all system
parameters as some function f of five parameters: R, ¢*, Fg, R/a, and Q.

[R,Ip,n, B, Pr, SN, H) = f(R,q*, [, R/a,Q) (5.1)

If R and R/a are known, then all the tokamak geometry is known (Equations 4.2-4 and
4.21). If ¢* is known, then the plasma current is known (Equation 4.7). Then if Fg is
known, the density is known (Equation 4.8). If Pr/Ag and @ are known, then all terms of
the power balance are known (Equation 4.9). Given the scaling for H and the relationship
between (ov) and T, all other parameters can be known. This analysis will determine which
parameter “spaces” in the 5-D parameters space [R,¢* Fi,R/a,Q)] meet our constraints.

5.1.1 Allowable [R,¢*,F;] Space

To begin, we examine just the 3-D parameter space [R,q*,F| for R/a and @ fixed:

e R/a = 3 is close to ITER (3.1) and Alcator C-Mod (3.05) [11].

e () = 40 is typical for fusion reactor designs that are intended to be economically viable.
See Section 5.5 for a more in-depth discussion of this.

Now we can write

[RaIPanaBaPFaﬂNaH]:f(Raq*aFG) (52)

So we can define every property of the plasma throughout the parameter space [R,q¢* F¢] by
some function f. The following contour plots show Ip, n, T, By, and H in the [R,q¢*] plane
at a fixed Fg value of 0.9.

Due to a fixed By, B depends only on R and asymptotically approaches (1 - a/R)Bpax
(see Equation 4.5). Due to fixed Pr/Ag and R/a, Pr also depends only on R and increases
as ~ R2

Figure 5.1 shows Ip(R,q*) for fixed Fg. It is roughly proportional to R (note the R
dependence of B) and exactly inversely proportional to ¢* (see Equation 4.7).

Figure 5.2 shows n(R,q*) for fixed Fg. Given that n ~ Ip/R? (see Equation 4.8), n has
the same inverse ¢* dependence as Ip. However, its R dependence is roughly ~1/R.

Figure 5.3 shows volume-averaged T'(R,q*) for fixed Fz. Many areas in [R,q¢*| space
require a reactivity rate coefficient (ov) that is unphysically large, meaning that it is greater
than the maximum shown in Figure 4.2. Thus, there is no solution for 7', and the reactor is
not viable. These unphysical areas occupy the high R and high ¢* space. At the boundary
of this area, R(q*/B)? is constant. Furthermore, since B is constant at large R, we can say
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that Rq*? is approximately constant at the boundary for large R. This shows that when we
consider only reactivity, the maximum possible ¢* decreases as ~R~'/2.

Figures 5.4 and 5.5 show fOy(R,q*) and H(R,q*), respectively. They exhibit complex
behavior but have approximately the same form as each other. At a fixed ¢*, both Sy (R)
and H(R) decrease rapidly for R < 10 meters. This means that confinement improves
significantly with reactor size when R is less than about 10 meters, allowing large reactors
to operate in L-mode.

Ip(R.q") [MA] for F, = 0.9

R [m]

Figure 5.1: The plasma current Ip in the [R,q*] plane. It is inversely proportional to ¢* and
roughly proportional to R.



106 Mark Reed

n(R,q*) [10°%m for F,=0.9

Figure 5.2: The total ion density n in the [R,q*] plane. It is inversely proportional to ¢* and
roughly inversely proportional to R.
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T(R,q*) [keV] for F = 0.9

unphysical reactivity

R [m]

Figure 5.3: The temperature T in the [R,¢*] plane. Many combinations of R and ¢* in this space
require a D-T cross-section (ov) that is larger than the maximum possible (ov) (see Figure 4.2),
meaning that those values of R and ¢* are not feasible. In such cases, T' has no solution and is set
to zero. The large dark blue area represents the unphysical areas, and the thick dark line represents
the boundary between the physical and unphysical areas.



108 Mark Reed

|3N{F1,q") for FG =0.9

unphysical reactivity

R [m]

Figure 5.4: [y in the [R,q*| plane. The unphysical areas in which 7" has no solution are also
represented here by dark blue, as Sy requires a solution for T'. Again, the thick dark line represents
the boundary between the physical and unphysical areas.
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H(R,q*) for FG =0.9

unphysical reactivity

R [m]

Figure 5.5: H in the [R,¢*] plane. The unphysical areas in which 7" has no solution are also
represented here by dark blue, as H requires a solution for 7. Again, the thick dark line represents
the boundary between the physical and unphysical areas.



110 Mark Reed

Now it is simple, given the constraints in Section 5.1 (H < 1.5 for L-mode and Sy < 3
for the “no-wall” limit), to determine what subspace of [R,q*,Fg]| is allowable. The following
plots show cross-sections of this allowable subspace in the [R,¢*], [R,F], and [¢*,F¢| planes.

Figure 5.6 shows the allowable subspace (red) in the [R,q*] plane for Fy; fixed at 0.9. The
maximum allowable ¢* as a function of R has a broad maximum between 10 and 15 meters.
The allowable area is limited by unphysical reactivity at high R and by confinement (high
By and high H) at low R. This is a critical result, because it means that to achieve a certain
level of stability (a certain ¢* value), we must design the tokamak within a finite range of
major radii. It also shows that only large tokamaks (R ~ 10 meters) can operate in L-mode
with high ¢*. Tokamaks the size of ITER (6.2 meters) or smaller are forced to operate in
H-mode in order to achieve high ¢*.

There is a crucial advantage associated with this result. To achieve maximum ¢*, the
operating point should be located at the peak shown in Figure 5.6 (approximately R = 13
m and ¢* = 3). Referring back to Figure 5.3, such an operating point is located near the
boundary of the unphysical region, near where T" quickly becomes large. This means that
it is also located not too far below the maximum reactivity coefficient shown in Figure 4.2.
Were T to suddenly increase, the reactivity would only increase slightly before decreasing.
The tokamak would then have a negative reactivity coefficient and naturally return to a
lower T'. Thus, the tokamak is intrinsically stable with respect to temperature instabilities.

Figure 5.7 shows a similar allowable parameter space in the [R,Fg] plane for ¢* fixed
at 2.5. It shows that as F increases, the finite range of allowable R increases in width.
Figure 5.8 shows the height of the ¢* maximum as a function of Fg. One can see that ¢*
is 3 when Fg is 0.9, which is consistent with Figure 5.6. This shows that the height of this
¢* maximum increases with Fg. Thus, as F; increases, both the width and height of the ¢*
maximum also increase. Indeed, the curve in Figure 5.6 shifts upward as F increases. This
is in part because n?(ov) is constant for fixed size, and so reactivity must decrease as the
Greenwald fraction and density increase. As Figure 5.8 reveals, t he relationship is linear,
meaning that the highest allowable ¢* is proportional to F;. Thus, we prefer to operate near
the Greenwald limit (Fiz < 1) and will choose Fz = 0.9.
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Allowable areas in [R,g*] plane for FG =0.9

unphysical reactivity

R [m]

Figure 5.6: Areas in the [R,¢*] plane that satisfy (red) and do not satisfy (blue) the parameter
constraints. This shows that R between 10 and 15 meters will yield a maximal ¢*.
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Allowable areas in [R,FG] plane forg*=2.5

0.95
09
0.85
08
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- 075

unphysical reactivity
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0.65

08

0.55
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R[m]

Figure 5.7: Areas in the [R,Fg] plane that satisfy (red) and do not satisfy (blue) the parameter
constraints. This shows that a high F requires an R between 10 and 15 meters.
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Maximum g* in [R,q*] plane as a function of FG
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Figure 5.8: The maximum value of ¢* (at whichever R that maximum occurs) as a function of
Fg. The relationship is roughly linear.
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From this [R,q*,F] space analysis, it is clear that we prefer high F in order to achieve
high ¢*. From this point forward, we will assume Fg = 0.9. It is also clear that R should lie
in or near the range of 10 to 15 meters to maximize ¢*, though other performance factors
will determine a more precise R.

5.1.2 Allowable [R,¢*,R/a] Space

Throughout Section 5.1.1, we held R/a constant at 3. Now that as F is fixed at 0.9, we
will vary R/a and repeat the same analysis. We can write

[R7]P7n7B7PF76N7H]:f(R7q>k7R/a) (53)

So every property of the plasma is defined throughout the parameter space [R,q*,R/a] by
some new function f.

Figure 5.9 shows the allowable parameter space in the [R,q*] plane for three different
values of R/a. Clearly, the same broad ¢* maximum appears between 10 and 15 meters.
R/a changes the height and width of this maximum in the same way that F does. This
time, however, the maximum ¢* decreases as R/a increases.

To see the exact form of this relationship, Figure 5.10 shows the maximum ¢* as a function
of R/a in the same way that Figure 5.8 shows the maximum ¢* as a function of Fg. This
time, the relationship is not linear but closer to ~(R/a)~!. In large part, this is due to the
~(R/a)~! dependence of the elongation x. Smaller R/a and larger x imply larger surface
area, larger fusion power, and a larger volume to surface area ratio, which obviate the need
for a high (ov). So clearly, in the interest of stability, we desire a low R/a. However, since
R/a affects much more than just stability, choosing a precise R/a requires sustainability
analysis.

From this [R,¢*,R/a] space analysis, it is clear that varying R/a does not significantly
affect the key findings of the previous [R,q*,F¢| space analysis. It is also clear that an R/a
lower than 3 (our starting point) is favorable.
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Allowable areas in [R,q"] plane forRfa =25,3,35

R [m]

w

Figure 5.9: Areas in the [R,¢*] plane that satisfy the parameter constraints for R/a values of
2.5, 3, and 3.5. The R-location of the ¢* maximum is independent of R/a, and the maximum ¢*
increases dramatically as R/a decreases.
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Maximum qg* in [R,q"] plane as a function of R/a
T T T
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Figure 5.10: The maximum value of ¢* (at whichever R that maximum occurs) as a function of
R/a. The relationship is roughly of the form ~(R/a)~t.
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5.1.3 Allowable [R,¢*,R/a,Q)] Space

As a final check of the parameter space, it is prudent to test the sensitivity of the allowable
areas to changes in the gain ). We perform a 4-D analysis in [R,q*,R/a,Q)] space in order
to determine how changes in @ affect the [R,¢*] plane shown in Figure 5.6.

[R,]P,H,B7PF,ﬁN,H]:f(R,q*,R/a,Q) (54)

Examination of the [¢*,Q] and [R/a,Q)] planes show that @) has no effect on the allowable
ranges of ¢* or R/a when other parameters are held constant. However, examination of the
[R,Q)] plane shows that ) does have a marginal effect on the allowable range of R. Figure
5.11 shows that for ¢* and R/a both fixed at 3, the range of allowable R (the width of the
maximum shown in Figure 5.6) decreases as () increases. Nevertheless, this increase is slight
as long as () is much greater than 5 so that the ratio of total heating power to fusion power
(1/5 4+ 1/Q) changes little with Q). We can conclude that @ is not an important contributor
to the allowable parameter space. However, () will become much lower (and much closer to
5) when we perform the coupled fission-fusion analysis in Section 6.

5.2 Minimum Tokamak Scale Defined

For each point in any of these parameter spaces, we can also compute plasma current quan-
tities. The most important quantity for us is the non-inductive current fraction fy;. We
defined this in Equation 4.25. We desire fy; > 1 in order to achieve “steady-state” operation.
Figure 5.12 shows fy; in the [R,q*| plane for the HYPERION operating parameters [4]. The
fully non-inductive (fy; > 1) region is outlined in white. There is clearly a sharply-defined
minimum fully non-inductive R at approximately 9 m. This is precisely what we refer to
when we write “minimum scale” or “minimum R”. This is important for design purposes, as
capital cost usually scales with R. As we will see in the following sections, varying system
parameters (especially @) can dramatically alter this minimum R.
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Allowable areas in[R,Ql planeforq* =3 andR/fa=3

unphysical reactivity

R [ml

Figure 5.11: Areas in the [R,Q)] plane that satisfy the parameter constraints for ¢* and R/a values
of 3. This shows that the width of the broad ¢* maximum (see Figure 5.6) decreases slightly as @
increases. This is also a more intuitive way to show that R is limited by confinement on the low
end and by reactivity on the high end.
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le for allowable areas in [R,q*] plane

unphysical
reactivity

R[m]

Figure 5.12: fy; for areas in the [R,q*] plane that satisfy the parameter constraints. The
parameters are those of the large scale HYPERION operating point: R/a = 2.6, Q@ = 40 and
Pr/As = 7T MW/m2. The fully non-inductive (fy; > 1) region is outlined in white. In this case,
the minimum R for fully non-inductive L-mode operation is slightly less than 9 m. The shape of
this plot is similar to that in Figure 5.6.
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5.3 Technology Limits
5.3.1 Maximum On-Coil Magnetic Field B,

In the HYPERION design, B, is 13 T, the approximate maximum on-coil field for niobium-
tin (NbsSn) superconductors in ITER [11] [7]. It is difficult to achieve fields higher than this
with conventional superconductors (critical temperatures T < 20 K). This is because a cer-
tain magnetic field strength can “quench” superconductivity at a certain temperature below
Tc. This certain magnetic field strength is proportional to [1 - T'/T¢]? so that the further
a superconductor is cooled below T, the higher the magnetic field it can withstand while
remaining superconducting [16]. Of course, material stress also poses significant limitations.
High-temperature superconductors (HTS), usually cuprate (containing copper oxide), often
have T values much higher than 20 K. Yttrium barium copper oxide (YBayCu3zO7), often
abbreviated YBCO, has T =~ 90 K [16]. By cooling YBCO to T' < 10 K, we can produce sig-
nificantly higher fields [1] [5]. Considering material stress limitations and economic factors,
HTS tokamak studies have shown that the highest sensible field strength is approximately
16 T [1].

Figure 5.13 shows the effect of varying By, on the minimum R. This shows the familiar
allowable area in the [R,q*] plane for three different values of Bp.x. The fully non-inductive
area (fyr > 1) is outlined in white. As By increases, the allowable area in the [R,q*] plane
moves to higher ¢*, and the minimum fully non-inductive R decreases. This is intuitive,
because higher magnetic fields increase plasma current and thus (indirectly) confinement,
allowing the tokamak to be smaller without losing energy too quickly. Given a fixed point
in the [R,¢*] plane, a higher magnetic field requires a higher plasma current, which in turn
requires a higher density and a lower temperature.

Figure 5.14 shows this minimum R as a function of By... It decreases rapidly for Bi,.
< 14 T but more gradually at higher B... Consequently, it is important to ensure B, >
14 T by using HTS technology. Beyond that point, higher B.. is certainly favorable but
not essential. However, since we are minimizing R, we will choose B,.x = 16 T consistent
with the HTS tokamak studies. We will assume this choice for the remainder of this pure
fusion analysis.
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Allowable areas in [R,g*] plane for B M = 13,145,116 T

R[m]

Figure 5.13: Areas in the [R,¢*] plane that satisfy the parameter constraints for maximum on-coil
magnetic field Byay values of 13, 14.5, and 16 T. Here R/a = 2.6, Pp/As = 7 MW/m?, and Q =
40. As Bpax increases, the highest available ¢* increases while the minimum (fully non-inductive)

R decreases. Consequently, we prefer higher Biax.
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Minimum R in [R,q*] plane for f N >1asafunctionof B y
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Figure 5.14: The minimum R in the [R,¢*] plane for fully non-inductive L-mode operation as a
function of Bpax. The minimum R decreases dramatically for Bpa.x < 14 T but only marginally
for Bpax > 14 T. The parameters here are the same as those in Figure 5.13.
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5.3.2 Blanket Fusion Power Density Pr/Ag

In the HYPERION design, Prp/Ag is 7 MW /m?, which resulted primarily from economic
analysis [4]. While 7 MW /m? may certainly be possible, ARIES-AT blanket performance
studies have shown maximum power loading of only 4.8 MW /m? on a silicon carbide (SiC)
blanket [13]. Given this, it would not be prudent to let Pr/Ag exceed ~ 5 MW /m? [12].

Figure 5.15 shows the effect of varying Pr/Ag on the minimum R. The allowable area in
the [R,q*] plane shifts to lower ¢* when Pr/Ag increases from 5 MW /m? to 7 MW /m?. This
is intuitive, because given constant geometry and constant (ov), increasing power requires
increasing density, which in turn requires increasing plasma current and decreasing ¢*. The
interesting thing here is that while the allowable area shifts to lower ¢* for increasing Pr/Ag,
the minimum R decreases.

Allowable areas in [R,g*] plane for P FIAS =35, 7 MWim 2

Pr/As =5 MW/m2

Pr/As =7 MW/m2

R[m]

Figure 5.15: Areas in the [R,¢*] plane that satisfy the parameter constraints for fusion power
per surface area Pr/Ag values of 5 and 7 MW/m?2. Here R/a = 2.6, Byax = 16 T, and Q = 40.
As Pr/Ag increases, the highest available ¢* decreases while the minimum (fully non-inductive) R
also decreases. Consequently, we prefer higher Pp/Ag.
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Figure 5.16 shows this decrease in minimum R as a function of Pr/Ag. The relationship
is somewhat linear, and thus higher Pr/Ag is obviously favorable. However, given the
uncertainty of whether Pr/Ag > 5 MW /m? is practically workable, we will choose Pr/Ag
= 5 MW/m?. We will assume this choice for the remainder of this thesis.

It is interesting to examine the relationship between Pp/Ag and the total fusion power
Pr at minimum scale. Equations 4.4 and 4.21 show that Pr oc R*(Pr/As) at fixed R/a, and
Figure 5.16 shows that R decreases linearly with Pr/Ag. Therefore, Pr does not necessarily
increase with Prp/Ag. It may in fact decrease, a counterintuitive result.
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Figure 5.16: The minimum R in the [R,q*] plane for fully non-inductive L-mode operation as a
function of Pr/Ag. The minimum R decreases fairly linearly with Pp/Ag. The parameters here
are the same as those in Figure 5.15.
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5.4 Aspect Ratio R/a Considerations

In the HYPERION design, R/a is 2.6. We made this choice based on the requirement that
Ady, /Pp be at least in the vicinity of 2 [4]. As R/a decreases given a fixed R, the solenoid
area becomes too small to generate a sufficient flux swing A®g,;. The only hard limit on R/a
is of course that it must exceed 1, though the solenoid may require a more complex model
for R/a ~ 2.

Figure 5.17 shows the effect of varying R/a on the minimum R. The allowable area in the
[R,q*| plane shifts to higher ¢* when R/a decreases, which we have already shown in Figure
5.9. Now we also show that the minimum R decreases as R/a decreases. This is intuitive,
because tokamaks with smaller R/a have higher densities (and lower temperatures) due to
larger k.

Allowable areas in [R,gq*] plane for Rla=2.3,2.6,2.9

R[m]

Figure 5.17: Areas in the [R,q*] plane that satisfy the parameter constraints for aspect ratio R/a
values of 2.3, 2.6, and 2.9. Here Byax = 16 T, Pr/As = 5 MW/m?, and Q = 40. The allowable
area is especially sensitive to R/a. As R/a increases, the highest available ¢* decreases while the
minimum (fully non-inductive) R increases. Consequently, we prefer lower R/a.

Figure 5.18 shows minimum R as a function of R/a. Minimum R increases more rapidly
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with R/a at large R/a > 2.8. Note that for ITER (R/a = 3.1), the minimum R is over 12
m. The HYPERION choice of R/a = 2.6 avoids the high-slope region, though lowering R/a
below 2.6 could still certainly provide a modest decrease in minimum R.

To make any choice for R/a, we must consider flux swing. For the purposes of a pure
fusion reactor with @@ = 40, flux swing will not constrict R/a any more than the basic
assumptions of our 0-D model already do. However, this is not the case for much low @), as
we will address in our coupled fission-fusion analysis in Section 6.2.

All this suggests that we should dramatically lower R/a. However, our 0-D core model
is based on the geometry and physics of a standard tokamak, not a spherical tokamak. In
particular, our model of the blanket (wp = 1 m) and solenoid may not be accurate for
R/a =~ 2. Also, as R/a becomes low, the poloidal cross-section must be less elliptical and
more D-shaped. These uncertainties, coupled with the fact that minimum R has a much less
significant dependence on R/a below 2.6 than above 2.6 (see Figure 5.18), make it reasonable
to keep R/a fixed at 2.6. Also, since this minimum scale reactor is meant to demonstrate
the viability of HYPERION, it makes sense to at least keep the geometry consistent. We
will choose R/a = 2.6 but emphasize the subjectivity of this choice.
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Minimum R in [R,q*] plane for f N > 1 as a function of Rfa

P
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minimum R [m]
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Figure 5.18: The minimum R in the [R,¢*] plane for fully non-inductive L-mode operation as
a function of R/a. The minimum R increases with R/a very rapidly for R/a > 3 but much less
rapidly for lower R/a. The parameters here are the same as those in Figure 5.17.
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5.5 A “Reactor” Defined

So far, we have assumed ) = 40 to ensure that the tokamak is a “reactor”. However, there
is really no precise definition of a reactor in terms of tokamaks. While ) = 40 is definitely a
reactor and () = 5 is definitely not a reactor, there is certainly no threshold of () at which a
tokamak suddenly transitions into “reactor mode” as it does into L-mode or H-mode. Thus,
we investigate possible benefits of changing Q).

As @ increases, the L-mode allowable area in the [R,¢*] plane shrinks, eventually ex-
cluding all fully non-inductive areas. Thus, there is an absolute maximum () for fully non-
inductive L-mode operation. Figure 5.19 shows this maximum @ (at any ¢*) as a function
of R. () increases fairly linearly for R < 10 m but then levels off at =~ 70 for R > 13 m. This
plot can be read two ways: as a maximum () corresponding to a certain R or as a minimum R
corresponding to a certain (). We are interested in the latter interpretation, though the two
are equivalent. At Q = 40, the minimum R is approximately 8.5 m. Lowering ) improves
the minimum R by approximately 0.1 m per unit Q.

The question is by how much to lower (). The answer is somewhat arbitary, but for
the purpose of defining a specific operating point, we choose to decrease ) to 30 so that
the minimum R is approximately 7.5 m. This improves the minimum R by =~ 1 m while
maintaining “reactor” status.

The only way for a pure fusion tokamak “reactor” at an anything-less-than-huge size is
to operate in H-mode. That’s ITER. Many people interested in fission-fusion hybrids have
suggested modeling them after ITER, simply because ITER is what’s being built right now.
Unfortunately, that would miss the greatest potential advantage of hybrids: operating in
L-mode at small size.

Figure 5.20 shows the same relationship as in Figure 5.19 for the ITER R/a of 3.1. The
maximum () at the ITER R of 6.2 m is 12.5. Since ITER is designed for () ~ 10, this shows
that ITER could potentially operate in fully non-inductive L-mode given B,.x =~ 16 T and
Pr/Ag ~ 5 MW /m?.

It is important to emphasize the reality that choices of R/a and @) are very subjective.
The choices of R/a = 2.6 and ) = 30 are actually quite conservative and may overestimate
the true miniumum R.
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Maximum Q in [Q,g*] plane for f e 1 asa functionof R
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Figure 5.19: The maximum @ in the [Q,¢*] plane for fully non-inductive L-mode operation as a
function of R. The relationshp is fairly linear for 5 m < R < 10 m. At @ = 40, the minimum R is

approximately 8.5 m. At @ = 30, the minimum R is approximately 7.5 m. Here R/a = 2.6. The
jaggedness at R > 12 m is an artificial result due to insufficient ¢* resolution.
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Maximum Q in [Q,q*] plane for f e 1 asa function of R

(ITER geometry)
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Figure 5.20: The maximum @ in the [Q,¢*] plane for fully non-inductive L-mode operation as a

function of R for the ITER aspect ratio of 3.1. At the ITER major radius of 6.2 m, the maximum
Q is 12.5. ITER is designed for @ = 10.
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6 Coupled Fission-Fusion Analysis

Thus far, we have developed a Monte Carlo neutron transport code to analyze the fission
blanket as well as a 0-D tokamak model to analyze the fusion core. Now we will marry them
to perform coupled fission-fusion analysis. We have already defined limiting magnetic field
strength and surface power density, but now we can vary the physical dimensions (R and a)
along with ¢* and ) to optimize for steady-state L-mode operation in conjunction with our
optimal fission blanket parameters.

6.1 Effect of Tokamak Geometry on Fission Blanket

In Section 3, we determined an optimal set of fission blanket layer thicknesses assuming ITER
geometry (R =6.2m, a=2.0m, k = 1.75). Now that we plan to vary the physical dimensions
of the tokamak, we must determine to what extent these optimal blanket parameters would
change for different tokamak geometry. We have run our neutronics model for varying R, a,
and k. Varying R or a while holding everything else fixed has very little effect on the fission
and tritium breeding ratios as long as the aspect ratio R/a remains above 2.0 and a remains
larger than 1.0 m. However, varying s does have a notable effect on the tritium breeding
ratio. Figure 6.1 shows this. The fission ratio is largely unaffected, but the tritium breeding
ratio decreases markedly as x increases. The reason for this is that the effective thickness
of the uranium layer increases near the top and bottom of the torus as x increases. If the
thickness at the midplane is w, then the thickness at the top and bottom is kw. When the
subcritical uranium layer is thicker, fewer neutrons reach the lithium. However, since we
have defined k as a function of R/a, we will assume that x varies only minimally throughout
this analysis and does not have any substantial effect on the tritium breeding ratio. Also, in
practice, this hybrid device would be constructed so that the layer thicknesses are constant
throughout the poloidal plane (not precise ellipses).

6.2 Solenoid Size vs. Blanket Thickness

We have stated that the tokamak fusion core drives the fission blanket, while the fission
blanket has no effect on the fusion reaction. This is absolutely true for a fixed geometry, but
it is not entirely true when we vary the geometry. The size of the tokamak solenoid, which
must fit within the inner “hole” of the torus, is limited by how thick the fission blanket is.
When the blanket is thicker, the solenoid must have a smaller radius. Quantitatively, the
maximum solenoid radius is R — a — wg — wy, where wg is the blanket thickness and w,; is
the magnetic coil thickness (around 0.5 m for ITER). In our pure fusion analysis (Sections
4 and 5), we set wg = 1, which is the usual thickness for pure fusion tokamaks. This is
the thickness of shielding material necessary to protect the magnetic coils from neutron and
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Figure 6.1: The fission and tritium breeding ratios as a function of elongation x for ITER tokamak
dimensions and the optimal blanket thicknesses. Only tritium breeding is sensitive to .

gamma fluence. In this thesis, we do not perform detailed shielding calculations to determine
how much thicker the blanket must be when it is fissionable. Our optimal uranium and
lithium layer thicknesses sum to 45 cm. There must also be at least 3 cm of material for
the first wall and dividing the uranium pebbles from the lithium (in our neutronic analysis,
we assumed this was silicon carbide). That brings the total blanket thickness to 48 cm.
However, since even a pure fusion tokamak must have a first-wall and a tritium breeding
layer, we have only really added the 18 cm uranium layer to the total thickness. We believe
it is reasonable to assume that a steel and water shield about 40 cm thick beyond the lithium
will adequately protect the magnetic coils. Our neutronics model (as well as MCNP) shows
that the neutron fluence will be well below the limit of 3 x 10*2 n/m? for NbzSn [5].
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6.3 Steady-State L-mode ITER-PBR

With our arguments in the previous two subsections, we have effectively decoupled the
fission and fusion components. We have essentially argued, based on neutronics data and
general reasoning, that the fission gain (g is independent of tokamak geometry within the
range of geometric parameters we wish to consider. This is not wishful thinking - it is a
valid approximation that, given the data, is not any less accurate than the approximations
already inherent in our 0-D model. What we can now state is that for a fission-fusion hybrid
“reactor” to operate with Qny, = 40 given a fixed Qgs, we can obtain the necessary Qg from

Qnyb = Qus (é + %Qm) (6.1)

If we require Quy, = 40 and use Qg5 = 7.7 from Table 3.1, then Qs must be approximately
6.3. This dramatically changes the analysis we performed in Section 5. Although much of
that analysis is redundant from our 2009 MIT bachelor’s thesis, we will expand on it here.

First, let us introduce a new variety of R-¢* “phase diagram” to further elucidate the
analysis. Figure 6.2 shows L-mode and H-mode regions in the R-¢* plane for a pure fusion
reactor with () = 40. It also shows the forbidden regions where Sy exceeds the Troyon limit
and where the required reactivity is unphysically high. The H-mode region is bounded by
the H = 1.5 curve and the Sy = 3 curve. For a fixed ¢* and fixed R/a, L-mode is only
possible in a larger tokamak than H-mode. This figure is similar to Figure 5.6, except that
it shows multiple “phases” instead of only L-mode. We will call this new type of figure an
R-q* tokamak phase diagram. These diagrams are useful for the initial planning of tokamaks.

We can expand on this with Figure 6.3, which is identical to Figure 6.2 except with an
additional subdivision between pulsed and steady-state modes. The additional curve that
does not appear in Figure 6.2 represents fy; = 1. This also qualifies as an ‘R-¢* tokamak
phase diagram”. Here we can clearly see the steady-state L-mode region that was the focus
of our 2009 bachelor’s thesis and has a sharply-defined minimum R associated with it [28].

While Figures 6.2 and 6.3 has R/a fixed at 2.6, Figure 6.4 has R/a fixed at 3.1 to match
ITER. There is no steady-state L-mode here - that highly favorable region disappears for
R/a > 3. This is the reason why a steady-state L-mode tokamak must have an aspect ratio
lower than that of ITER.

Now we will keep everything the same ezxcept () - we will lower it to 6.3 as recommended
by our fission blanket analysis. This changes everything. Figure 6.5 shows the result. By
lowering Qs from 40 to 6.3, we have narrowed the H-mode swath and dramatically lowered
the fy; curve to open up a vast expanse of the steady-state L-mode phase. Comparing Figure
6.5 to Figure 5.4 shows just how powerful the addition of a fission blanket to a tokamak can
be.
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Figure 6.2: A “phase diagram” over [R,g*] showing L-mode, H-mode, and areas forbidden by
reactivity and the Troyon limit. This is for a pure-fusion “reactor” with Qs = 40. Here we use
R/a = 2.6, Bypax = 15 T, and Pr/As = 5 MW /m?.
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Figure 6.3: A “phase diagram” over [R,g*] showing L-mode, H-mode, and areas forbidden by
reactivity and the Troyon limit. This is for a pure-fusion “reactor” with Qg = 40. We subdivide
L-mode and H-mode into “pulsed” and “steady-state” zones with the curve defined by fy;r = 1.
Here we use R/a = 2.6, Bpax = 15 T, and Pr/As = 5 MW /m?.
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Figure 6.4: A “phase diagram” over [R,g*] showing L-mode, H-mode, and areas forbidden by
reactivity and the Troyon limit. This is for a pure-fusion “reactor” on the scale of ITER with Qg
=40, R/a = 3.1, Bpax = 15 T, and Pr/As = 3 MW/m?. We subdivide L-mode and H-mode into
“pulsed” and “steady-state” zones with the curve defined by fy; = 1.
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Figure 6.5: A “phase diagram” over [R,g*] showing L-mode, H-mode, and areas forbidden by
reactivity and the Troyon limit. We subdivide L-mode and H-mode into “pulsed” and “steady-
state” zones with the curve defined by fyr = 1. This is for a fission-fusion hybrid “reactor” with a
fission gain of 7.7 and Qs = 6.3. This is on the scale of ITER with R/a = 3.1, Bpax = 15 T, and
Pp/Ags = 3 MW/m?. This shows that ITER could operate in steady-state L-mode with our fission
blanket.
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With the results shown in Figure 6.5, we can choose a set of approximate operating
parameters for a fission-fusion hybrid based on ITER geometry (R = 6.2 m, R/a = 3.1,
k = 1.75). Figure 6.5 shows that a tokamak fission-fusion hybrid with this fixed geometry
(ITER) could operate in steady-state L-mode. We show the complete set of operating points
in Table 6.1.

This proves that the addition of this optimal fission blanket to ITER would allow ITER
to operate in steady-state L-mode (with adjustments to its magnets and a few other param-
eters). Tang’s ITER-PBR concept focused solely on the fission aspects of adding a fission
blanket to ITER [22], but here we have shown that there could also be substantial advantages
in terms of the fusion operation.

Table 6.1: Steady-State L-mode ITER-PBR, Operating Parameters

R=6.2m Pr=21GW
R/a = 3.1 P = 310 MW
k=175 H=14
Bhax=15T T7.=10s
B=77T T = 14.5 keV
Q=67 Oy = 2.2
Prp/As =3 MW/m?  we/wpe = 2.2
q* = 3.0 Aq)sol/q)p =3.1
Ip = 16.6 MA Jboot = 0.46
n =12 10*/m? fep = 0.76

Fe=10.9 fnr =122
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6.4 Minimum Scale Steady-State L-mode Fission-Fusion Hybrid

We have analyzed the case of a steady-state L-mode hybrid with the geometry of ITER, but
now we will turn to a more interesting scenario - that of minimum size. This is a point of
significant interest, because capital costs of tokamaks tend to scale with major radius R.

In the ITER-PBR analysis, we were forced to deviate from the ITER aspect ratio in
order to achieve steady-state L-mode. Now that we are more free in our geometry, we should
strive to determine the optimal R/a if one exists. We know from our analysis in Section 5.4
that a lower aspect ratio allows for a smaller minimum R, and so we should always favor low
R/a. However, there must be a lower limit on R/a. Otherwise, our tokamak would evolve
(or emphdevolve) into a spherical tokamak.

One property that depends largely on R/a is the flux ratio ®g,/®p, the ratio of solenoid
flux to plasma flux. As we explained in Section 4.3.3, this ratio must exceed 2. If we fix
Qs at 6.7 as in the ITER-PBR analysis and assume other appropriate values such as ¢x =
3.0, we can calculate @y, /Pp and the minimum R (for steady-state L-mode operation) as a
function of R/a. Figure 6.6 shows this. @y, /Pp exceeds 2 for R/a > 2.8, which we must
now set as our lower limit on R/a. Since the minimum R is also an increasing function of
R/a, it is easy to see that we should set R/a at its limit of 2.8 and choose our minimum
scale R as the corresponding value of slightly more than 5 m.

To confirm this, we can generate yet another R-g* “

phase diagram” for R/a = 2.8. Figure
6.7 shows this. Clearly, at ¢* = 3.0, the minimum steady-state L-mode R is slightly more
than 5 m. A closer look reveals that it is approximately 5.2 m.

Table 6.2 shows the corresponding complete set of parameters for the fusion component
of this minimum scale steady-state L-mode fission-fusion hybrid. Clearly, it is steady state
with fy; =~ 1.0 and L-mode with H < 1.5.. The total fusion power is 1.7 GW. Thus, the
total hybrid thermal power, given a fission blanket multiplication of 7.7, is 10.8 GW. Since
the auxiliary power is 260 MW, the net Q. is an admirable 41. This is unequivocally a

true reactor.
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Figure 6.6: Minimum major radius R (for steady-state L-mode) and flux ratio ®4,/Pp as a
function of aspect ratio R/a at ¢x = 3.0. Here Bpax = 15 T, Pr/Ag = 3 MW /m?, and Qg5 = 6.7.
The flux ratio is above 2 for R/a > 2.8, which corresponds to R = 5.2 m.
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Figure 6.7: A “phase diagram” over [R,g*] showing L-mode, H-mode, and areas forbidden by
reactivity and the Troyon limit. We subdivide L-mode and H-mode into “pulsed” and “steady-
state” zones with the curve defined by fyr = 1. This is for a fission-fusion hybrid “reactor” with a
fission gain of 6.0 and Qs = 6.7. We use the minimum feasible aspect ratio R/a = 2.8 along with
Brax = 15 T and Pr/Ag = 3 MW /m2. This set of parameters would allow for the minimum scale
steady-state L-mode reactor with our fission blanket.
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Table 6.2: Minimum Scale Steady-State L-mode Operating Parameters

R=52m
R/a = 2.8
k=191
Box=15T
B=68T
Q=67
Pr/Ag = 3 MW /m?
q*=3.0
Ip = 17.4 MA
n = 1.410%/m?
Fe =09

Pr=17GW
Poux = 260 MW
H =148
Te = 0.94 s
T =12.2 keV
Oy = 2.3
Wee/wWpe = 1.8
A, /Dp = 2.02
Fooot = 0.46
fep = 0.60
fnr = 1.06
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6.4.1 1-D Profiles

To ensure the viability of this minimum scale 0-D operating point, we perform 1-D profile
analysis similar to that performed on the HYPERION operating point. We can express
density and temperature profiles as parabolas raised to some power « plus a constant edge
value [4]. Equation 6.2 expresses this in terms of a generic profile X (r), which could be
either density or temperature. Note that X (a) = Xeqge and X (0) = X + Xedge-

X(r) = Xo [1 - (g)Q] o X (6.2)

In the case of density, we assume o = 0.5 and an edge value of negee = 0.25(n(r)), where
0.25 is called the density offset fraction and (n(r)) is the volume-averaged 0-D density [4].
Figure 6.8 shows the n(r) profile, normalized so that (n(r)) = no_p.
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Figure 6.8: Ion density n as a function of minor radius r with an offset fraction of 0.25.

In the case of temperature, we assume a = 1.25 and a small edge value of Tigee = 0.15
keV [4]. Figure 6.9 shows the T'(r) profile, normalized so that (T'(r)) = Ty_p. Note that
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T(0) is less than 65 keV, and so no portion of the plasma reaches the maximum (ov).
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Figure 6.9: Plasma temperature T as a function of minor radius » with an edge temperature of
0.15 keV. In this model, we assume that the electron and ion temperatures are equal. Note that T
never nears 65 keV, the temperature which yields the maximum (ov).

It is simple to calculate (ov)(r) from T'(r), which we show in Figure 6.10. In HYPERION,
(ov)(r) is very flat for » < a/2 and even a bit hollow, which provides inherent stability. This
minimum scale reactor does not have such an advantage, but (ov)(r) does flatten a bit as T
approaches its maximum.

Figure 6.11 shows the Pp density profile, computed from (ov)(r) and n(r). The Pg
density is very small in the outer 0.3 m of the plasma, which we call the “mantle” region. In
the mantle, the temperature is low enough so that radiative power losses dominate. In fact,
nearly all radiative power loss occurs in the mantle, which justifies our neglect of radiation
in the 0-D model.
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Figure 6.10: The D-T fusion reactivity rate coefficient (ov) as a function of minor radius r. (ov)
never nears its physical maximum.
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Figure 6.11: Fusion power Pr density as a function of minor radius r. Very little power is
generated in the outer 0.3 m of the plasma (the mantle).
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Current profiles are also instructive, and here we will complete an analysis similar to
that in the HYPERION report [4]. Equation 6.3 shows that the bootstrap current density
profile Iyt () is a function of n(r), T'(r), the electron pressure profile p.(r), and the poloidal
field profile Bg(r) [7]. pe(r) is simply n(r)kT(r)/2, where k is the Boltzmann constant [3].
We can compute Bg(r) from Ip(r), the total plasma current density. Of course, since Ip(r)
depends on Iy (r), we must either employ an iterative solution or assume a plausible initial
Ip(r) profile. We choose the latter approach and assume Ip(r) = Jy[1-(r/a)?], where Jy is
a normalization constant we choose so that the integral of Ip(r) over the poloidal plane is
equal to Ip. Equation 6.3 is derived from neoclassical transport theory [7]. Figure 6.12 shows
Thoot (1), which we renormalized to be consistent with fieer = 0.46 in Table 6.2.

Tooot (1) = (%)1/2 ( gj(?)) {—4.88%6@530) - 0277’27’)%@ (6.3)

Be(r) = &/ 2rkr Ip(r') dr! (6.4)

%o Jo
In order to compute a total plasma current density profile Ip(r), we must know the
current drive density profile Iop(r). Due to electron-cyclotron current drive (ECCD) and
optical steering, we can assume Iop(r) is concentrated in the region r < a/2 [6] [9]. Given

a healthy amount of current diffusion, we can assume Icp(r) is of the form

Icp(r) = Cierfe [C’z (r — g)} (6.5)

where erfc(z) is the complementary error function. Icp(r) is mostly flat for » < a/2 and
smoothly drops to zero for r > a/2. Cy represents the width of the drop. We choose Cy =
a/2. C} is a normalization constant that we use to ensure Iop(r) is consistent with fop =
0.60 in Table 6.2. Figure 6.13 shows Ip(r). For purely illustrative purposes, Icp(r) sits on
top of Ipoot (7).

Now that we know Ip(r), we can calculate ¢(r) directly from Equation 6.6, which is no
more than a generalized version of Equation 4.7. Figure 6.14 shows the result. ¢(r) is a
smooth profile with a minimum at approximately r &~ a/4, which is called a “reversed ¢
profile”. The 0-D ¢* value is ¢* = ¢(a) = 2.9, which confirms that our model is satisfactorily
self-consistent (see Table 6.2). Note that ¢y = ¢(0) ~ 2.2. ¢(r) is always greater than 2,
ensuring excellent current stability. No sawtooth or surface tearing instabilities will occur [7].

(1 + k?) Bg
R tio [y 2k’ Ip(r') dr’

q(r) = (6.6)
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Figure 6.12: Bootstrap current density [l,oot as a function of minor radius r. The bootstrap
current It is a fraction fpoor = 0.46 of the total plasma current Ip. It is concentrated near the
plasma edge.
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Figure 6.13: The total current density Ip (with constituent parts Icp and Iheot) as a function
of minor radius r. The bootstrap current density Ipoot is as shown in Figure 6.12, and Equation
6.5 is our approximation for Icp. Here the topmost curve represents Ip, and the area between
the two curves represents Icp. The current drive density Iop is concentrated almost entirely in
the plasma interior r < a/2 with a profile of the form in Equation 6.5. This is plausible given
electron-cyclotron current drive (ECCD) control.
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Figure 6.14: The safety factor ¢q profile as a function of minor radius r given the total plasma
current profile given in Figure 6.13. This is consistent with the 0-D safety factor ¢x = ¢(a) ~ 3.
Note that q is always greater than 2, ensuring a very stable current distribution.
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6.4.2 Radiative Power

Since H = 1.48 is close to the L-H transition at H = 1.5, it is important to confirm L-mode
operation in terms of radiative power. As we described in Section 4.4, the L-H transition
occurs when a certain amount of auxiliary power is applied. More specifically, it is the power
conducted through the “scrape-off layer” Py, that causes the L-H transition [7]. The scrape-
off layer is a thin zone between the mantle and the blanket where significant radiation occurs.
We can express P, as

Psol: (Pa+Paux)_Prad: (Pa+Paux)<1_frad) (67)

where faq is the ratio of radiative power P,,q to input power (P, + Phux) [12]. For the L-H
transition to occur, P, must be greater than the L-H transition power P,_y. As long as
Py, is less than P;_pg, the reactor is in L-mode. Py, is defined with the scaling shown in
Equation 6.8.

(2.84)C BO821058 R 081
M

The constant C' is 3.5 in this case. Pr_p is in MW, Bisin T, n is in 10?°/m?, R and a are

in m, and M = 2.5 amu [4] [7]. This yields P,_y = 355 MW. Then, given that P, + P,

= 1.612 GW, f,.q must exceed 0.78 for the reactor to operate in L.-mode. Referring back to

Figure 4.3, fiaq > 0.78 is quite reasonable.

Py = (6.8)

Due to the very small Pp density (see Figure 6.11) and low temperature (see Figure 6.9)
in the mantle, we can assume that nearly all radiative power losses occur in the mantle and
therefore do not significantly affect the 0-D Pg [4]. The HYPERION report shows this, and
the 1-D profiles we show here (see Figures 6.8-11) indicate that the same is likely true for this
minimum scale reactor. Thus, our neglect of radiative power losses in the 0-D core model is
a reasonable approach.
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6.4.3 Operating Point Access

Just as with HYPERION;, it is essential to ensure that the operating point is accessible.
Figure 6.15 shows the auxiliary power P, in the [n,T] plane for the 0-D operating point
specified in Table 6.2. In contrast with HYPERION, there is no P,,, < 0 zone within the n
or T ranges of the operating point. There is still a saddle point, but it lies just off the plot
at high n. Accessing the operating point is simple. We can increase n and P, such that
the plasma simply moves directly to the operating point, which is marked with the red circle
at T =12 keV, n = 1.4 x 10?°/m3, and P, = 260 MW.

This operating point is stable for the same reasons as the HYPERION operating point. If
the temperature were to decrease, the required auxiliary power would also decrease, causing
the plasma to heat up and regain its original temperature. If the temperature were to
increase, the required auxiliary power would also increase, causing the plasma to cool down
and regain its original temperature. Given that we can directly control density, the operating
point is quite secure.
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Figure 6.15: Auxiliary power P,.x contours as a function of density n and temperature 1" for
the minimum scale reactor. The operating point (n = 1.4 x 10 m™3, T' = 12.2 keV, Py = 260
MW), is marked with the red circle. The thick, conspicuous purple contour represents when P,y
is consistent with the operating point of 260 MW. The red arrows show the ignition path.
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6.5 Implications

Our minimum scale operating point has a fusion power of 1.6 GW. With a fission blanket
multiplication of 7.7, this yields a total hybrid power of 10.8 GW. If we employ a standard
Brayton cycle with a thermal efficiency of 41% (see Section 8.3), then the total electric power
would be 4.4 GW.

Unfortunately, this is too large for the U.S. electrical grid as it now stands. If the grid
is not substantially improved in the future, we could easily employ our model to constrain
the total electrical power output to 1 GW and generate a new set of parameters similar to
those in Tables 6.1 or 6.2. The only drawback would be that the minimum scale - and thus
the minimum capital cost - would not be substantially less than our results in this thesis. A
1 GW steady-state L-mode tokamak would certainly not be anywhere near as economically
viable as a similar 5 GW device, and it might not be economically viable at all. The main
conclusion of our 2009 bachelor’s thesis was that tokamaks are best suited for steady-state
L-mode operation only at large scales with large power outputs [28]. Thus, the grid is a
constraining factor, or perhaps even a crippling factor, in sustainable tokamak design.

An alternative option would be to split the power output between commercial electricity
generation and hydrogen production. We could send the maximum allowable electric power
to the grid and utilize the remainder for hydrogen production (or some other chemical process
that happens to be in demand).

However, this thesis is centered around how a fissionable blanket can augment the fusion
power and eliminate the high () requirement such that steady-state L-mode operation be-
comes feasible at smaller scales. We have now shown that this is true - the blanket allows
for steady-state L-mode operation at R =~ 5.2 m, which is about 5/6 the size of ITER. Our
novel coupled fission-fusion analysis demonstrates unequivocally that a fissionable blanket
eases the constraints on fusion.
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7 Burnup and Fuel Cycle

Now that we have reamed out the initial steady-state condition, we must analyze the evo-
lution of fuel composition - burnup. Although we do not include a quantitative burnup
calculation here, we propose a novel subcritical implementation of BGCore as well as a novel
technique to sustain a constant hybrid power level throughout burnup. Additionally, we
perform some simple fuel cycle analysis to show that our proposed hybrid could breed fissile
material or transmute fission product waste much more effectively than a pure fission fast
reactor. We also touch on non-proliferation as well as the potential for a thorium fuel cycle.

Since this hybrid will breed large quantities of plutonium (replacing #*®U with 23Pu),
the blanket k.g and power gain will both initially increase. Lawrence Livermore National
Laboratory (LLNL) has studied inertial confinement hybrids with depleted uranium blankets
(see Section 9.1.3) and concluded that keg will rise to a maximum of not more than 0.7 before
gradually decreasing indefinitely [31]. Although our device is substantially different, it is not
terribly unreasonable to assume that the similarities between natural and depleted uranium
will yield the same general trends. We will assume that there is no criticality safety problem
and proceed with our discussion.

7.1 Subcritical Burnup Implementation

In future work, we plan to implement the burnup package BGCore, recently developed at
Ben-Gurion University of the Negev [47]. We prefer BGCore for its accessible MATLAB
implementation. It accepts an MCNP input file with several additional burnup parameters.
At each time-step, BGCore runs MCNP to obtain the flux distribution and computes the
change in fuel composition during the time-step using that flux distribution. Then BGCore
runs MCNP using the new fuel composition, and the cycle repeats for as long as the user
specifies.

Unfortunately, BGCore, as it currently stands, will not work for subcritical systems.
BGCore requires the MCNP kcode command, which iterates a normalized flux distribution
through subsequent neutron generations (so that the total number of source neutrons in
each generation is constant, as in a critical system). When the k eigenvalue converges
after a set number of iterations, the final flux distribution that yields that converged k
eigenvalue is deemed the true flux distribution of the system. Essentially, the goal is to
determine the fission source distribution that yields a subsequent fission source distribution
(in the subsequent generation) identical to itself. Although this scheme works marvelously
for critical systems, it is folly for subcritical systems. In a subcritical system, a known (non-
fission) neutron source causes everything to happen. Since the source is already known, no
iteration is required to determine it. Of course, the kcode command will still function for
a subcritical fixed source system with & < 1, but it will determine the flux distribution
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after many successive neutron generations, where the flux is very small in magnitude. While
such a flux distribution might be physically interesting, it is useless for burnup calculations
because it comprises only a very small portion of the total flux. In our system, the fusion
source neutrons themselves (&~ 3 MW/m? ~ 1.3 x10' n/cm?/s) comprise a sizable portion
of the total flux. Refer back to Figure 3.13, which shows the relative number of neutrons in
each generation. We can reproduce that same data here in a pie chart with Figure 7.1. Over
one third of all neutrons in the system at any given time are generation 1 (fusion-born). Any
flux distribution produced by a kcode iteration would not include generation 1 (35%) and
would probably not even be very accurate for generation 2 (46%). Without the high-energy
fusion-born neutrons, no burnup calculation can be accurate.

Fortunately, BGCore could be applicable to subcritical systems with a few slight modifi-
cations. In a critical pure-fission system, both the (fission-born) neutron source and the fuel
composition evolve with each time step. In our subcritical system, the (fusion-born) neutron
source remains fixed while only the fuel composition evolves. Of course, the flux distribution
will evolve, but it will evolve as a consequence of fuel composition only. See Figure 7.2 to
compare causation flow charts for critical and subcritical systems. Interestingly, the interre-
lationships between quantities in subcritical systems are less complex than those in critical
systems. The only real barrier to subcritical burnup analysis is that there is little prior work
on which to base it - like BGCore, most burnup codes assume criticality. However, the task
of applying BGCore to a subcritical system would consist of simply modifying the parameter
relationships as in Figure 7.2. The source distribution file must be constant throughout the
burnup process, and the flux distribution must be obtained from MCNP without kcode.
Circumventing kcode would dramatically reduce the runtime of BGCore.

To our dismay, we must postpone a subcritical implementation of BGCore until future
work, as it would take us beyond the timeframe for this study. For now, we can look to
other studies, such as Vincent Tang’s 2002 thesis, to see other hybrid burnup calculations.
Although Tang’s design is quite different than ours (in ways we have already discussed), he
found that his device could operate for ~ 30 years. Since we employ a higher fuel density
with natural uranium, it is plausible that our conceptual design could yield similar results.
We may perform a follow-up study with our proposed subcritical BGCore implementation.

7.2 Maintaining Constant Hybrid Power

One interesting property of this hybrid system is that the fusion power can be varied at will.
Operators can adjust the plasma density in the tokamak to alter the D-T reaction rate. This
fact happens to be extremely favorable for control of the fission component. In a pure fission
reactor, various complex mechanisms are implemented to achieve and maintain criticality at
a desired power level. These include control rods, chemical shim, fission product poisons,
and burnable poisons. Of course, none of these mechanisms is necessary in a subcritical
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system, the advantages of which we have already discussed at length. However, even though
criticality (keg = 1) is of no concern, we must still consider how to maintain a constant power
level during long periods of time in which significant burnup occurs and kg does in fact vary.

Referring to Figure 3.13, we will express the ratio of neutrons in generation 2 to generation
1 as ko and the ratio of neutrons in generation n to generation n — 1 for n > 2 as k. Thus
the ratio of neutrons in generation n to generation 1 is kok™ 2 for n > 1. Here ko ~ 1.3 and
k =~ 0.3. The number of fissions per neutron in generation 1 is ko /7y, where 7y is simply v
averaged over the fissions spurred by generation 1 neutrons. Similarly, the number of fissions
spurred by generation n neutrons per generation 1 neutron is kgk™ 2 /v, where ¥ is v averaged
over the fissions spurred by generation n > 1 neutrons. Here we are assuming that k£ and v
have essentially converged and change very little after generation 2.

With definitions out of the way, we can easily express the fission power multiplication
Qss and the total hybrid power Py, as a sum of the fissions spurred by each generation of
neutrons. Here we assume that the energy released in a fission event is always 193.9 MeV
and that all fusion neutrons, which constitute 4/5 of the fusion power Py, are born at 14.1
MeV.

4 4 193.97 [ko  kok = kok?  kok3
B :_Pus s:_Pus e p— — — p— 1
b = 5 Frus@tis = 5% [14.1]{1/0+u+ * * (7.1)
We can convert this infinite sum to an algebraic function of k.
4 193.9 1 1 1
Py ==FPas | — | ko |—+=| ——1 2
hyb 5f“[14.1} O[vo+v<1—k )} (7.2)

Now, as burnup occurs in the fission blanket, &£ and 7 will evolve in time. This will cause
By to evolve in time, which is not preferable.

o) =3P | 227 000 5365+ 55 (= 1) (79

However, since we have control over Py, we can stipulate that Pp,s evolve in time as Ppys(?)

to compensate for burnup such that Py, remains constant. It is simple to see how this
evolution would work:

1 1
ko(0)] | %@ + 50 (pk(o) - 1)
ko(t
o) Lot ok (1_% _ 1)

So while this hybrid configuration obviates criticality, it also greatly simplifies power stability.

Pra(t) = Prs(0) [ (7.4

There is no need for specialized control mechanisms, as we can manipulate the fission power
indirectly through the fusion power. We recognize that this function would be extremely
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difficult to know beforehand, but burnup occurs gradually enough that Prg(t) could be
adjusted in real-time.

Of course, it is important to note that k(¢) in Equation 7.4 is not the same k(t) in the case
of constant Ppg. Although we can keep the total blanket power Py, constant throughout
burnup by varying Pps(t), we cannot keep the spatial and energetic distribution of the flux
constant as the fuel composition evolves. Let us suppose that k(¢) initially increases. We
lower Ppys(t) so that Py, remains constant. Now the rate of increase of k(t) slows, because
the flux has decreased. However, if k(t) initially decreases, raising Pps(f) will accelerate
the decrease of k(t). Thus, we can say with confidence that this technique moderates k(t)
increases and exacerbates k(t) decreases.

Since this hybrid will breed large quantities of plutonium, k(¢) will initially increase as a
function of time. ko(t) will also increase, although not as substantially, as ***U and ?**Pu have
similar fission cross-section magnitudes at 14 MeV (within a factor of 2). Inertial confinement
hybrid studies by Lawrence Livermore National Laboratory (LLNL) have shown that keg will
rise to a maximum of not more than 0.7 before gradually decreasing indefinitely [31]. Thus,
there would be ample opportunity to apply this method to both k(t) increases and decreases.

Finally, we should clarify a potential ambiguity. In the previous subsection and in Figure
7.2, we defined the fusion neutron source as a fixed source. When we consider varying
Prus(t), the fusion source is still “fixed” in the sense that it is independent of all other fission
properties - Figure 7.2 is still valid. However, it is obviously not “fixed” in the sense of being
constant. A more precise way to characterize Pps(t) would be “variable but independent”.
This is one of many potentially-confusing subtleties in fission-fusion hybrid dynamics. We
will call this kind of source a variable fixed source, a fitting oxymoron.

We could test this variable fixed source idea with our proposed subcritical implementation
of BGCore. Instead of using the same fixed source for each iteration ¢, BGCore could modify
the source S; based on the initial system power F, and the system power for the prior
generation P;_;.

P
Py

Our convention here is that the source S; generates the power P; in the ith iteration. Here
we must stipulate that S; = Sy to initiate the recursion.

Si = S0

(7.5)



A Fission-Fusion Hybrid Reactor 159

1% 3%

g=3
fission
38%

g=2
fission

Figure 7.1: Fractional share of neutrons from each generation in the entire hybrid system. The
initial fusion-born neutrons comprise 35% of all neutrons, while the first generation of fission-born
neutrons comprise 46%. Beginning with generation 3, each successive generation contains only
k =~ 0.3 as many neutrons as the previous generation.
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Figure 7.2: Causation relationships between basic core quantities in critical and subcritical sys-
tems. In a critical system, the fission-born source depends on both fuel composition and the flux
distribution generated by previous sources. In a subcritical system, the non-fission source is inde-
pendent of all other quantities. In the hybrid context, this shows that while fusion drives fission,

fission has no effect on fusion.
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7.3 Breeding

This natural uranium fission-fusion hybrid will breed copious fissile material. Figure 7.3
shows the portion of the 238U transmutation-decay chain that is of interest to us. Any
uranium-fueled reactor will breed both **Pu and ?3"Np from the ?**U(n,7y) and ?3*U(n,2n)
reactions, respectively. It will also breed many other fissile nuclides (such as **'Pu and
241Am), although those will have orders of magnitude smaller concentrations due to the
additional (n,y) reactions required.

n,2n n,y n,y
237U — 238U —_ 239U _ 240U

16.8d l24m l14h

n,
237Np 239Np oY 240Np
l2.4 d l?.z m
n,2n n,y n,y

238p | «— | 239py | — |240py | — | 241py

Figure 7.3: The 238U transmutation-decay chain with relatively stable fissile isotopes in red. Here
we show only the dominant interaction between each isotope.

When most people talk about breeding and conversion ratios in the uranium cycle,
they primarily mean converting 23®U into 2*°Pu and other plutonium isotopes through the
238U (n,7) reaction. We can define a conversion ratio C' for each fissile isotope produced in the
reactor as the ratio of the production rate of that isotope to the removal rate of the original
fissile isotope(s) present in the fuel. In the case of converting ?**U into ?*°Pu, C' is roughly
proportional to the ratio of the ?**U neutron one-group capture cross-section o, to the 2°U
one-group absorption cross-section o,. Here the absorption cross-section o, includes fission,
capture, and all other reactions that absorb a neutron except inelastic scattering. Thus,
the absorption cross-section is equivalent to the total removal cross-section. We define € as
enrichment by atomic fraction.

2U238 1 _ U238
Cmle (—) % (7.6)
€

~ U235 U235
Za Ua
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For illustrative purposes, it is convenient to define an energy-dependent conversion ratio
C(FE), which is C' evaluated with cross-sections at one specific energy instead of with one-
group cross-sections averaged over a spectrum. C(FE) would be the conversion ratio for a
hypothetical reactor in which all the neutrons are monoenergetic with energy E. Although
not particularly physical, C(F) provides an instructive spectrum-independent overview of
how the conversion ratio changes with energy:.

cw)~ () Somim

Although these approximations for C' are simple and useful, the conversion ratio is ac-

(7.7)

1— ¢\ oUs(E)
-)

tually a time-dependent quantity that evolves as burnup proceeds. We can calculate C
precisely as a function of time by numerically integrating transmutation-decay differential
equations - one for each nuclide. We set these up in a standard form with Figure 7.3 as a
guide. The change in the concentration N of a given nuclide 7 is the difference between the
one-group cumulative loss N'o’¢ and the sum of all one-group gains N7g7~'¢ from other
nuclides of index j. Of course, nuclide i can decay at the rate A N* and be produced from
another nuclide j at the rate M7*N7. The one-group cross-sections are joyfully simple to
compute in MATLAB with unionized cross-sections and flux spectra, which we will explain
near the end of this subsection.

dNi

=y v [Coumemae] + S v [Comemae] @

J#i
We can numerically integrate these differential equations for the system shown in Figure 7.3

to obtain the instantaneous time-dependent *Pu conversion ratio C'(¢).

B dNPu239/dt
- —dNU25 /¢

We can also set up a very similar set of differential equations to determine the time-

C'(t) (7.9)

dependent monoenergetic nuclide concentrations N, at energy E,,.

dﬁfﬁ = — N}, [N+ 0L (Bn)$(En)] + > N2 [N+ 07 (B ) $(En)] (7.10)

J<i

Then the time-dependent monoenergetic conversion ratio C'(E,,,t) is

B d NYFr’Lu239 / dt
pEeT

Figure 7.4 shows C(E,,, t) during the first 23 days of operation for £,, = 0.1 MeV and 1.0
MeV. Here we arbitrary assume an enrichment of 5%. Obviously, C'(E,,,0) = 0, because the

C(Ep, ) (7.11)
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finite half-lives of 23U and #*Np prevent immediate production of #?Pu. However, after a
time much longer than the longest half-life has elapsed, C'(E,,,t) approaches an equilibrium
value very close to Equation 7.7. As burnup proceeds over much longer time scales, this
equilibrium will evolve. However, we will henceforth refer to this initial equilibrium value as
the “monoenergetic conversion ratio”.

25 T T T T T

0.1 MeV

1 MeV

23py, conversion ratic

|
15 20 25
days

Figure 7.4: Monoenergetic 3°Pu conversion ratio as a function of time for 5% uranium enrichment.
Here we show 1 MeV and 100 keV. The conversion ratios asymptotically approach equilibrium after
time becomes much longer than the longest half-life in the decay chain (2.4 days for 239Np).

Figure 7.5 shows the monoenergetic conversation ratio as a function of energy for 5%
enrichment. This can be somewhat closely approximated by Equation 7.7, although the
transmutation-decay chains contain some additional losses. Figure 7.7 encapsulates why
fast reactors can breed more fissile material than they consume much more readily than
thermal reactors. The monoenergetic conversation ratio C(E) exceeds 1.0 in the range
0.01 < E < 1.0 MeV, which is approximately the range in which a typical fast reactor
spectrum resides. Thermal reactors have a fast peak in the C'(E) > 1 region and a thermal
peak in the C'(E) = 0.1 region, and the spectrum-averaged C' tends to be greater than 0.5
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but less than 1.0.

Beyond 1 MeV, C(E) drops by two orders of magnitude. Consequently, the 14 MeV
neutron source in our fission-fusion hybrid will breed only trace quantities of 2*Pu. However,
the portion of our hybrid spectrum below the 23¥U fissionable threshold is nearly congruent
with that of a typical fast reactor spectrum and will breed ample 23*Pu. Furthermore, the
low abundance of ?*°U in natural uranium (0.7%) will mean that the conversion ratio for our
hybrid will be approximately 7.5 times higher than that shown in Figure 7.5. So although the
14 MeV neutron source does not contribute directly to conversion, it contributes indirectly
a great deal by obviating criticality such that the initial concentration of fissile material can
be very low.

1 I:I T T T T

10° E
'L 4
) thermal fast hybrid 1
: l i P l |
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G U h Lk %
- 3
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o 4
o 0" L ‘ H

1m- b
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Figure 7.5: Monoenergetic 23?Pu conversion ratio as a function of energy at 5% enrichment. The
red line denotes C' = 1. This illustrates why fast reactors can breed 23Pu while thermal reactors
cannot. Although conversion ratio is very low at 14 MeV, our fission-fusion hybrid will still breed

considerable 22*Pu due to its large flux magnitude in the typical fast reactor range.

Figure 7.6 shows the monoenergetic conversion ratio in the fast energy range for three
fissile isotopes: 23Pu, 2"Np, and ?33U. 2"Np is bred primarily from the *U(n,2n) reaction
(see Figure 7.3), but it is also produced in much smaller amounts from successive (n,7y)
on U and the a-decay of **'Am. 233U is bred from the ?**U(n,3n) reaction. Here the
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“enrichment” is 0.7%, consistent with our natural uranium hybrid. As we saw in Figure 7.5,
the 239Pu conversion ratio is high below a few MeV.

We are especially interested in 23"Np, as it is both fissile and a highly mobile waste
product. In 1992, the U.S. government declassified the fact that »"Np can be used make
nuclear weapons [34]. In 2002, researchers at Los Alamos National Laboratory performed
a criticality experiment with a 23"Np sphere to show that its critical mass is approximately
60 kg, less than 20% larger than that of 2*U [35]. The k., value of pure "Np metal is
approximately 1.7 compared to 2.28 for 2°U [36]. That #"Np is moderately fissile and a
proliferation concern is somewhat surprising, as it is an exception to the general rule that
fissile nuclides obey 27 — N = 43 + 2. Proliferation concerns aside, ?*"Np is also known as
the most mobile of the actinide waste products, and so it is highly undesirable [37].

While pure fission reactors (thermal or fast) breed relatively little 2’Np (because the
(n,2n) threshold is nearly 7 MeV), the fusion-born neutrons in our hybrid will breed >*"Np
at an expeditious rate. As shown in Figure 7.6, the monoenergetic "Np conversion ratio
at 14 MeV exceeds 100. The fusion-born neutrons will also breed a non-negligible amount
of 283U, something that usually only shows up in the thorium cycle. Although the 233U
conversion ratio never exceeds 0.2, it is roughly equal to the 23°Pu conversion ratio at 14
MeV.

Now that we have spent some time with monoenergetic conversion ratios to gain insight,
let us turn to spectrum-averaged conversion ratios. We calculate these with a system of
differential equations with one-group cross-sections as shown in Equations 7.8 and 7.9. For
simplicity, we will assume a constant flux shape throughout the fuel, and we will use the
hybrid spectrum from Figure 3.16. For perspective, we will also calculate conversion ratios
for typical thermal and fast pure fission spectra. We will borrow a thermal spectrum from the
MIT Reactor, and we will obtain an approximate fast spectrum from a simple MCNP input
file with UO4 fuel rods surrounded by sodium coolant (see Appendix 1.4). We plot these
three spectra in Figure 7.7, where each has been normalized to the same total magnitude
of 1.0. The flux magnitude is not especially important, as the equilibrium conversion ratio
(refer back to Figure 7.4) depends only on the flux shape. The flux magnitude will determine
how quickly the conversion ratio approaches its equilibrium value, but it will not affect that
equilibrium value.

Table 7.1 shows conversion ratios for 2*?Pu, 23"Np, and ?*3U in the thermal, fast, and
hybrid flux spectra. As expected, the fast spectrum achieves a 23°Pu conversion ratio of
greater than 1.0 while the thermal spectrum does not. The hybrid spectrum achieves a
prodigious 2*?Pu conversion ratio of 22, because it is not critical and contains very little
235U. As for 2"Np, the thermal and fast spectra produce very little. However, the hybrid
spectrum actually achieves a 2"Np conversion ratio of greater than 1.0! Our fission-fusion
hybrid “converts” 2*°U into 23"Np just as well as a typical fast reactor converts 2**U into
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Figure 7.6: Monoenergetic conversion ratios for 23°Pu, 23"Np, and 233U. This is for natural
uranium fuel with 0.7% 23°U. At 14 MeV, just as much 233U as 239Pu is produced per 23U fissioned.

239Pu. None of the spectra produce a substantial amount of 233U, although the hybrid does
produce about 1000 times as much as a fast reactor.

The consequence of this is that our fission-fusion hybrid is a prolific breeder. Depending
on the cycle length, this hybrid could breed enormous quantities of 2*Pu for use in pure
fission reactors. The 2"Np it produces could also be used as fuel in theory, although it has
not yet been proven to be a viable fuel. Fast reactors have been touted as sufficient to breed
fissile fuel for future generations of nuclear power, but our hybrid reactor is clearly superior
in this respect.

We should pause here to elucidate exactly how we perform these breeding calculations
in MATLAB. We construct a unionized set of all cross-sections on a 248-group energy grid
of constant lethargy width corresponding to our Monte Carlo flux, which is tallied per unit
lethargy. Although this unionized set does not fully delineate the resonance region and
would not suffice for a full-scale design, it is adequate for this rudimentary calculation.
The conversion ratios we cite for thermal and fast spectra in Table 7.1 are consistent with
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Figure 7.7: Our fission-fusion hybrid spectrum overlaid on typical spectra for fast and thermal
reactors. All three spectra are normalized so that they have the same magnitude.

widely-known values. Once we have constructed this unionized set, we can simply sum the
element-wise multiplication of the flux and each cross-section to obtain a value proportional
to each reaction rate. For example, we can approximate the equilibrium conversion ratios
for the three isotopes in Table 7.1 as

C_Pu239 = sum(flux.*xs_c_U238*(1-e))/sum(flux.*xs_a_U235*e) ;
C_Np237 = sum(flux.*xs_n2n_U238*(1-e))/sum(flux.*xs_a_U235x*e);
C_U233 = sum(flux.*xs_n3n_U235)/sum(flux.*xs_a_U235);

Here e is the enrichment by atomic fraction. This is a very convenient and efficient method
for computing conversion ratios from unionized cross-section data when the flux is computed
per unit lethargy with constant lethargy group width. The monoenergetic conversion ratios
are similar except that we multiply scalars instead of summing element-wise array products.
For the numerical integration necessary to obtain the time-dependent conversion ratios in
Figure 7.4, see Appendix H.
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Table 7.1: Fissile Nuclide Conversion Ratios

thermal fast hybrid
239Py 0.67 1.3 22
2TNp  0.0028 0.011 1.3

B3U 59 x 107 7.7 x 1077 7.6 x 1074

Mark Reed

We should qualify this analysis further by stating that conversion ratio might not be the

most suitable metric for evaluating the breeding capability of subcritical systems. Just as
neglecting criticality obviates a host of fuel cycle constraints, it might also render certain

fuel cycle metrics obsolete. Although conversion ratio still tracks the total fissile inventory,

perhaps a different quantity, such as fissile nuclei bred per fusion event, might be more useful

for comparing various subcritical systems. For example, using depleted uranium instead of

natural uranium in our subcritical system would increase the conversion ratio by a factor of

2 to 4, even though there would be little difference in reactor performance or the amount of

plutonium produced. However, the change in plutonium nuclei bred per fusion event would
be commensurately small. Future work on subcritical breeding should develop new metrics

for (1) comparison between critical and subcritical systems and (2) comparison between

different subcritical systems.
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7.4 Viability of a Thorium Fuel Cycle

Natural thorium is 100% 232Th, which is fissionable but not fissile. However, the ?*Th(n,y)
reaction breeds 233U, which is highly fissile. A thorium-fueled reactor would require an added
initial concentration of fissile material such as 23*Pu to jump-start the fission chain reaction
and achieve criticality long enough for ?*3U to pick up the torch. Proponents of the thorium
fuel cycle tout its dearth of actinides, lack of enrichment requirements, and greater natural
abundance.

Thorium fuel in a fission-fusion hybrid is an intriguing idea. The fusion neutron source
would obviate the need for initial fissile material - the fuel could be nothing but natural
thorium. Hans Bethe mentioned this idea in 1979 [39], and it has been revisited in recent
years at the MIT Plasma Science and Fusion Center [38] as well as at the University of
Ilinois [40].

Since fresh thorium fuel for our hybrid would contain no fissile material, we must employ
the “breeding ratio” rather than the conversion ratio to evaluate its effectiveness. The breed-
ing ratio is defined as the ratio of the production rate of fissile nuclides to the total rate of
fission. For the thorium cycle, it is approximately

UTh232

Th  Yc

For the uranium cycle with atomic fraction enrichment e, it is

(1 —¢€)oJ?38

BY ~
60'?235 +(1- e)a}mg

(7.13)

We can compare breeding ratios for each cycle using the same three spectra (thermal,
fast, and hybrid) as in our uranium cycle conversion ratio analysis (see Figure 7.7). Table
7.2 shows breeding ratios for 2Pu and #"Np in the uranium cycle and for ?*3U and ?*'Pa
in the thorium cycle. The breeding ratios for 23’Np and ?*'Pa are defined in the same way
as in Equations 7.12 and 7.13 except with (n,2n) replacing (n,y). ?*'Pa is a peculiar isotope.
Just barely non-fissile with k., = 0.95, it can still achieve criticality with a reflector or with
an added moderator [36]. We have computed its breeding ratio here only because it is the
thorium-cycle analog of uranium-cycle 2"Np.

Table 7.2 shows that in the uranium cycle, the hybrid spectrum breeds more of each
fissile material than the fast or thermal spectra. However, in the thorium cycle, the hybrid
spectrum breeds more 2*'Pa but significantly less 233U, which is the whole point of the
thorium cycle.

Figure 7.8 shows the 22Th(n,7) and #*¥U(n,7) cross-sections as functions of energy. These
are roughly equivalent to effective 2Pu and 2*3U “breeding cross-sections” in the uranium
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and thorium cycles. The thorium cycle breeds substantially more 2*3U at thermal energies
than at fast energies.

The main conclusion here is that our fast-spectrum fission-fusion hybrid is not optimally
suited for the thorium cycle. The fixed neutron source is definitely highly favorable to
the thorium cycle, but the hybrid spectrum should be thermalized in order to maximize
233U production. Unlike our design, a fission-fusion hybrid thorium burner should have a
moderator. We will now close this thorium discussion and press onward.

il T
| :

effective breeding cross-section (barns)

MeV

Figure 7.8: Effective 23°Pu and 23U breeding cross-sections for uranium and thorium fuel, re-
spectively. These are roughly equal to the 233U(n,y) and ?*>Th(n,y) cross-sections.
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Table 7.2: Comparison of Thorium and Uranium Breeding Ratios

thermal  fast  hybrid
thorium (*33U) 36 32 19
thorium (®'Pa)  0.26 023 14
uranium (***Pu)  0.67 1.2 3.5
uranium (*"Np)  0.0028 0.0099  0.21
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7.5 Non-Proliferation

Non-proliferation is an intricate subject, bringing together aspects of fuel cycle analysis,
physical security of facilities, and political science, and even game theory. For the purposes
of this work, we will only discuss some rudimentary fuel cycle aspects of the subject.

As we have already discussed at length, our fission-fusion hybrid is subcritical and thus
requires no enrichment. Although pure fission reactors require levels of enrichment much
lower than those required to construct weapons, it is the same enrichment process. The
existence of this process (and people who have knowledge of it) is itself a proliferation risk,
one that we willingly take on because it is the only way to achieve criticality in pure fission
reactors (with the notable exception of the CANada Deuterium Uranium (CANDU) reactor,
which requires deuterium enrichment).

One could imagine a world in which a few large fission-fusion hybrids use natural uranium
to breed plutonium, which in turn fuels a fleet of fast and thermal fission reactors. This
hypothetical world would require no enrichment facilities whatsoever, although it would
introduce a different proliferation risk in terms of producing large quantities of plutonium
and neptunium.

In thermal reactors, *°Pu is the main proliferation risk due to its relatively high con-
centration and status as a highly fissile nuclide. However, plutonium in spent fuel always
contains certain fractions of #*Pu and ?*°Pu. **Pu undergoes a-decay, which generates haz-
ardous heat within the material. Much worse, *°Pu undergoes spontaneous fission, which
could pre-detonate or fizzle a weapon. Thus, weapons-grade plutonium must have sufficiently
low concentrations of 2¥Pu and 2*°Pu [41].

As a crude measure of relative plutonium isotopic ratios, Table 7.3 shows one-group
299Pu(n,y)?Pu and #Pu(n,2n)?**Pu cross-sections for the same thermal, fast, and hybrid
spectra utilized in the preceding sections. Clearly, thermal reactors produce far more *°Pu
per 2%Pu atom than fast reactors or fission-fusion hybrids, although they produce rela-
tively little 23¥Pu. However, comparing fast reactors to hybrids shows that hybrids produce
marginally more 24°Pu and substantially more *¥Pu. Even though hybrids seem to best fast
reactors, the very large 23°Pu(n,7y) cross-section of thermal reactors seems to outweigh the
advantage hybrids have with respect to 2*Pu(n,2n). Of course, thermal reactors have 23°Pu
breeding and conversion ratios of less than 1.0, and so they are not even breeders in the first
place.

However, there is one additional source of ***Pu we have neglected until now: 2"Np(n,y).
When 2"Np captures a neutron, 2*Np decays into 2*®Pu. As hybrids contain large portions
of 2"Np, this will substantially add to the content of ?**Pu in plutonium. We would need to
perform a detailed burnup analysis to determine the evolution of ?**Pu content.

B7Np itself is also concerning. Although it can be chemically separated as a nearly
pure nuclide (with only trace amounts of other neptunium isotopes), it does not match the
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proliferation potential of ?*?Pu, which is much more fissile (higher k. and lower critical
mass). A 2005 Institute for Science and International Security (ISIS) report stated that “the
proliferation risk currently posed by neptunium and americium remains relatively small”
[42].

The most salient point in this non-proliferation analysis should be that these fission-
fusion hybrids will breed plutonium that is plausibly more proliferation-resistant than that
bred by fast reactors. This fact coupled with a lack of enrichment requirements actually
makes hybrids seem fairly attractive in the context of non-proliferation. However, more
rigorous burnup and transmutation analysis would be necessary to confirm this.

Table 7.3: 239Pu One-Group Cross-Sections (barns)
thermal fast hybrid

2399Pu(n,y)?*Pu 56 0.44 0.49
29Pyu(n,2n)*%Pu 0.0014  5.1x10™* 0.0049



174 Mark Reed

7.6 Waste

So far, we have discussed breeding and proliferation with respect to the actinides. Although
not a huge proliferation risk, 2*’Np is perhaps the most problematic actinide present in
waste. Although our fission-fusion hybrid produces far more 2"Np than any pure fission
reactor, it will also fission 23"Np far more effectively than any pure fission reactor. Although
moderately fissile, 2"Np has a larger fission cross-section at 14 MeV than it does at thermal
energies. The hybrid will also fission (non-fissile) fissionable nuclides before they can produce
fissile nuclides through transmutation. Fissioning unwanted actinides is usually preferable
to transmuting them into other (potentially also unwanted) actinides. Various studies have
attempted to quantify this, and proponents of inertial confinement hybrids with natural or
depleted uranium claim that it is possible to burn 99% of all actinides [30]. This claim rests
on the viability of a decades-long cycle time, which we will discuss in the following section.
For the purposes of fair comparison between neutron spectra, we are currently discussing
burnup and transmutation on time scales concordant with current light water reactor cycle
times.

Beyond the actinides, our fission-fusion hybrid will also transmute problematic fission
product waste. In order to quantify this, we will invent a new dimensionless parameter
called the “fission product factor”. We can evaluate this parameter for each individual fis-
sion product, and it is the ratio of production through fission to removal through neutron
absorption. Here we define “neuron absorption” as (n,7y), (n,2n), (n,a), or any other neutron
reaction that transmutes the nuclide. Of course, sometimes one fission product will trans-
mute into another, but we are usually only interested in the long-lived and medium-lived
hazardous fission products, which are all separated by at least two units of mass number A.
If we assume that the uranium concentration Ny is relatively constant and that the initial
fission product concentration Ngp is zero, this “fission product factor” is actually equal to
the short-term equilibrium ratio Ngp/Ny.

Nrp _ FP production rate per U atom

_ (7.14)
Ny FP removal rate per FP atom

If we know the fission product yield Ygp, then we can express Npp/Ny in terms of cross-
sections, the flux, and the atomic fraction enrichment.

Nep _ Yoo [ [c0}?(B) + (1 = oy (B)|o(F) dE

Ny J ofP(E)¢(E) dE

(7.15)

This “fission product factor” is a simple, reasonable way to quantify how well a reactor
transmutes hazardous fission products. Lower values of Ngp/Ny mean that fission products
will generally have lower concentrations. Table 7.4 compares Ngp/Ny for nine hazardous
long-lived or medium-lived fission products with our usual three spectra. With the exception
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of ¥Tec, every isotope exhibits its lowest Npp/Ny value in the hybrid spectrum. In some
cases, the difference exceeds two orders of magnitude. Thus, it is reasonable to conclude
that our fission-fusion hybrid will be highly effective at transmuting the most harmful fission
product waste. We should note that this advantage is due almost entirely to (n,2n) reactions
on the fission products. These results are consistent with other recent studies [45].

This is crucial, because less long-lived fission product waste requires less storage space in
geologic waste repositories. Yucca Mountain is a perpetual political issue, and it is one of
the main reasons why scientists are taking a second look at hybrids. If Yucca Mountain and
other geologic repositories are forever stymied, reducing the amount of waste will become
exponentially more important.

Table 7.4: Fission Product Equilibrium Concentrations

Y (%) thermal Npp/Ny fast Npp/Ny  hybrid Nep/Ny
6.911 135Cs 0.13 0.089 0.027
6.337 B7Cs 4.1 0.88 0.11
6.139 PTec 0.0078 0.026 0.0093
5.458  937r 0.17 0.095 0.028
4505 OSr 14 0.93 0.11
1.250 197pqd 0.0068 0.0032 0.0011
0.841 1291 0.0057 0.0055 0.0019
0.108 '26Sn 0.16 0.027 0.0024

0.045 ™Se 1.7x1074 3.2x107* 1.0x104
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7.7 Cycle Time

The cycle time of pure fission reactors is limited by two factors: criticality and materials.
After a certain portion of the heavy metal has fissioned, the reactor can no longer remain
critical. After a certain amount of radiation damage, certain structural materials may fail.
In contrast, since fission-fusion hybrids need not achieve criticality, only materials limit their
cycle time.

We originally intended this hybrid to be a power-producing reactor, and it certainly is
that. However, we have also shown that it is a prolific plutonium breeder. If we use it to
breed fissile fuel for pure fission reactors in order to obviate enrichment as we described in
Section 7.5, then the cycle time will be on the order of a typical fast reactor cycle time.

However, if we decide that breeding fissile fuel is not a main goal of this hybrid, if we
merely desire to extract as much power from the fuel as possible, then the cycle time is
limitless. In theory, the fusion source could continue to bombard the blanket with 14 MeV
neutrons until every single actinide has fissioned and then pointlessly continue to bombard
the chaotic mass of fission products for all of eternity. Of course, there would come a point
in time when the fission blanket power gain would become low enough such that further
operation would not be worthwhile. This time scale would be decades. Many proponents
of fission-fusion hybrids have touted this ultra-long cycle time. In the context of inertial
confinement hybrids, 99% of all actinides would be fissioned in a cycle time of 50 years [30].
Tang’s 2002 master’s thesis proposes a 30-year cycle time [22]. Implementing such cycles
would largely negate concerns over proliferation and actinide waste, as most actinides would
be fissioned. Furthermore, as we have seen in Section 7.6, most harmful fission product waste
would be transmuted. We could extract a huge portion of the total potential nuclear energy
from the fuel. It would wring all the juice from the orange. Of course, as the density of
actinides would substantially decrease after decades of operation, k.s would also decrease
along with the fission blanket power multiplication. We could counter this by implementing
the “variable fixed source” method we proposed in Section 7.2. The only obstacle to this
wonderful ultra-long cycle time is material irradiation, which we do not analyze in this
thesis.
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7.8 Two Options

In this burnup discussion, we have identified two main fuel cycle options:

e Burner: This would burn natural or depleted uranium. The cycle time would be
decades. It would fission a large portion of all actinides and transmute a large portion
of hazardous fission products. This would be a once-through burn-and-bury fuel cycle,
achieving extremely high burnup and eventually fissioning a large portion of all the
actinides. This is the primary mission we set forth in our introduction.

e Breeder: This would use natural or depleted uranium as fuel. It would breed ample
fissile material during a relatively short cycle time. This fissile material would then be
used as fuel for pure fission reactors. This would obviate the need for enrichment, and
it would extract energy from the world’s supply of depleted uranium. Though not our
primary objective, this could become an attractive option if uranium reserves begin to
run low in 50-100 years. As we have shown in Section 7.3, the breeding performance
would be vastly superior to that of a fast reactor.

Essentially, this fission-fusion hybrid can burn or transmute anything by brute force - without
the need for criticality, all it takes is a high-energy neutron source and plenty of time. It can
burn and extract energy from anything that is fissionable. Currently, the nuclear industry
goes to great lengths to obtain enriched uranium, put it in light water reactors that fission
less than 10% of fissionable nuclides, and then fret over how to handle the remaining 90%.
We are inured to the status quo, but when we take a step back and think about the whole
picture, it seems pretty asinine. With fission-fusion hybrids, we could simply burn natural
uranium until nearly all actinides have fissioned. It would be a like a car - you put the gas
in, and you burn all of it. What a novel concept!
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8 Pebble Structure, Thermal Hydraulics, and Safety

Thus far, we have assumed that the spherical fuel pebbles are composed of nothing more
than pure UO,. This fission model is appropriate - its simplicity is commensurate with
the simplicity of our fusion model. It generates approximate results to shape our intuition.
However, intuition for an unworkable system is pointless. For this work to be valuable,
we must demonstrate that this system would be physically realizable given an appropriate
design effort. The intention of this thesis is not any sort of intricate build-ready design,
but we must perform just enough thermal hydraulic analysis to show that cooling would be
practical and that the important materials would remain in their intended phases.

8.1 Pebble Structure

As far as the fuel pebbles are concerned, the main engineering issue is brittleness. Pure
UO, pebbles would crack under significant mechanical and thermal stresses. Existing light
water reactors encase fuel elements within metal cladding to maintain structural integrity
and to capture fission product gases (primarily Xenon and Krypton) in the fuel-cladding gap.
However, a fuel-cladding gap would be severely problematic in spherical pebble geometry,
because the fuel would always contact the cladding at only one point. In order to capture
and store gaseous fission products within a cladded pebble, the pebble would need to contain
a large central void.

Ryu and Sekimoto have studied uranium mononitride (UN) pebbles with a central void
and stainless steel cladding [16]. The void comprises 1/4 the volume of the pebble (excluding
cladding), which reduces the homogenized uranium atom density by 25%. However, UN is
also more dense than UO, (12.88 vs. 10.97 g/cm?) and contains more uranium atoms per
unit mass (one per 252 u vs. one per 270 u). Neglecting porosity differences, the cumulative
effect of these two facts is that UN has a uranium atom density 25% higher than that of UOs.
So even though the central void reduces the fuel volume by 25%, UN pebbles with central
voids have a homogenized uranium atom density that is only about 6% lower than that of
solid UOy pebbles. The homogenized uranium atom density is tremendously important to
us, as the total fission power gain is directly proportional to kg, the neutron multiplication
induced by the first generation of fusion-born neutrons (see Equations 7.1 and 7.2). This is
a remarkable solution to our dilemma - ensure structural integrity of the fuel and confine
gaseous fission products while sacrificing only 6% uranium density. UN also has the added
advantage of less moderation than UQO,, given that N has a smaller scattering cross-section
than O and would have a smaller atom density in UN than O in UQO,.

The other concerning issue is whether the cladding material can withstand helium tem-
peratures approaching 1000°C, which we will understand the need for in Section 7.2. Most
stainless steels retain their stainless (oxidation resistant) quality up to only several hundred
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°C under fast neutron irradiation. There have been many studies devoted to investigat-
ing various structural materials for high temperatures and/or fast neutron spectrums [26].
Potential cladding materials include ferritic or martensitic steels, austenitic stainless steels,
nickel superalloys, or a multitude of ceramics. Of course, we should never rule out silicon
carbide, which has nearly achieved panacea status these days. Unfortunately, SiC would be
onerous to manufacture as a spherical shell. Tristructural-isotropic (TRISO) fuel particles
in conventional pebble bed reactors do contain a spherical SiC coating, but coating a parti-
cle that is a couple of millimeters in diameter is orders of magnitude simpler than actually
manufacturing a spherical shell that is a couple of centimeters in diameter. However, since
this is not a materials thesis, we will not perform any detailed materials analysis. We will
assume that if the much-lauded Very High Temperature Gas Reactor (VHTGR) can find
suitable materials at near 1000°C, so can we.

If we truly abhor a central void but accept that cladding is absolutely necessary for
structural reasons, we must consider perforated cladding as the only potentially viable option
to deal with the gaseous fission products. Quirkily enough, wiffle balls are the inspiration
for this. See Figure 8.1 for an illustration. This general concept has actually been around
for quite a while and is known as “vented fuel”, although it has not been studied in depth for
pebble fuel. In the context of sodium-cooled reactors, vented fuel is vaunted fuel, because
the most problematic gaseous fission products react with sodium. Iodine, the most lethal
gaseous fission product, is rendered innocuous as Nal. In the context of reactors cooled by
inert gas, however, vented fuel would be significantly more challenging. There would need to
be some sort of mechanism to remove the insidious fission products from the coolant. Even
if such a mechanism could work, there would still be significant safety issues concerning loss-
of-coolant accident (LOCA) scenarios. However, this idea has been studied quantitatively
and shown to be robust, most recently in Stephanie Kempf’s 2008 MIT master’s thesis [28].
Despite these challenges, perforated pebble cladding is probably the only way to achieve high
fission power gain with UO, fuel.

Since we have discussed vented fuel, we should at least quickly address the manufacturing
of perforated cladding. First, the ratio of perforation diameter to pebble diameter should be
small, much smaller than in the case of wiffle balls. This would prevent shards of fuel from
passing through the perforations. Second, an important question is whether to manufacture
the cladding with its perforations simultaneously or to drill the perforations at a later time,
possibly even after the fuel has been secured within the cladding. We have mentioned the
technical difficulty of manufacturing SiC as a stand-alone spherical shell. However, if we can
coat TRISO particles with SiC, it should not be completely unreasonable to coat our much
larger fuel pebbles with SiC. Once the SiC coating has cooled, it might be possible to drill
many very small perforations into it so that its surface resembles the finest of cheese graters.
Thus, UO, pebble fuel encased in perforated SiC cladding without a central void could be
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viable, albeit cumbersome to manufacture.

In this section, we have discussed the pros and cons of various potential pebble struc-
tures. Beyond ensuring a feasible conceptual design, our parmount goal is to maximize the
homogenized uranium atom density, which ultimately determines the hybrid power gain.
Although we have performed our neutronics analysis assuming solid UOy pebbles, which
would require perforated cladding, many other possibilities warrant future work. The UN
fuel with a central void proposed by Ryu and Sekimoto is an especially intriguing option [16].
While alternative fuel composition and cladding options will certainly alter our quantitative
results, they would not significantly change the fundamental advantages of an L-mode toka-
mak fission-fusion hybrid with natural uranium. Also, the fast neutron spectrum tends to
mitigate structural variation. For example, adding a fairly thick (10% of pebble radius) SiC
cladding to our UOy pebbles decreases kg (the fusion-born neutron multiplication) by about
10%. That will in turn reduce the fission power gain by about 10%. It makes a difference,
but it does not fundamentally alter the concept. The purpose of this study is exploration
of an idea, not an elaborate design. At this point in the hybrid debate, viable conceptual
designs are persuasive while intricate build-ready designs are superfluous.

Figure 8.1: Pink wiffle balls. These will suffice as an illustration of perforated pebble cladding.
The spherical cladding encases the fuel to ensure structural integrity but is perforated in order
to vent the fuel of gaseous fission products. In practice, the perforations would be much smaller
relative to the pebble diameter than the case of wiffle balls.



A Fission-Fusion Hybrid Reactor 181

8.2 Thermal Hydraulic Analysis

As should be evident, this thesis is primarily about fusion and reactor physics. However, we
must perform enough basic thermal hydraulic analysis to ensure that it would be possible.
We have developed a model based on pebble bed correlations to ensure reasonable coolant
velocity, coolant pressure drop, and temperature extrema.

Figure 8.2 shows a conceptual hybrid schematic with the helium inboard and outboard
flow paths. This is a poloidal cross-section of the tokamak. The entire device can be obtained
by rotating this cross-section 360° about a vertical axis to the right or left of the figure. Note
that the dimensions (especially the blanket thickness) are not to scale. In gas reactors, the
coolant usually flows downward to prevent positive acceleration due to heating.
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Figure 8.2: A basic schematic of the hybrid concept showing helium coolant flow paths. The
helium, denoted with arrows, flows downward through the pebbles to reduce acceleration. The
dotted X’s mark the X-points in the magnetic topology where we must allow ample space for
diverters. Exterior to the fuel pebble layer are the Li-Pb breeding and shielding layers, respectively.
Although the cross-section here is elliptic, we can approximate it as circular for the purposes of our
thermal analysis.
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8.2.1 Coolant Flow Rate and Pressure Drop

Let us begin the analysis. We can approximate the total power deposited in each half of the
fuel region as Ppy, which is the fusion power Pp, multiplied by half the fission gain Q.
Of course, some of the power is deposited in the first wall, Li-Pb layer, and shielding layer,
but we accept this overestimate as added assurance that the flow rate will not be overly
optimistic. Also, as we have seen with toroidal neutron flux distributions, P, is not evenly
divided between the inboard and outboard fuel regions - the outboard fuel generates more

power.

4
Pfuel = nguSQﬁs/2 (81)
Now, if we know the desired temperature drop, we can perform a simple energy balance to
obtain the mass flow rate m.

Pfuel = mcp(Tout - 71 ) (82)

The helium velocity is a bit more subtle. We can easily compute vempty, the velocity the
helium would have (given the same ) without the pebbles obstructing its path. We can also
define €, the pebble bed “void fraction”, the fraction of the total fuel region volume that is not
filled with fuel pebbles. Mathematical studies show that when spheres are stacked randomly
in a volume, they will occupy about 64% of that volume [23|. Thus, € is about 0.36. Studies
of various packed beds show that we can express the true fluid velocity as vempiy/€ [17].

y = Jempty _ 1/ P Asow (8.3)
€ €

However, we must first define the flow area Ag,,. Referring back to Figure 8.2, we can
approximate the elliptic annular regions as circular annular regions. There are four regions
surrounding the plasma: the first-wall, the pebble fuel and helium coolant, the Li-Pb breeder,
and the shield. Let the radii defining these poloidal annuli be aq, a9, as, a4, and as. Clearly,
the pebbles and coolant comprise the annulus between as and as. Now the flow area is the
product of the poloidal annular thickness and the toroidal circumference. Of course, the
toroidal circumference varies as the coolant flows poloidally through the annulus, but we can

approximate its average value as 2m(R + a1 ), where R is the tokamak major radius.

Afow = 2m(R + ay)(as — az) (8.4)
The hydraulic diameter for a packed bed is directly related to the pebble diameter [17].

€
Dh = 1 — EDpebble (85)

Now the Reynolds number is simple to compute.
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_vpDy,
1
Before proceeding further, we should note how we compute properties of helium. We

Re

(8.6)

determine helium density p with the ideal gas law using average system temperature and
pressure. It is true that p will vary quite a bit if the helium temperature gain is large,
but averaged parameters are necessary for the forthcoming pressure drop calculation. We
determine the helium thermal conductivity as a function of temperature and pressure using
a well-established correlation [25]. Here the pressure pg is in Pa, temperature is in K, and
ke is in W/m/K.

Fre = (2.682 x 107%) |1+ (1.123 x 107%) (%)] o[-0 (eiw)], (8.7)

The viscosity is simpler, as it depends mainly on temperature [25]. Here T is in K, and ppe
is in Pa*s.
e = (3.674 x 107117 (8.8)

Now we draw our pressure drop correlation from a computational fluid dynamics (CFD)
pebble bed study [19]. Here AP is the total pressure drop accumulating over a flow length
AH. No integration of helium properties over temperature (which varies linearly with flow
length, assuming uniform power density) is required.

AP 1—e¢ 1 m )
=2 vy :
Ax < €3 ) (Qprebble) (Aﬂow> &

The pressure drop coefficient ¥ is a sum of turbulent and laminar components.

g 905 0.1
Re/(1—¢) = (Re/(1 —¢))"!

With this relatively simple model, we can determine the useful properties AP, v, and

(8.10)

Re as functions of average pressure, temperature, and pebble size. We will not display all of
these permutations, but just the few that are most instructive. Figure 8.3 shows the ratio
of the helium pressure drop AP to the ambient pressure Py as a function of F,. All other
parameters, including the temperature increase, are fixed. We desire this ratio to be low,
probably not more than a few percent, in order to achieve a high Brayton cycle efficiency.
Clearly, the ambient helium pressure would need to exceed 5 MPa for a ratio below 1%.
Figure 8.4 shows this same pressure ratio as a function of fuel pebble diameter. As the fuel
pebbles become larger, the flow area remains constant, but the hydraulic diameter increases.
It is “easier” for gas to flow between larger pebbles than between smaller pebbles. The gas
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Figure 8.3: The ratio of the helium pressure drop AP to the ambient pressure P, as a function
of Py. Here AT is fixed at 500°C, and the pebble diameter is 3 cm. Note that at very low Py, the
ratio exceeds 1, because the pressure drop correlation is not valid at such low pressures.

does not need to be forced through tinier gaps between the pebbles, and so less pressure is
lost.

Figure 8.5 shows the Reynolds number Re as a function of fuel pebble diameter. The
relationship is linear, which results from the simple definition of Re. The important thing to
note here is that at the necessary ambient pressure and temperature drop, the flow is always
turbulent. Laminar flow is not a realistic possibility.

Figure 8.6 shows the helium coolant velocity as a function of its total temperature in-
crease. For larger temperature increases, smaller mass flow rates are necessary. At low
temperature increases of less than 200°C, the required helium velocity is impossibly large.
Thus, a large temperature increase is not only favorable for the Brayton cycle efficiency, but
it is absolutely necessary to ensure a low coolant flow rate.

Figure 8.7 shows the helium velocity as a function of ambient pressure. Higher pressure
condenses the helium, which allows it to absorb more heat at a lower mass flow rate. In
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Figure 8.4: The ratio of the helium pressure drop AP to the ambient pressure Py as a function
of fuel pebble diameter. Here AT is fixed at 500°C, and the ambient pressure is 15 MPa.

order to keep the velocity below 10 m/s, the core must be pressurized to at least 25 MPa.
Note that the flow velocity is independent of pebble size, because it is proportional t0 Vempty-
Obviously, € is independent of pebble size.
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Figure 8.5: The Reynolds number as a function of pebble size. Here AT is fixed at 500°C, and
the ambient pressure is 15 MPa. The flow is clearly turbulent for all reasonable pebble sizes.
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Figure 8.6: The helium coolant velocity as a function of its temperature increase through the
core. Here Py is fixed at 15 MPa, and the pebble size is 3 cm.
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Figure 8.7: The helium coolant velocity as a function of ambient pressure. Here AT is fixed at
500°C, and the pebble diameter is 3 cm.
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8.2.2 Heat Transfer and Temperature

Now that we have examined flow rates and pressure drops, we must estimate the temperature
extrema in the UOy fuel and liquid Li-Pb breeder. UOy must not exceed a certain margin
below its 2865°C melting point, and Li-Pb must remain between its melting and boiling
points. Figure 8.8 shows a phase diagram for Pb content in Li. The eutectic point is at
PbgsLi;g. However, we have shown with neutronics that such a eutectic contains far too
much lead to achieve breeding ratio of 1.0 while still allowing for substantial fission power
gain. In a pure fusion reactor, there is no problem with Pbgy4Liig, but the fission component
usurps enough neutrons to ruin its efficacy. We could use pure lithium, which exhibits a lower
melting point than the eutectic, but that would introduce an additional chemical hazard.
Pure lithium is exorbitantly corrosive to the point that it is harmful to skin contact. In
our neutronics analysis, we concluded that the lead content must be quite low at 10-15%
to breed sufficient tritium with a reasonable volume of Li-Pb. The natural question to ask
now is, “How much lead content is necessary to negate the chemical hazard?” We have no
answer, but we will assume that 10-15% Pb is sufficient. The rationale for PbgsLij¢ was a
low melting point, not that 84% Pb is necessary to fix the chemical problem. The melting
point of PbygLigg is about 500°C. We do not know its boiling point, but for this analysis we
will assume it is equal to that of pure lithium (1342°C). The true boiling point is probably
substantially higher, so designing to 1342°C will ensure a large error margin. So, in summary,
we wish to keep UO5 below 2865°C and Li-Pb between 500°C and 1342°C

We begin the heat transfer analysis by obtaining an expression for the Nusselt number
Nu between the pebbles and helium coolant. In a pebble bed, the angle between the bulk
coolant velocity and the pebble surface varies quite a bit. Thus, if we apply equations
representing flow over flat planes, there are small “pockets” of space in which the helium is
actually laminar. We can express the laminar and turbulent contributions to Nu as Nu; and
Nu, [17].

Nu; = 0.664(Re/e)/?Pr!/? (8.11)
B 0.037(Re/€)*SPr
1+ 2.443(Re/e)—0-1(Pr¥/3 — 1)

(8.12)

Uy

Then the total “spherical” Nu is Nug,. This makes intuitive sense if one thinks of Nu; and
Nuy as sinf and cosf. The constant value of 2 is the solution for quiescent fluid (zero flow
rate).

Nug, = 2+ (Nu? 4 Nu?)!/2 (8.13)

Now we can apply a correlation for the effective pebble bed Nu [17].
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Figure 8.8: A phase diagram for Pb content in Li. The eutectic point is at PbggLijg [20].

Nu = (1+1.5(1 —€))Nug, (8.14)

Of course, we define the dimensionless constants Nu and Pr as usual. Nu defines the heat

transfer coefficient h between the pebbles and coolant.

hD
Nu = Th (8.15)
Pr = % (8.16)

Now let us analyze the fuel pebble temperature. We can approximate the volumetric
heat generation simply by dividing the total power by the cumulative volume of all the UO4

pebbles.

qgﬁel = Pfuel/‘/fuel (817)
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That cumulative volume is the volume of the entire toroidal shell fuel region reduced by the
factor 1 - e.

m(a3 — a3)(27R)

Vigel = 8.18
= T2 (5.18)

Now we can solve the heat conduction equation in spherical geometry.
VAT = ¢ (8.19)

The result, in terms of the maximum UQO, temperature T,,,y, is
qg;eITQ

Truel (1) = Thax — ——— 8.20
f 1( ) 6kfuel ( )

Defining the heat flux ¢” at the pebble surface, we can relate Ty (ro) to the heat transfer
coefficient h. Here ry is the pebble radius, and we have introduced a temperature jump
AT, .q for whatever sort of cladding is used. When we must compute temperature values,
we will assume the cladding is SiC with a thickness 5% of the pebble radius.

"

Gfyel”
qglel = leo =h [Crfuel(r()) - Ajﬂ’clad - Tcoolant] (821)

Now let us turn to the Li-Pb heat transfer, which is significantly more complex and
arbitrary. We will model the liquid Li-Pb as sitting in a cylindrical annulus between radii ag
and a4. In our neutronics analysis, we computed the total power deposited direction in the
Li-Pb, which is about 40% of the fusion neutron power.

4
Py = 5Pfus(0.4) (8.22)
qﬂi = PLi/VLi (823)

We solve the heat conduction equation again, this time in cylindrical coordinates.

",.2

Ti(r) = _iL];z + Oy In(r) + Oy (8.24)

Now things become arbitrary. The helium flowing through the pebbles adjacent to this
region cools the Li-Pb. However, much heat is also conducted outward into the shield, which
is often cooled with water. Many tokamak designs even cool the lithium directly with a

separate coolant cycle. As an initial test, let us assume that the helium cools all the Li-Pb
heat generation. This is equivalent to putting a perfect insulator between the Li-Pb and the
shield at 7 = a4. Setting d11,;/dr = 0 at that points yields
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Ty = J0 [T 2y ATy + T, 2
Li(r> - okr 9 + ay H(T/GS) + wall 1 4 coolant (8 5)

We again define an arbitrary temperature drop across the wall between the Li-Pb and fuel
pebbles. When we must compute temperature values, we will assume this wall is SiC (like the
plasma first-wall). Naturally, this temperature distribution will yield the largest physically
possible Li-Pb temperature at » = a4. This is a high ceiling estimate of the maximum Li-Pb
temperature.

Now let us consider a second scenario in which the heat flux at » = a3 is equal to the
heat flux at » = a4. This means that just as much heat is conducted into the shield as into
the helium coolant. It is a rather arbitrary choice, but it is a feasible scenario that could be
engineered. We will not perform any analysis for the shield cooling, which is well-established
in existing tokamak technology.

dr dr
ki | —| =ky | — 8.26
B {dr]a?) . [er4 (8.26)
These boundary conditions yield
q//{ a2 _ 7.2
TLi(T) = # |: 3 5 + as3ay 111(7“/&3):| + ATwall + Tcoolant (827)
Li

The location of maximum temperature is

Tmax = v/ A304 (828)

This is a common elegant result in cylindrical heat conduction. The value of the maximum
temperature at rp,.,, however, is not so elegant.

"as [as —a
TLi(rmaX) = %; |:3T4 + ay In <\/ a4/a3>} + AT‘wall + Tcoolant (829)

Figure 8.9 shows T1;(r) for both scenarios examined here near the helium coolant outlet,
where the helium temperature is 900°C. Clearly, the Li-Pb exceeds the boiling point of
pure Li by several hundred °C when no heat is conducted into the shield. Even when the
shield cools the Li-Pb just as much as the helium, the Li-Pb remains only 100°C below the
boiling point. Of course, this is near the helium outlet. Near the helium inlet, Ty;(r) will
be significantly lower. Our model does not consider transverse (parallel to helium flow) heat
conduction, which would reduce the maximum Pb-Li temperature. Also, ¢} is not evenly
distributed throughout the Li-Pb volume in the same way g, is distributed throughout the

"

pebble bed volume. In reality, ¢;; will be higher near the fuel pebbles, where the neutron flux
is higher. Indeed, the helium coolant could in fact cool most of the Li-Pb heat generation.
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Regardless, we will take our “half-and-half” heat transfer model as an overestimate of the
maximum Li-Pb temperature.

2200 - . . . . .
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Figure 8.9: T1;(r) near the coolant outlet for zero heat conduction at r = a4 and for equal heat
conduction at r = a3z and a4. The boiling point of pure Li is shown. Here the helium outlet
temperature is 900°C.

With our model settled, we can display the pertinent temperature extrema as functions
of temperature drop and pebble size. To ensure that the lithium remains above its melting
point, we set the inlet helium temperature equal to the PbygLigy melting temperature of
500°C. Figure 8.10 shows the three temperature extrema of interest as a function of fuel
pebble diameter. Pebble size does not affect Li-Pb temperature, but the UO5 melting points
clearly limits the pebble diameter to approximately 8 cm.

Figure 8.11 shows the same temperature extrema as functions of helium temperature
gain. If the helium begins at 500°C, it cannot exceed 1000°C due to the lithium boiling
point.
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Figure 8.10: Temperature extrema as functions of fuel pebble diameter. Here the ambient pressure
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Figure 8.11: Temperature extrema as functions of helium temperature gain. Here the ambient
pressure is 15 MPa, and the fuel pebble diameter is 3 cm.
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8.2.3 Summary

The coolant is hot. This is a direct result of the high Li-Pb melting temperature. Pure
lithium would solve the problem, but that is a safety question that we cannot address in the
scope of this thesis. Ideally, the lithium would be in some solid ceramic with a very high
melting temperature. However, that would pose neutronics problems, as the lithium atom
density must remain quite high in order to breed

Despite these difficulties, we have succeeded in demonstrating that the thermal hydraulics
for this device are indeed feasible. The ambient pressure would need to be quite high (=
20 MPa), and the helium temperature range would need to be 500 - 950°C. Under these
conditions, the helium velocity could be as low as 10 m/s. A pebble diameter in vicinity of
2 or 3 cm would be suitable. Larger is preferable, but it is prudent to keep the pebble size
small relative to the entire pebble bed thickness (=~ 20 cm).

Table 8.1: Pebble Bed Blanket Thermal Hydraulic Parameters

Pt = 1.7 GW ¢y = 25.6 MW/m?
T = 375°C Tt = 825°C

po = 25 MPa Ap/py =9 x 1074
1 = 730 kg/s V =36 m%/s
Re = 66600 v=97m/s

Dpebble = 25 cm (1 iIlCh) Tmax,UOg = 104OOC
Tmin,Li—Pb = 550°C Tmax,Li—Pb = 1250°C
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8.3 Brayton Power Cycle and Electric Power

Now that we have expounded on the helium coolant flow through the fission core, it would
be prudent to perform some rudimentary analysis on the power conversion cycle. Since the
coolant is a gas, so a Brayton cycle is the natural choice. Figure 8.12 shows a schematic and T-
S diagram for a typical Brayton cycle with real components and duct pressure losses. We will
assume that the reader is familiar with this and not bother to review basic thermodynamic
cycles.

For the sake of simplicity commensurate with the rest of our thermal hydraulic analysis,
we will assume an ideal Brayton cycle. This differs from Figure 8.12 in that (1) the transi-
tions 1 — 2 and 3 — 4 are isentropic and (2) the transitions 2 — 3 and 4 — 1 are isobaric.
In practice, the cycle might also include complications such as regeneration, reheating, or
intercooling, but we will keep things simple. With only two pressures p; and ps, the com-
pression ratio r, is pa/p;. A standard textbook result is that the efficiency 7 of an ideal
Brayon cycle is

1=y
n=1—ry" (8.30)
Here v = ¢,/c, = 1.658 for helium. Another standard result is the optimal compression
ratio, the value of r, that yields the maximum 7 for a fixed temperature difference.

Ty\ 5D Ty\ 71
(rp)optimal = (ﬁ) = (E) (831)

In this case, T7 = 375°C and 15 = 815°C so that (7“10)01%1{]%l
operates at po = 25 MPa, the heat exchanger pressure p; must be 6.6 MPa. This yields an

= 3.8. Since our reactor core

efficiency of 41%. Consequently, our minimum-scale steady-state L-mode hybrid will have an
electrical power output of about 5 GW. This is too large for the current U.S. electrical grid,
but, as we discussed in Section 6.5, this unfortunate conclusion is emblematic the conundrum
of stable tokamak power production.
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Table 8.2: Ideal Brayton Cycle Parameters

Ty= 375°C Ty = 825°C
T, = 110°C T, = 375°C
pp = 6.6 MPa  py = 25 MPa
rp, = 3.8 v = 1.658
Qr=1.7GW Qux =10CW
Wr =17CGW Wep = 1.0 GW

= 0.41
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Figure 8.12: A generic Brayton power cycle with real components and duct pressure losses[29].
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8.4 Safety

Here we will briefly discuss safety and address generic accident scenarios.

This fission-fusion hybrid is invulnerable to criticality accidents, as kg is initially around
0.3 and never nears 1.0 despite prodigious ?**Pu breeding. No reactivity excursion could
likely cause the fission blanket to go critical. There are no control rods, because the fusion
reaction directly and entirely controls the fission reaction. This is the main safety advantage
of subcritical hybrids over any critical fission reactor. In the event of a loss of coolant accident
(LOCA) or loss of flow accident (LOFA), we should immediately quench the fusion reaction.
This will completely shut down the fission chain reaction with virtually no chance of any
lingering reactivity.

Nevertheless, the fuel will still generate decay heat following an emergency shutdown. In
conventional pebble beds, the graphite matrix is virtually impervious to melting (carbon has
the highest melting point of any pure element), and LOCA temperature transients have been
analyzed in detail [44]. However, our pebbles are spheres of UO,. These spheres will cool
more rapidly than traditional cylindrical UO, fuel elements by virtue of geometry, but it is
plausible that they could still melt if the helium coolant were to stagnate or depressurize.
As we explained in Section 8.2 and will elaborate on in Section 9.1.1, UOs spheres are
strongly preferable over graphite matrix spheres due to their higher homogenized uranium
atom density, to which the fission power multiplication is directly proportional. Thus, we
are presented with a trade off. With a graphite matrix, we achieve passive safety but must
settle for relatively low power gain. With UO,, we achieve superior power gain but must
implement active safety systems. In this thesis, we choose the UO, option, because we are
primarily concerned with maximizing power gain.
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9 Ramifications

Our analysis is complete, and we have thoroughly discussed the advantages and disadvantages
of various aspects of our conceptual design. Now we will compare it to other hybrid designs
and put it into the context of the current hybrid debate.

9.1 Comparison to Other Studies

As we discussed in our introduction, there has been a renewed interest in fission-fusion
hybrids within the past decade and more intensely within the past few years. Here we will
discuss a few other of these design proposals in more detail and compare them to ours.

9.1.1 Tokamak Pebble Bed Hybrids (ITER-PBR)

We will begin with hybrid configurations most similar to ours - tokamaks with pebble bed
blankets. Vincent Tang wrote a master’s thesis in 2002 at MIT entitled “Preliminary Design
of a Fusion-Fission Tokamak Pebble Bed Reactor” [22]. His proposed design, though also a
tokamak with a pebble bed blanket, differs from ours in many ways. First, he uses lithium
titanate (LioTiOj3) pebbles for tritium breeding such that the device has two pebble bed
zones. Second, he places these breeder pebbles between the plasma and the fissionable fuel
pebbles. We have shown that this is not optimal (see Section 3.1.4), but he makes it work by
adding beryllium to the breeder pebbles as a neutron multiplier. Third, he stipulates that
the fissionable pebbles be comprised of spent fuel from the Pebble Bed Modular Reactor
(PMBR). This spent fuel contains 96.3% 233U and 1.3% 23U by mass, so it is not too much
unlike our choice of natural uranium. The remainder is 1.1% 23U and traces of a few
plutonium isotopes. Tang’s goal is for the hybrid to perform a deep burn of this spent fuel
to extract more energy from it and dramatically reduce waste storage area. Fourth, he has
his fuel in tristructural-isotropic (TRISO) particles embedded in a larger graphite matrix
pebble, just as in the PBMR. Fifth, he does not perform any fusion scaling analysis - he
assumes all the properties of ITER.

Tang achieves a fission blanket multiplication of no greater than 3.9, which differs signifi-
cantly from our value of 7.7 (or 6.1, including the fusion a-particle power). We can determine
the reason for this disparity by comparing the fusion neutron multiplication ky and the fission
neutron multiplication k. Tang’s thesis has a k value of 0.26, virtually the same as our value
of 0.27. Thus, there is no substantial difference in fission neutron multiplication. However,
Tang’s kg value is a mere 0.63 compared to our 1.19. Now let us look at Qg5 as a function of
k and kg in Equation 9.1. This is similar to Equation 7.2 and arises from the discussion in
Section 7.2. Essentially, this describes Figure 3.13.
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193.9 1 1 1
Qss = [m} ko {5_0 + > <—1 i 1)] (9.1)

Here 7y and 7 are the average v values for the fusion and fission neutrons, respectively. The
main thing to take away from this is that the fission multiplication (and the total hybrid
power) is proportional to kg. We can easily show this, because the ratio of Tang’s k¢ to our
ko is nearly equal to the ratio of our Qg5 to Tang’s Qgs (0.63/1.19 ~ 3.9/7.7). The reason
for Tang’s much lower k is that he uses graphite matrix pebbles, while we use UO, pebbles.
Since the fusion neutrons mostly bombard the uranium layer from one side, ko is highly
dependent on the macroscopic fission cross-section at high energies. We have a much higher
uranium atom density than Tang, and so our kg is much higher. This is the reason why we
devoted so much discussion to the pebble structure - a high fissionable atom density is crucial
for hybrids to achieve high power gain. TRISO particles embedded in graphite pebbles serve
the purposes of critical reactors, but this is not a critical reactor - it is a bombardment.

This serves to show that subcritical hybrid reactors will usually require different fuel than
critical fission reactors. In hybrid reactors, all neutron generations are not created equal as
they are in fission reactors. The fusion-born neutrons are all-important to achieving a high
power gain, and the fissionable atom density must be high along their path.

Table 9.1 summarizes the main advantages and disadvantages of graphite matrix and
UO; pebbles. Favorable properties are blue, while unfavorable properties are red. Beyond
power gain, a number of other factors come into play. Even with helium coolant, the graphite
matrix pebbles will moderate the neutrons to some extent. Tang classifies his spectrum as
epithermal, while our spectrum is unequivocally fast. Graphite pebbles are passively safe,
while UO, pebbles might require active safety systems (such as emergency core cooling).
TRISO particles have SiC coating, which contains fission products. As we discussed in Sec-
tion 8.1, UOy pebbles might require fission product release into the coolant, which would
require removal systems. The other option is UN pebbles, which would have the same ho-
mogenized uranium atom density as UOs pebbles but could contain fission products within
a hollow center. In terms of manufacturing, both choices come with disadvantages. TRISO
particles and graphite matrix pebbles require a complex manufacturing process, while per-
forated SiC cladding (or any other kind of pebble cladding) would have its own technical
challenges.
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Table 9.1: Comparison of Graphite Matrix Pebbles to UOy Pebbles

graphite matrix U0,
low power gain high power gain
soft, spectrum hard spectrum
passive safety active safety
fission products fission product
contained within fuel removal necessary
complex fuel complex cladding
manufacturing process | manufacturing process
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9.1.2 Other Tokamak Hybrids (SABR)

At the Georgia Institute of Technology, Professor Weston Stacey has led a number of in-
teresting tokamak hybrid projects over the past decade. This most recent design is the
Subcritical Advanced Burner Reactor (SABR), which differs substantially from the pebble
blanket concept [32]. The SABR is essentially a slightly subcritical (kK = 0.9 to 0.95) fast
reactor arranged within an annulus around the outside of a tokamak core. The fuel is in
standard rod configuration with sodium coolant so that the fission technology is not sub-
stantially different than what has already been studied in depth. Figure 9.1 shows a simple
schematic of this.

The fission gain of SABR is given as a range anywhere from 6 to 30. They did not analyze
their neutronics in terms of ky and £, but we can do it for them. Supposing that k is set at
an optimistic 0.95, the gain from all fission-born neutrons is 1/(1-k) - 1 = 19. Then, given
the total gain range of 6 to 30, the corresponding kg range is approximately 0.07 to 0.35.
The relatively low kg is reasonable, given that the geometry of SABR is less favorable (in
terms of capturing the fusion-born neutrons) than the pebble blanket designs. They state
that only 39% of the fusion-born neutrons even reach the fission core, and so the fraction
that actually spur fission must be substantially lower than that. Of the fusion-born neutrons
that reach the uranium layer in our design, less than half spur fission.

The main drawback of SABR relative to our design is that the fission component is very
similar to a pure fission reactor. In order to achieve k = 0.95, substantial uranium enrichment
is required. Even if SABR is intended primarily for waste transmutation, then it is part of a
fuel cycle that requires enrichment. However, as we discussed in Section 7.8, our design could
actually comprise an entire fuel cycle without enrichment. It begins with natural or depleted
uranium as fresh fuel, produces a huge amount of commercial power, transmutes most of the
hazardous waste as it is created, and could even breed fissile fuel for other purposes. Though
it is difficult to compare two devices that are intended for different purposes, we feel that k
= 0.95 does not take full advantage of the flexibility that subcritical operation allows for.
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Figure 9.1: A schematic of the Subcritical Advanced Burner Reactor (SABR) conceived at the
Georgia Institute of Technology [31].
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9.1.3 Inertial Confinement Hybrids (LIFE)

The Lawrence Livermore National Laboratory (LLNL) in association with the University of
California at Berkeley has conceived and designed the Laser Inertial Confinement Fusion-
Fission Energy (LIFE) Reactor [31]. See Figure 9.2, which happens to be glorious. Lasers
induce fusion through inertial confinement in the hollow center, while the spherical shell
contains natural uranium. The primary coolant is 2LiF-BeFsy (FLiBe) molten salt, which
doubles as a tritium breeder (and as a neutron poison in the case of °Li). They also employ
Li;7Pbgs as a first-wall coolant and additional tritium breeder.

As inertial confinement is fundamentally different than magnetic confinement, we will
not compare the fusion component of this design to ours.

LIFE touts a 500 MW fusion source with a depleted uranium blanket power multiplication
of 4 to 8. It can operate at a total power of 2 GW for 50 years and burn 99% of all actinides.
They bolster these lofty claims with some impressive neutronics burnup analysis. Initially,
the fission blanket contains almost entirely depleted uranium. The spectrum is thermal. As
burnup proceeds, the blanket breeds large quantities of 2*Pu, and the power increases until
it reaches a peak at around 10 years. Subsequently, the power slowly declines for the rest of
the lifetime. In order to maintain constant power, they propose varying the concentration
of %Li, which is a neutron poison at thermal energies.

The interesting point here is that LIFE has a maximum depleted uranium power gain of
8, which is consistent with our natural uranium power gain of 7.7. Of course, the geometry
is spherical as opposed to toroidal, and there are different material selections. However, the
same basic concept of a primarily 233U blanket nearly completely enclosing a 14 MeV neutron
source is the same. Thus, we cite this as a corroborating data point.
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Figure 9.2: A schematic of the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Reactor
conceived at Lawrence Livermore National Laboratory (LLNL).
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9.2 The Hybrid Debate

In the fall of 2009, the U.S. Department of Energy’s Office of Fusion Energy Sciences spon-
sored the “Research Needs for Fusion-Fission Hybrids” conference in Gaithersburg, Mary-
land [21]. This generated a report that was a part of the much larger Report of the Research
Needs Workshop (ReNeW). This conference assessed the current state of hybrid research,
the pros and cons of hybrids, and future research needs.

This conference included a panel of skeptics who highlighted the major challenges and
drawbacks of fission-fusion hybrids. One of their main conclusions was that hybrids would
complicate many current challenges of both fission and fusion. We have already discussed
this issue at some length in Section 1, and the primary motivation for this entire thesis was
to show that fission and fusion can be mutually beneficial in a hybrid relationship.

They also suggest that fast reactors can accomplish everything that hybrids can in terms
of fissile fuel breeding and waste transmutation. This is true, but fast reactors accomplish
these two missions far less effectively than hybrids. For example, we determined (in Section
7.3) that a typical fast reactor can breed °Pu with a conversion ratio of 1.2. In sharp
contrast, our hybrid can do so with a conversion ratio of 22! We also determined (in Section
7.6) that our hybrid can also transmute long-lived fission product waste more effectively than
a typical fast reactor.

The third and final point we wish to contest is that of non-proliferation. The hybrid
skeptics express concern that hybrids would pose a significant proliferation risk beyond that
of pure fission reactors. While it is certainly true that proliferation would be more of a concern
for hybrids than for light water reactors, we have shown (in Section 7.5) that hybrids would
breed plutonium that contains larger portions of 23¥Pu and 24°Pu than that bred by a typical
fast reactor. Also, the absence of enrichment is favorable for non-proliferation. Although we
would need to perform much more detailed fuel cycle analysis to state with confidence that
hybrids are more favorable than fast reactors in this respect, it is premature to assume that
hybrids will pose an elevated proliferation risk.

The ReNew hybrid report closes with a set of high-level research needs, which includes
a fuel cycle comparison of hybrid systems to pure fission systems. We took the first step
in this direction by comparing hybrids to thermal and fast reactors in the areas of fissile
fuel breeding, waste transmutation, and non-proliferation. Although our analysis was quite
basic, our findings suggest that hybrids could facilitate a more favorable fuel cycle than fast
reactors. This should be the primary focus of future hybrid research.

9.3 Overarching Conclusions

Fission-fusion hybrids have the potential to ease the challenges of both fission and fusion
by actualizing steady-state L-mode operation on the fusion side and subcritical natural or
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depleted uranium burning on the fission side. We have identified a maximum natural uranium
tokamak blanket multiplication of 7.7, and we have also identified a corresponding steady-
state L-mode tokamak minimum scale of 5.2 meters (5/6 the size of ITER). We are not so
presumptuous as to declare this the long-hoped-for panacea of nuclear energy, but we do
contend that it could be superior to pure fission systems while mitigating some of the most
challenging aspects of fusion.

Furthermore, we have demonstrated that pressurized helium could cool the fission blanket
with a flow rate of less than 10 meters per second. We have also performed basic fuel cycle
analysis to show that this hybrid could be superior to pure fission reactors for the alternative
missions of fissile fuel breeding and waste transmutation. Surprisingly, there could even
be some non-proliferation advantages. Any future work we conduct on this subject will
undoubtedly focus on its fuel cycle implications.

We dub this device the Steady-State L-Mode Non-Enriched Uranium Tokamak Hybrid
(SLEUTH). Although no subterfuge was involved in the production of this work, we hope
this serves as both a sobriquet and a mnemonic. We hope this work spurs interest in and
further research on fission-fusion hybrids. Perhaps, incidentally, it will even spur a profusion
of pro-fusion sentiment!
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A Fusion Model

A.1 0-D Core Model

This is a 0-D tokamak fusion core model, which relates various parameters such as R, a,
Pr/As, Q, and B. We use this to generate our “plasma phase diagrams” in Section 6.

function result = core(R, g_star)

% constants

Bmax = 16; h T

aspect = 2.6;

Pf_SA_ratio = 5; % MW/m"~2

fgreen = 0.9;

Q= 30;

blanket_width = 1; % m

M= 2.5; J» amu

E_alpha = 3.5x(1e6)*(1.6e-19) ; % J

% calculations

kappa = 5.276/(aspect”0.985);
a = R/aspect; Y% m

B = (R-a-blanket_width)*Bmax/R; % T

area_surf = (2*xpixa)*(2xpixR)*((1 + kappa~2)/2)"(1/2); % m~2
area_perp = pixkappa*(a~2); % m~2

V = 2*pix*R*area_perp; % m~3

Ip = 5%x(1 + kappa~2)*(B/R)*(a"2)/(2xq_star); % MA

n20 = fgreen*xIp/(pi*(a~2)); % (1e20)m” (-3)

n = n20%(1e20); % m~(=3)

Pfusion= Pf_SA_ratio*area_surf; % Mw

P_aux_max = Pfusion/Q; % Mw

Palpha = Pfusion/5; % Mw
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Pinput = P_aux_max + Palpha; % Mw
sigma_v = (Palpha*(1le6)/V)*4/((n~2)*E_alpha); % (m~3)/s

% calculate T by minimizing sigma_v(T) - sigma_v
T = fminsearch(@(T) sigma_v_diff(T, sigma_v), 1); % keV
if(sigma_v_diff (T, sigma_v)/sigma_v > .01)
T = 0; % set T = 0 if no solution for T exists
end

tau_e = 3*nxT*(1e3)*(1.6e-19)/(Pinput*(1e6)/V); % s
H = tau_e/(0.048*((n20)"0.1)*(M~0.5)*(Ip~0.85)*(R"1.2)
*(a"0.3)*(kappa~0.5)*(B~0.2)/(Pinput~0.5));

W_th = Pinput*tau_e; % MJ

volume_avg_p = W_th*(10%(2/3))/V; % bar
beta_t = 100*volume_avg_p/(3.93%x(B"2));
beta_n = beta_t/(Ip/(a*B));

e = 1.6e-19; % C

m_e = 9.109e-31; % kg

e0 = 8.854e-12; % (C~2)/(N*m~2)

u0 = 4xpi*x(le-7); % N/A"2

c_bs = 0.8;

efficiency_cd = 0.3%(1e20); % A/ (Wkm~2)

exB/m_e;
ex(n/(m_exe0)) " (1/2);
freq_ratio = w_ce/w_pe;

w_cCe

w_pe

f_boot = (beta_n/100)*(12.5%c_bs*(a~2)*B*(1+kappa~2))/(R*Ip*sqrt(a/R));

Icd = efficiency_cd*P_aux_max/(n*R) ; % MA
f_cd = Icd/Ip;

f_ni = f_cd + £f_boot;
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r_sol = R - a - blanket_width - (0.5/6.2)*R; % m
B_sol = Bmax; h T

flux_sol = B_sol*2%pi*(r_sol~2); % Wb

ell_i_norm = 1; % for L-mode

beta_p = 0; % after start-up

L_p = uO*Rx(log(R/sqrt(kappa*a)) + ell_i_norm/2 + beta_p);
flux_p = L_pxIp*(1le6); % Wo = J/A

flux_ratio = flux_sol/flux_p;

result = [Ip,n20,Pfusion,P_aux_max,T,tau_e,H,beta_n
,freq_ratio,f_boot,f_cd,f_ni,flux_ratio];

end

function result = sigma_v_diff(T, sigma_v)

diff = 10" (-.0602%1ogl0(T)"5 + .5611%1ogl0(T)~4 - 1.5515%1ogl0(T)"3

+ 5.1979%10ogl10(T) - 26.1059) - sigma_v;
result = abs(diff);

end

% J/A"2

217



218 Mark Reed

A.2 1-D Density, Temperature, and Power Profiles

This is a method for computing the density, temperature, and power profiles in a 1-D spher-
ical tokamak core model. This assumes a fixed set of 0-D parameters.

function [Rr,nr,Tr,sigmavr,Pfr] = profiles(a,n20,T)

E_alpha = 3.5%(le6)*(1.6e-19); hJ
alpha_n = 0.5;

alpha T = 1.25;

f_n_offset = 0.25;

T_offset = 0.15; % keV

r_step = .0001;

% ASSUME INITIAL n(r) and T(r)

i=1;

n0 = 1; % assume for now - normalize later

TO = 10; % assume for now - normalize later

for r = r_step:r_step:a
nr(i) = n0*(1-(r/a)"2) alpha_n + n20*f_n_offset; % keV
Tr(i) = TOx(1-(r/a)"2) alpha_T + T_offset; % 1/m~3
Rr(i) = r; % m
i=1+1;

end

% NORMALIZE n(r) and T(r)

n_tot = 0;
T_tot = 0;
for i = 1:length(Rr)

part_n = nr(i)*2*pi*Rr(i)*r_step;
part_T = Tr(i)*2*pi*Rr(i)*r_step;
n_tot
T_tot

n_tot + part_n;
T_tot + part_T;

end

n_avg = n_tot/(pi*(a~2)) - n20*f_n_offset;
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T_avg = T_tot/(pi*(a~2)) - T_offset;

norm_const_n0 = (n20 - n20*f_n_offset)/n_avg;

(T - T_offset)/T_avg;

norm_const_TO

(nr - n20*f_n_offset)*norm_const_n0 + n20*f_n_offset;
(Tr - T_offset)*norm_const_TO + T_offset;

nr
Tr

% CALCULATE OTHER DISTRIBUTIONS
for i = 1:1length(Rr)
sigmavr(i) = sigma_v(Tr(i)); % (m~3)/s
end
for i = 1:length(Rr)
Pfr(i) = 0.25*%((nr(i)*(1e20))"2)*sigmavr(i)*E_alpha*5/(1e6); % MW/m~3
end
end

function result = sigma_v(T)

result = 107 (-.0602*1ogl0(T)"5 + .5611x1ogl10(T)"4 - 1.5515%1ogl10(T)"3
+ 5.1979%10gl10(T) - 26.1059);

end
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A.3 1-D Current Profiles

This is a method for computing the various current profiles in a 1-D spherical tokamak core
model. This assumes a fixed set of 0-D parameters.

function result = jboot(n,T,Rr,a,R,kappa)

u0

4xpix(le-7); % mxkg/ (s*A) "2

JO = 384314.3%(17.4/26.5); % A % calculated given total Ip

dr = Rr(2) - Rr(1);
dndr_1less = diff(n)/dr;
dTdr_1less = diff(T)/dr;
for i = 2:length(Rr)
dndr(i) = dndr_1less(i-1); % 1/m~4
dTdr(i) = dTdr_1less(i-1); % keV/m
end
dndr (1)
dTdr (1)

0;
0;

p = n.*¥T*(1000)*(1.6e-19)/2; % Pa

total
for i

0;
1:1length(Rr)
Rr(i);

=
Il

circumf = 2xpi*r*((l+kappa~2)/2)~(1/2); % m
I = JO*2xpixkappax((r~2)/2 - (r~4)/(4%(a"2))); h A
B_theta = uO*I/circumf; % T

boot (i) ((r/R)~(1/2))*(p(i)/B_theta)*(-4.88*dndr (i) /n(i)
- 0.27*dTdr (1) /T(1)); % A/m~2

total = total + boot(i)*(2*pixkappa*Rr(i))x*dr;
end

result = boot*(17.4%0.46)/total;
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end
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A.4 1-D q Profile

This is a method for computing the safety factor ¢(r) profile in a 1-D spherical tokamak core
model. This assumes a fixed set of 0-D parameters.

function result = gprofile(r, jboot,w)

u0 = 4*xpix(le-7);

Ip = 17.4%x(1e6); % A
fcd = 0.60;

a=5.2/2.8; % m

B = 6.8; % T

R =5.2; % m

kappa = 1.91;

Icd = fcd*Ip;

AA = Icd/interf(1l,w);

for i = 1:length(r)
Jed(i) = AAxerfc(uwx(r(i)-a/2));
jtot(i) = jboot(i) + Jcd(i);
end

dr = r(2) - r(1);
Ienc = 0;
for i = 1:length(r)
Ienc = Ienc + 2xpixkappax*r(i)*jtot(i)*dr;
circumf = 2*pixr(i)*sqrt((1+kappa~2)/2);
q(i) = (circumf/(2*pi*R))*B/(u0*Ienc/circumf) ;
end

result = q;
end

function result = interf(c,w)



A Fission-Fusion Hybrid Reactor 223

a=5.2/2.8; % m
1.91;

kappa

total = 0O;
dr = .001;
for r = dr:dr:a
total = total + 2xpixrxkappa*ckerfc(wk(r-a/2))x*dr;
end

result = total;

end
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A.5 Auxiliary Power for Operating Point Access

This is a method for computing the 0-D auxiliary power as a function of density and tem-
perature, which maps startup and shutdown processes.

function ntplots

R = 5.2; % m

ratio = 2.8;

g_star = 3.0;

Pf_SA_ratio = 3; % MW/m"2

Q =6.7;

blanket_width = 1; % m

Bmax = 15; h T

fgreen = 0.9;

E_alpha = 3.5%(1e6)*(1.6e-19) ; % J
M= 2.5;

kappa = 5.276/(ratio~0.985);

a = R/ratio; % m

B = (R-a-blanket_width)*Bmax/R; h T

area_surf = (2*pixa)*(2xpi*R)*((1 + kappa~2)/2)~(1/2); % m~2
area_perp = pixkappax(a~2); % m~2

V = 2xpixR*area_perp; % m~3

Ip = 5%(1 + kappa~2)*(B/R)*(a~2)/(2*q_star); % MA

n_small = fgreen*xIp/(pi*(a~2)); % m~(=3)

n_big = n_small*(1e20); % (1e20) m~(-3)

Pfusion= Pf_SA_ratio*area_surf; % Mw

P_aux = Pfusion/Q; % Mw

Palpha = Pfusion/5; % MW

Pinput = P_aux + Palpha; % MW

sigma_v = (Palphax(1e6)/V)*4/((n_big~2)*E_alpha); % (m~3)/s

% calculate T by minimizing sigma_v(T) - sigma_v
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T = fminsearch(@(T) sigma_v_diff(T, sigma_v), 1); % keV
if(sigma_v_diff (T, sigma_v)/sigma_v > .01)
T = 0; % set T = 0 if no solution for T exists
end
tau_e = 3*n_bigxT*(1e3)*(1.6e-19)/(Pinput*(1e6)/V); % s

H = tau_e/(0.048*((n_small)~0.1)*(M"0.5)*(Ip~0.85)*(R"1.2)*(a"0.3)
* (kappa~0.5)*(B~0.2)/(Pinput~0.5));

W_th = Pinput*tau_e; % MJ

volume_avg_p = W_th*(10%(2/3))/V; % bar
beta_t = 100*volume_avg_p/(3.93%(B"2));
beta_n = beta_t/(Ip/(a*B));

T_min = 1;
T_step = 1;
T_max = 20;

n_min = 0.02;
n_step = .02;
n_max = 1.8;

t_ =1;
for n = n_min:n_step:n_max
den(n_) = n;
for t = T_min:T_step:T_max
temp(t_) = t;
P(n_,t_) = P_aux_max(n,t,R,ratio,q_star,H);
t_ = t_ + 1;

i P_alpha = 0 analysis

T_no_alpha_heating = (P_aux*(le6)*tau_e/(3*n_big*V))/((1.6e-19)*1000);
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% plotting

contourlevels = [0:.01:.9];

contourf (temp,den,P,contourlevels);

colorbar;

hold on;

contour (temp,den,P, [0,P_aux*.97/1000],’r’,’LineWidth’,4);
scatter ([T+.6], [n_small],200,’r’, ’LineWidth’,4);

ylabel(’n (107°{20}/m~3)’,’FontSize’,12);

xlabel (°T (keV)’,’FontSize’,12);

title CCP_{\mathrm{\mathrm{aux}}}(n,T) (GW)’,’FontSize’,12);

end
function result = P_aux_max(n_small, T, R, ratio, q_star, H)

% constants

Bmax = 16; h T

blanket_width = 1; % m

M= 2.5;

E_alpha = 3.5%(1e6)*(1.6e-19) ; % J

% calculations

kappa = 5.276/(ratio~0.985);

a = R/ratio; % m

B = (R-a-blanket_width)*Bmax/R; h T

harea_surf = (2*pi*a)*(2+pi*R)*((1 + kappa~2)/2)~(1/2); % m~2
area_perp = pixkappa*(a~2); % m~2

V = 2*pi*R¥area_perp; % m~3

sigma_v = 107 (-.0602%10g10(T)"5 + .5611*%1ogl0(T) 4

- 1.5515%10g10(T)"3 + 5.1979%10gl0(T) - 26.1059);

Ip = 5%(1 + kappa”2)*(B/R)*(a"2)/(2*q_star); % MA
%n_small = fgreenxIp/(pi*(a~2)); % m~(=3)
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n_big = n_small*(1e20); % m~(-3)
Palpha = sigma_v*(n_big~2)+*E_alpha*V/(4e6);

P_aux_max = fminsearch(@(x) powerbalance(x, Palpha, n_small
, E_alpha, T, V, H, kappa, R, a, B, Ip, M), 100000000);

result = P_aux_max/1000;
end

function result = powerbalance(P_aux_max, Palpha, n_small
, E_alpha, T, V, H, kappa, R, a, B, Ip, M)

n_big = n_small*(1e20);

Pinput = P_aux_max + Palpha;

tau_e = H*(0.048*((n_small)~0.1)*(M"0.5)*(Ip~0.85)*(R~1.2)
*(a”0.3)*(kappa~0.5)*(B~0.2)/(Pinput~0.5));

result = abs(P_aux_max/V + Palpha/V

- (1e-6)*(1.7e-38)*((T*1000) " (1/2))*(n_big) "2

- (le-6)*3*n_bigxT*(1e3)*(1.6e-19)/tau_e);

end

function result = sigma_v_diff(T, sigma_v)

diff = 107 (-.0602%x10ogl10(T)"5 + .5611x10gl0(T)"4 - 1.5515%10gl10(T)"3
+ 5.1979%10ogl10(T) - 26.1059) - sigma_v;

result = abs(diff);

end
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B Toroidal Monte Carlo Code

This is the complete fission-fusion hybrid Monte Carlo code in toroidal geometry, which
we developed from scratch. It samples a fixed neutron source within the toroidal plasma
and tallies subcritical fission and tritium breeding within the blanket. We utilize ENDF
cross-sections and analog Monte Carlo (except in particle splitting during fission).

function result = hybrid(N,cs_energy_array,tH1,nH1,aH1,tHe4,tLi6,triLi6
,n2nlLi6,nlLi6,ali6,tLi7,trilLi7,n2nlLi7,nLi7,ali7,tC12,nC12,aC12,t016,n2n016
,0016,a016,tS128,n5128,a3128,tFeb6,n2nFeb6,nFeb6,aFeb6,tPb206,n2nPb206
,01Pb206 ,aPb206,tPb207 ,n2nPb207 ,nPb207 ,aPb207,tPb208,n2nPb208,nPb208
,aPb208,tU235,£0235,n3n0235,n2nU235,n0235, aU235,tU238,£U238,n3n0238
,n2nU238,n0238,aU238)

global R al a2 a3 a4 ab5 kappa;

split = 5; % fission splitting parameter
inelastic = 0.35; % inelastic energy loss parameter

enrichmentU = 0.007,
enrichmentli = 0.9;
% 0.007 U-235 in natural U
% 0.075 Li-6 in natural Li

% pivotal layer thicknesses
thicknessU = 0.2; % m
thicknessLi = 0.3; % m

% hybrid geometry
R = 6.2%100; % cm

al = 2.0%100; % cm

a2 = 2.02*100; % cm

a3 = (2.02 + thicknessU)*100; % cm

a4 = (2.02 + thicknessU + thicknessLi)*100; % cm
ab = 3.0%100; % cm

kappa = 1.75;

% constants



A Fission-Fusion Hybrid Reactor 229

N_av = 6.022e23; % #/mol
barn_to_cm2 = le-24; % cm”~2/barn

% Li-Pb properties

fracli = 0.9;

density_LiPb_mass = (fracLi*6.1 + (1-fracLi)*207.2)/(fracLi*6.1/0.512
+ (1-fracLi)*207.2/10.66); % g/cm3

density_Li = density_LiPb_mass*x(N_av/(fracLi*6.1

+ (1-fracLi)*207.2))*fraclLi;

density_Pb = density_LiPb_mass*(N_av/(fracLix*6.1

+ (1-fracLi)*207.2))*(1-fracli);

% UO2 properties

f_pack = 0.64;

density_U02_mass = 10.97; % g/cm”3

density_U02 = density_U02_mass*(N_av/270.03); % U02/cm"3

% He properties
density_He_mass = 0.005; % g/cm”3
density_He = density_He_mass*(N_av/8.0);

% steel properties
density_steel_mass = 8.0; % g/cm~3
density_steel = density_steel_mass*(N_av/56); % Fe/cm”3

% H20 properties
density_H20_mass = 1.0; % g/cm”3
density_H20 = density_H20_mass*(N_av/18);

% SiC properties
density_SiC_mass = 3.21; % g/cm”3
density_SiC = density_SiC_mass*(N_av/40.085); % Si/cm”3

% fission and tritium tallies initialization
fission_count = O;
fission_count2 = O;
tritium_count = O;
tritium_count2 = O;
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% count particle kills from rounding error
roundOffErrorCount = 0;

% neutron generation initialization
generations = zeros(1,Nx*2);
generations(1) = N;

generationsNum = generations;
countGen = 1;

energies = zeros(1,Nx2) + 14.1;
weights = zeros(1,N*2) + 1.0;
position = zeros(3,Nx*2);

% sample fusion reaction sites

for i = 1:N
x = Rx10;
y =0;
z = alxkappa*10;

% toroidal rejection sampling loop
while(withintoroid(x,y,z,al) == 0)
x = (rand*2-1)*al + R;
z = (rand*2-1)xkappaxal;
end
position(1,i) = x;
position(2,i) = y;
position(3,i) = z;
end
energiesNext = energies;
weightsNext = weights;
positionNext = position;

/» neutron generation loop
while(generationsNum(countGen) > 0)

countGen = countGen + 1;

% transfer stored energies, weights, and

positions

Mark Reed
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energies = energiesNext;
weights = weightsNext;
position = positionNext;

countGenNum = O;

% print status progress at 10% intervals
if (mod(i,generationsNum(countGen-1)/10) == 0)
i/generationsNum(countGen-1)

end

% neutron history loop (for one generation)
for i = 1:generationsNum(countGen-1)

% define neutron birth region

% (either fission or fusion, depending on generation)

region = 1;

if (countGen > 2)
region = 3;

end

% initialize neutron properties

energy = energies(i);
weight = weights(i);

x = position(1,i);
y = position(2,1i);
z = position(3,1i);

% MeV

% sample isotropic direction

mu_z = 2*rand - 1;
phi = 2x*pix*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z~2)*sin(phi);

% alive/dead variable
exists = 1;

% neutron collision loop

231
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while(exists == 1)
sigma_t = zeros(1,5);

% perform binary search of nearest energy index
% (only once per collision)
index = bsearch(cs_energy_array,energy);

% compute sigma_t for region 4
sigma_t_Li6 = tLi6(index)*barn_to_cm2*density_Li*enrichmentLi;
tLi7 (index)*barn_to_cm2*density_Li
*(1 - enrichmentLli);
tPb206 (index) *barn_to_cm2*density_Pb*0.25;
sigma_t_Pb207 = tPb207 (index)*barn_to_cm2*density_Pb*0.23;
sigma_t_Pb208 = tPb208(index)*barn_to_cm2*density_Pb*0.52;
sigma_t(4) = sigma_t_Li6 + sigma_t_Li7 + sigma_t_Pb206

+ sigma_t_Pb207 + sigma_t_Pb208;

sigma_t_Li7

sigma_t_Pb206

% compute sigma_t for region 3
sigma_t_U235 = tU235(index)*barn_to_cm2*density_U02
*enrichmentUx*xf_pack;
sigma_t_U238 = tU238(index)*barn_to_cm2*density_U02
*(1 - enrichmentU)*f_pack;
sigma_t_016_U = t016(index)*barn_to_cm2*density_U02*2*f_pack;
sigma_t_He4_U = tHe4(index)*barn_to_cm2*density_Hex*2
*(1 - f_pack);
sigma_t(3) = sigma_t_U235 + sigma_t_U238 + sigma_t_016_U
+ sigma_t_He4_U,;

% compute sigma_t for region 5

sigma_t_H1 = tH1(index)*barn_to_cm2*density_H20%0.5%2;
sigma_t_016_Fe = t016(index)*barn_to_cm2*density_H20%0.5;
sigma_t_Feb6 = tFeb6(index)*barn_to_cm2*density_steel*0.5;
sigma_t(5) = sigma_t_H1 + sigma_t_016_Fe + sigma_t_Feb6;

% compute sigma_t for region 2
sigma_t_Si28 = tS5i28(index)*barn_to_cm2*density_SiC*0.7;
sigma_t_C12 = tC12(index)*barn_to_cm2*density_SiC*0.7;
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sigma_t_He4_SiC = tHe4(index)x*barn_to_cm2*density_He*2%0.3;
sigma_t(2) = sigma_t_Si28 + sigma_t_C12 + sigma_t_He4_SiC;

pathlength = 0;

try
% determine path length and region of next collision
[pathlength,region]
= sample_path(x,y,z,mu_x,mu_y,mu_z,region,sigma_t);
catch
% kill particle if (rare) round-off error occurs
exists = 0;
region = 6;
roundOffErrorCount = roundOffErrorCount + 1;
’ROUND-OFF ERROR’
end

% advance neutron to next collision position

X = x + pathlength*mu_x;
y =y + pathlength*mu_y;
z = z + pathlength*mu_z;

%if ((withintoroid(x,y,z,ab) == 0) || (region == 6))
if (region == 6)

hleaked out of system
exists = 0;

else
% region 1 is plasma, in which particles never collide
if (region == 4)
% Li-6 and Li-7

collisiontype = rand;

if(collisiontype <= sigma_t_Li7/sigma_t(4))
% Li-7

sigma_a_Li7 = aLi7(index)*barn_to_cm2*density_Li
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*(1 - enrichmentLi);
sigma_n_Li7 = nLi7(index)*barn_to_cm2*density_Li
*(1 - enrichmentLli);

n2nlLi7 (index)*barn_to_cm2*density_Li
*(1 - enrichmentLi);
trili7 (index) *barn_to_cm2*density_Li
*(1 - enrichmentli);

sigma_n2n_Li7

sigma_tri_Li7

collisiontype = rand;

if(collisiontype <= sigma_tri_Li7/sigma_t_Li7)
% tritium breeding

tritium_count = tritium_count + weight;
tritium_count2 = tritium_count2 + weight~2;

energy = (energy - 2.466)%*(12/19);
mu_z = 2*rand - 1;
phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif(collisiontype <= (sigma_tri_Li7
+ sigma_n2n_Li7)/sigma_t_Li7)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);
mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);

elseif (collisiontype <= (sigma_tri_Li7

+ sigma_n2n_Li7 + sigma_n_Li7)/sigma_t_Li7)
% (n,n’)

energy = energy*inelastic;
mu_z = 2*rand - 1;
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phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_tri_Li7
+ sigma_n2n_Li7 + sigma_n_Li7
+ sigma_a_Li7)/sigma_t_Li7)

%h (n,g)

exists = 0;

else
% elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,7);

end

elseif (collisiontype <= (sigma_t_Li7
+ sigma_t_Li6)/sigma_t(4))

% Li-6

sigma_a_Li6 = aLi6(index)*barn_to_cm2
*density_Li*enrichmentLli;

sigma_n_Li6 = nLi6(index)*barn_to_cm2

*density_Li*enrichmentLi;
sigma_n2n_Li6 = n2nLi6(index)*barn_to_cm?2
*density_Li*enrichmentLi;
sigma_tri_Li6 = trili6(index)*barn_to_cm2
*density_Li*enrichmentLi;

collisiontype = rand;

if(collisiontype <= sigma_tri_Li6/sigma_t_Li6)
% tritium breeding

tritium_count = tritium_count + weight;
tritium_count2 = tritium_count2 + weight~2;

exists = 0;
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elseif (collisiontype <= (sigma_tri_Li6
+ sigma_n2n_Li6)/sigma_t_Li6)

% (n,2n)

weight

weight*2;
energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;
phi = 2x*pi*rand;
mu_x = sqrt(l-mu_z"2)*cos(phi);
mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_tri_Li6
+ sigma_n2n_Li6 + sigma_n_Li6)/sigma_t_Li6)
% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_tri_Li6
+ sigma_n2n_Li6 + sigma_n_Li6
+ sigma_a_Li6)/sigma_t_Li6)

%h (n,g)

exists = 0;

else
% elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,6);
end
elseif (collisiontype <= (sigma_t_Li7 + sigma_t_Li6
+ sigma_t_Pb206)/sigma_t(4))
% Pb-206

sigma_a_Pb206 = aPb206(index)*barn_to_cm?2
*density_Pb*0.25;

sigma_n_Pb206 = nPb206(index)*barn_to_cm?2
*density_Pb*0.25;

sigma_n2n_Pb206 = n2nPb206(index)*barn_to_cm2
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*density_Pb*0.25;
collisiontype = rand;
if (collisiontype <= sigma_n2n_Pb206/sigma_t_Pb206)

% (n,2n)
weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_n2n_Pb206
+ sigma_n_Pb206)/sigma_t_Pb206)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

sqrt (1-mu_z"2)*cos(phi) ;

mu_x

mu_y = sqrt(l-mu_z"2)*sin(phi);

elseif (collisiontype <= (sigma_n2n_Pb206

+ sigma_n_Pb206 + sigma_a_Pb206)/sigma_t_Pb206)
%h (n,g)

exists = 0;

else
% elastic scatter
energy = sample_elastic_isotropic(energy,206);
mu_z = 2%rand - 1,;
phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);

end
elseif(collisiontype <= (sigma_t_Li7 + sigma_t_Li6
+ sigma_t_Pb206 + sigma_t_Pb207)/sigma_t(4))

% Pb-207
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sigma_a_Pb207 = aPb207 (index)*barn_to_cm?2
*density_Pb*0.23;

sigma_n_Pb207 = nPb207 (index)*barn_to_cm?2
*density_Pb*0.23;

sigma_n2n_Pb207 = n2nPb207 (index)*barn_to_cm2
*density_Pb*0.23;

collisiontype = rand;
if (collisiontype <= sigma_n2n_Pb207/sigma_t_Pb207)

% (n,2n)
weight

weight*2;
energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_n2n_Pb207
+ sigma_n_Pb207)/sigma_t_Pb207)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

sqrt (1-mu_z"2)*cos(phi);
sqrt (1-mu_z"2)*sin(phi);

mu_Xx

mu_y

elseif (collisiontype <= (sigma_n2n_Pb207

+ sigma_n_Pb207 + sigma_a_Pb207)/sigma_t_Pb207)
% (n,g)

exists = 0;

else
i elastic scatter
energy = sample_elastic_isotropic(energy,207);
mu_z = 2*rand - 1;
phi = 2%pi*rand;
mu_x = sqrt(l-mu_z"2)*cos(phi);
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mu_y = sqrt(l-mu_z"2)*sin(phi);

end
else
% Pb-208

sigma_a_Pb208 = aPb208(index)*barn_to_cm?2
*density_Pb*0.52;

sigma_n_Pb208 = nPb208(index)*barn_to_cm2
*density_Pbx0.52;

sigma_n2n_Pb208 = n2nPb208(index)*barn_to_cm2
*density_Pb*0.52;

collisiontype = rand;
if (collisiontype <= sigma_n2n_Pb208/sigma_t_Pb208)

% (n,2n)
weight

weight*2;
energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2x*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_n2n_Pb208
+ sigma_n_Pb208)/sigma_t_Pb208)

% (n,n’)

energy = energy*inelastic;
mu_z = 2*rand - 1;
phi = 2*pi*rand;
mu_x = sqrt(l-mu_z"2)*cos(phi);
mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_n2n_Pb208
+ sigma_n_Pb208 + sigma_a_Pb208)/sigma_t_Pb208)
%h (n,g)

exists = 0;

else
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% elastic scatter

energy = sample_elastic_isotropic(energy,208);
mu_z = 2%rand - 1;

phi = 2%pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(i-mu_z"2)*sin(phi);

end
end
elseif (region == 3)
% U-235, U-238, and 0-16
%» He-4 is neutron-transparent

collisiontype = rand;

if(collisiontype <= sigma_t_U238/sigma_t(3))
% U-238

sigma_a_U238 = aU238(index)*barn_to_cm2
*density_U02*(1 - enrichmentU)*f_pack;
sigma_n_U238 = nU238(index)*barn_to_cm2
*xdensity_U02%(1 - enrichmentU)*f_pack;
sigma_n2n_U238 = n2nU238(index)*barn_to_cm?2
*density_U02*(1 - enrichmentU)*f_pack;
sigma_n3n_U238 = n3nU238(index)*barn_to_cm2
*xdensity_U02*(1 - enrichmentU)*f_pack;
sigma_f_U238 = fU238(index)*barn_to_cm2
*xdensity_UO2+*(1 - enrichmentU)*f_pack;

collisiontype = rand;

if(collisiontype < sigma_f_U238/sigma_t_U238)
% fission
fission_count = fission_count + weight;

fission_count2 = fission_count2 + weight”2;

weight = weight*nu(energy);
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generations(countGen) =
generations(countGen) + weight;
generationsNum(countGen) =
generationsNum(countGen) + split;
for j = 1:split
energiesNext (countGenNum+j)
= sample_fission238(energy) ;

positionNext(1,countGenNum+j) = x;
positionNext (2, countGenNum+j) = y;
positionNext (3, countGenNum+j) = z;
weightsNext (countGenNum+j) = weight/split;

end

countGenNum = countGenNum + split;

exists = 0;
elseif (collisiontype < (sigma_f_U238
+ sigma_n2n_U238)/sigma_t_U238)

% (n,2n)

weight

weight*2;
energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;
phi = 2x*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_f_U238

+ sigma_n2n_U238 + sigma_n3n_U238)/sigma_t_U238)

% (n,3n)
weight = weight*3;
energy = maxwellian(energy/30,energy);

mu_z = 2*rand - 1;
phi = 2x*pix*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_f_U238
+ sigma_n2n_U238 + sigma_n3n_U238
+ sigma_n_U238)/sigma_t_U238)

% (n,n’)

energy = energy*inelastic;
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mu_z = 2*rand - 1;
phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_f_U238
+ sigma_n2n_U238 + sigma_n3n_U238 + sigma_n_U238
+ sigma_a_U238)/sigma_t_U238)
%h (n,g)
exists = 0;
else
% elastic scatter
energy = sample_elastic_isotropic(energy,238);
mu_z = 2*rand - 1;
phi = 2*pi*rand;
mu_x = sqrt(l-mu_z"2)*cos(phi);
mu_y = sqrt(l-mu_z"2)*sin(phi);
end

elseif (collisiontype <= (sigma_t_U238
+ sigma_t_U235)/sigma_t(3))

% U-235

sigma_a_U235 = aU235(index)*barn_to_cm2
*density_UO2*enrichmentUx*f_pack;
sigma_n_U235 = nU235(index)*barn_to_cm2
*density_UO2*enrichmentU*f_pack;
sigma_n2n_U235 = n2nU235(index)*barn_to_cm2
*density_UO2*enrichmentUx*f_pack;
sigma_n3n_U235 = n3nU235(index)*barn_to_cm?2
*density_UO2*enrichmentUxf_pack;
sigma_f_U235 = fU235(index)*barn_to_cm2
*density_UO2*enrichmentUxf_pack;

collisiontype = rand;

if(collisiontype < sigma_f_U235/sigma_t_U235)
% fission
fission_count = fission_count + weight;
fission_count2 = fission_count2 + weight™2;
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weight = weight*nu(energy);

generations(countGen) = generations(countGen)
+ weight;
generationsNum(countGen) =
generationsNum(countGen) + split;
for j = 1:split
energiesNext (countGenNum+j)
= sample_fission235(energy);
positionNext (1, countGenNum+j) = x;
y;
positionNext (3, countGenNum+j) = z;

positionNext (2, countGenNum+j)

weightsNext (countGenNum+j) = weight/split;
end
countGenNum = countGenNum + split;

exists = 0;
elseif (collisiontype < (sigma_f_U235
+ sigma_n2n_U235)/sigma_t_U235)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

sqrt (1-mu_z"2)*cos(phi);
sqrt (1-mu_z"2)*sin(phi);

mu_Xx

mu_y
elseif (collisiontype < (sigma_f_U235
+ sigma_n2n_ U235 + sigma_n3n_U235)/sigma_t_U235)

% (n,3n)
weight = weight*3;
energy = maxwellian(energy/30,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_f_U235
+ sigma_n2n_U235 + sigma_n3n_U235
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+ sigma_n_U235)/sigma_t_U235)
% (n,n’)
energy = energy*inelastic;
mu_z = 2*rand - 1;
phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_f_U235
+ sigma_n2n_U235 + sigma_n3n_U235
+ sigma_n_U235 + sigma_a_U235)/sigma_t_U235)
%h (n,g)
exists = 0;
else
% elastic scatter
energy = sample_elastic_isotropic(energy,235);
mu_z = 2*rand - 1;
phi = 2x*pix*rand;
mu_x = sqrt(l-mu_z"2)*cos(phi);
mu_y = sqrt(l-mu_z"2)*sin(phi);
end
elseif (collisiontype <= (sigma_t_U238 + sigma_t_U235
+ sigma_t_016_U)/sigma_t(3))
% 0-16

sigma_a_016_U = a016(index)*barn_to_cm2
*density_UQ02x*2.0x*f_pack;

sigma_n_016_U = n016(index)*barn_to_cm2
*density_U02%2.0*f_pack;

sigma_n2n_016_U = n2n016 (index)*barn_to_cm2
*density_U02*2.0*f_pack;

collisiontype = rand;
if(collisiontype < sigma_n2n_016_U/sigma_t_016_U)

% (n,2n)
weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;
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phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_n2n_016_U
+ sigma_n_016_U)/sigma_t_016_U)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2%pix*rand;
sqrt (1-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_n2n_016_U
+ sigma_n_016_U + sigma_a_016_U)/sigma_t_016_U)

%h (n,g)

exists = 0;

mu_x

else
% elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,16);
end
else
% He-4
% cross-section is entirely elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,4);
end
elseif (region == 5)
% steal and H20

collisiontype = rand;

if(collisiontype <= sigma_t_H1/sigma_t(5))
% H-1

sigma_a_H1 = aH1(index)*barn_to_cm?2
*density_H20%0.5%2;
sigma_n_H1 = nH1(index)*barn_to_cm2
*density_H20*0.5x%2;



246 Mark Reed

collisiontype = rand;

if(collisiontype < sigma_n_H1/sigma_t_H1)
% (n,n’)
energy = energy*inelastic;
mu_z = 2*rand - 1;
phi = 2%pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_n_H1
+ sigma_a_H1)/sigma_t_H1)
h (n,g)
exists = 0;
else
% elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,1);
end
elseif (collisiontype <= (sigma_t_H1
+ sigma_t_016_Fe)/sigma_t(5))
% 0-16

sigma_a_016_Fe = a016(index)*barn_to_cm2
*density_U02x%2.
sigma_n_016_Fe
*density_U02%2.0;

sigma_n2n_016_Fe = n2n016(index)*barn_to_cm2

xdensity_U02%2.0;

o

)

n016 (index) *barn_to_cm2

collisiontype = rand;

if (collisiontype < sigma_n2n_016_Fe/sigma_t_016_Fe)
% (n,2n)
weight

weight*2;
energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;
phi = 2*pi*rand;
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mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_n2n_016_Fe
+ sigma_n_016_Fe)/sigma_t_016_Fe)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype < (sigma_n2n_016_Fe
+ sigma_n_016_Fe + sigma_a_016_Fe)/sigma_t_016_Fe)
h (n,g)
exists = 0;
else
% elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,16);
end
else
% Fe-56

sigma_a_Feb6 = aFeb6(index)*barn_to_cm2
*density_steel*0.5;

sigma_n_Feb6 = nFeb56(index)*barn_to_cm2
*density_steel*0.5;

sigma_n2n_Feb56 = n2nFeb6(index)*barn_to_cm2
*density_steel*0.5;

collisiontype = rand;
if(collisiontype <= sigma_n2n_Feb6/sigma_t_Feb6)

% (n,2n)
weight

weight*2;
energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;
phi = 2%pi*rand;
mu_x = sqrt(l-mu_z"2)*cos(phi);
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mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_n2n_Feb6
+ sigma_n_Feb6)/sigma_t_Fe56)
% (n,n’)
energy = energy*inelastic;
mu_z = 2*rand - 1;
phi = 2x*pix*rand;
mu_x = sqrt(l-mu_z"2)*cos(phi);
mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_n2n_Feb6
+ sigma_n_Feb6 + sigma_a_Feb6)/sigma_t_Feb6)
%h (n,g)
exists = 0;
else
% elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,56) ;
end
end
elseif (region == 2)
% first wall - SiC with He coolant

collisiontype = rand;

if(collisiontype <= sigma_t_Si28/sigma_t(2))

% Si-28

sigma_a_Si28 = aSi28(index)*barn_to_cm2
*density_SiC*0.7;

sigma_n_Si28 = nSi28(index)*barn_to_cm2

*density_SiC*0.7;
collisiontype = rand;

if(collisiontype <= sigma_n_Si28/sigma_t_Si28)
% (n,n’)
energy = energy*inelastic;
mu_z = 2*rand - 1;
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phi = 2*pi*rand;
mu_x = sqrt(l-mu_z"2)*cos(phi);
mu_y = sqrt(l-mu_z"2)*sin(phi);
elseif (collisiontype <= (sigma_n_Si28
+ sigma_a_S8i28)/sigma_t_Si28)
%h (n,g)
exists = 0;
else
% elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,56) ;
end
elseif (collisiontype <= (sigma_t_Si28
+ sigma_t_C12)/sigma_t(2))

% C-12

sigma_a_C12 = aC12(index)*barn_to_cm2
*density_SiC*0.7;

sigma_n_C12 = nC12(index)*barn_to_cm2

*density_SiCx*0.7;
collisiontype = rand;

if (collisiontype <= sigma_n_C12/sigma_t_C12)
% (n,n’)
energy = energy*inelastic;
mu_z = 2*rand - 1;
phi = 2%pi*rand;

mu_x = sqrt(l-mu_z"2)*cos(phi);

sqrt (1-mu_z"2)*sin(phi) ;

mu_y
elseif (collisiontype <= (sigma_n_C12
+ sigma_a_C12)/sigma_t_C12)
%h (n,g)
exists = 0;
else
% elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,56) ;
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end

else
% He-4
% cross-section is entirely elastic scatter
[energy,mu_x,mu_y,mu_z]
= sample_elastic(energy,mu_x,mu_y,mu_z,4);

end

end
end
end
end
end

>TALLIES AND ERRORS’

% print fission and tritium tallies
fission_fraction = fission_count/N
error = sqrt((fission_count2/N - (fission_count/N)"2)/(N-1))
tritium_fraction = tritium_count/N
error = sqrt((tritium_count2/N - (tritium_count/N)~2)/(N-1))

% condense generation and k data
num = O;
while(generations(j) > 0)
num = num + 1;
end
generations2 = zeros(l,num);
generationsNum2 = zeros(1l,num);
for j = 1:num
generations2(j) = generations(j);
generationsNum2(j) = generationsNum(j);
end
k = zeros(1,num);
k(1) = 0;
for j = 2:1length(k)
k(j) = generations2(j)/generations2(j-1);
end
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% output generation and k data
result = [k;generations2;generationsNum?];

end

% sample anisotropic elastic scattering
function [E2,mu_x2,mu_y2,mu_z2] = sample_elastic(El,mu_x1,mu_yl,mu_z1,A)

% sample angular shifts

alpha = ((A-1)/(A+1))"2;

E2 = (l1-alpha)*Elxrand + alpha*E1;

dmu_cm = (2%x(E2/E1) - (1 + alpha))/(1 - alpha);
dmu = cos(atan2(sqrt(1-dmu_cm~2),1/A + dmu_cm));
dphi = 2*pi*rand;

% compute new unit vectors

mu_x2 = mu_xl*xdmu + (sqrt(1-dmu~2)/sqrt(l-mu_z1°2))

* (mu_x1*mu_zl*cos(dphi) - mu_yl*sin(dphi));

mu_y2 = mu_yl*dmu + (sqrt(1-dmu~2)/sqrt(il-mu_z1°2))
*(mu_yl*mu_zl*cos(dphi) + mu_x1*sin(dphi));

mu_z2 = mu_zl*dmu - sqrt(l-dmu~2)*sqrt(1-mu_z172)*cos(dphi);

end

% sample isotropic elastic scattering
function E2 = sample_elastic_isotropic(E1l,A)
alpha = ((A-1)/(A+1))"2;
E2 = (l1-alpha)*El*rand + alphaxEl;
end

% sample path length in toroidal geometry
function [pathlength_tot,region]
= sample_path(x,y,z,mu_x,mu_y,mu_z,region,sigma_t)

global al a2 a3 a4 ab;

% obtain positive real quartic solutions for each torus
pointsl = solvequartic(al,x,y,z,mu_x,mu_y,mu_z);
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points2 = solvequartic(a2,x,y,z,mu_x,mu_y,mu_z);
points3 = solvequartic(a3,x,y,z,mu_x,mu_y,mu_z);
points4 = solvequartic(ad,x,y,z,mu_x,mu_y,mu_z);
pointsb = solvequartic(ab,x,y,z,mu_x,mu_y,mu_z);

% organize quartic solutions (points) and enumerte tori (shells)

totalPoints = length(pointsl) + length(points2)

+ length(points3) + length(points4) + length(points5);

points = zeros(1l,totalPoints-5);

shell = zeros(l,totalPoints-5);

reg = zeros(1l,totalPoints-5);

path = zeros(1l,totalPoints-5);

points(1) = -1;

for m = 1:(length(pointsl)-1)
points(m) = pointsi(m);
shell(m) = 1;

end

for m = 1:(length(points2)-1)
points(mt+length(pointsl)-1) = points2(m);
shell(m+length(pointsl)-1) = 2;

end

for m = 1:(length(points3)-1)
points(m+length(pointsl)+length(points2)-2) = points3(m);
shell (m+length(pointsl)+length(points2)-2) = 3;

end

for m = 1:(length(points4)-1)
points(m+length(pointsl)+length(points2)+length(points3)-3)
= points4(m);
shell (m+length(pointsl)+length(points2)+length(points3)-3) = 4;

end

for m = 1:(length(pointsb5)-1)
points(m+length(pointsl)+length(points2)+length(points3)
+length(points4)-4) = points5(m);
shell (m+length(pointsl)+length(points2)+length(points3)
+length(points4)-4) = 5;

end

% sort quartic solutions
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[points,indices] = sort(points);
shell = shell(indices);

% enumerate regions between each quartic solution
% define path lengths between each quartic solution
reg(l) = region;
path(1) = points(1);
for m = 2:length(points);
if (shell(m-1) - reg(m-1) == 0)
reg(m) = reg(m-1) + 1;
elseif (shell(m-1) - reg(m-1) == -1)
reg(m) = reg(m-1) - 1;
else
error (’round-off error’);
end
path(m) = points(m) - points(m-1);
end

% perform path length sampling algorithm
pathlength_tot = 0;
for m = 1:length(points)
if(reg(m) == 1)
% within plasma - no collisions
pathlength_tot = pathlength_tot + path(m);
else
pathlength = -log(l-rand)/sigma_t(reg(m));
if (pathlength < path(m))
region = reg(m);

pathlength_tot = pathlength_tot + pathlength;

break;
else
pathlength_tot
if (shell(m) == 5)
% leaked out of system - kill it
region = 6;

break;
end
end

pathlength_tot + path(m);
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end
end
end

% determine positive real quartic solutions for one torus
function radiiuseful2 = solvequartic(ra,x0,y0,z0,x1,y1,z1)

global R kappa;

L =R"2 - ra"2 + x0°2 + y0~2 + (zO/kappa)”2; % cm™2
M = 2xx0*x1 + 2xyOxyl + 2%z0*zl1/(kappa”2); % cm
N = x1"2 + y1°2 + (zl/kappa)”2; % unitless

% define standard quartic coefficients

= N"2; % unitless

2*N*M; % 1/cm

2xN*L + M"2 - 4x(R"2)*(x17°2 + y172); % 1/cm”2
2xM+L - 8*%(R"2)*(x0*x1 + yO*yl); % 1/cm”3
L™2 - 4x(R"2)*(x0"2 + y072); % 1/cm™4

Mmoo Q@ =
I

% call Ferrari’s method for solutions
radii = quarticzeros(A,B,C,D,E); % m
%radii = roots([A,B,C,D,E]); % cm

% select only positive real zeros
radiiuseful = zeros(1,4);

m=1;
for j = 1:4
r = radii(j);

if ((real(r) > 0) && (abs(imag(r)/real(r)) < 1le-3))
radiiuseful(m) = real(r);
m=m+ 1;
end
end
radiiuseful(m) = -1;

% convert solution into convenient output format
radiiuseful2 = zeros(1l,m);
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for j = 1:m
radiiuseful2(j) = radiiuseful(j);
end
end

% Ferrari’s quartic solution
function result = quarticzeros(A,B,C,D,E)

alpha = -(3*B~2)/(8%A"2) + C/A;
beta = (B"3)/(8%A~3) - (BxC)/(2%xA"2) + D/A;
gamma = -(3%B"~4)/(256%A~4) + (C*B~2)/(16%A~3) - (B*D)/(4*A~2) + E/A;

P = -(alpha”2)/12 - gamma;
Q = -(alpha”3)/108 + alpha*gamma/3 - (beta~2)/8;
R =-Q/2 + sqrt((Q~2)/4 + (P~3)/27); % +/i on sqrt term
U =R"(1/3); % any cubic root
if (U == 0)
y = -b*alpha/6 + U - Q°(1/3);
else
y = -b*alpha/6 + U - P/(3%U);
end
W = sqrt(alpha + 2*y);
x = zeros(1,4);
x(1) = -B/(4xA) + (W + sqrt(-(3*alpha + 2%y + 2xbeta/W)))/2;
x(2) = -B/(4xA) + (W - sqrt(-(3*alpha + 2%y + 2xbeta/W)))/2;
x(3) = -B/(4*%A) + (-W + sqrt(-(3*alpha + 2%y - 2xbeta/W)))/2;
x(4) = -B/(4*%A) + (-W - sqrt(-(3*alpha + 2%y - 2xbeta/W)))/2;

result = x;

end

% check whether a point is within a torus (minor radius a)
function boolean = withintoroid(x,y,z,a)
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global R kappa;

r = sqrt(x"2 + y~2);
if((r72 > (R-a)"2) && (r~2 < (R+a)~"2) && (abs(z)
< kappa*sqrt(a“2-(r-R)"2)))
boolean = 1;
else
boolean = 0;
end

end

% evaluate fission nu
function value = nu(E)

if(E <= 1)

value = 2.432 + 0.066%E;
else

value = 2.349 + 0.15%E;
end

end

% sample truncated U-238 fission spectrum
% with rejection sampling
function x = sample_fission238(Ei)

x = 10;

y = 100;

while(y > chi238(x,Ei))
X = randx*14;
y = rand;

end

end

% sample truncated U-235 fission spectrum
% with rejection sampling
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function x = sample_fission235(Ei)

x = 10;

y = 100;

while(y > chi235(x,Ei))
randx14;
rand*0.8;

X

y
end

end

% evaluate fission chi for U-238
function value = chi238(E,Ei)

if(Ei <= 1)
a = Ei*(0.89506-0.88111) + 0.88111;
b = 3.4005 - Ei*(3.4005-3.2953);
elseif (Ei <= 14)

a = (Ei-1)%*(0.96534-0.89506) /13 + 0.89506;
b = 3.2953 - (Ei-1)*(3.2953-2.833)/13;
else
a = 0.96534;
b = 2.833;
end
value = exp(-E/a)*sinh(sqrt(b*E));

end

% evaluate fission chi for U-235
function value = chi235(E,Ei)

if(Ei <= 1)
a = 0.988;
b = 2.249;

elseif (Ei <= 14)
a = (Ei-1)%*(1.028-0.988)/13 + 0.988;
b =2.249 - (Ei-1)*(2.249-2.084)/13;
else
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a = 1.028;
b = 2.084;
end
value = exp(-E/a)*sinh(sqrt(b*E));

end

% sample maxwellian distribution for (n,xn)
function x = maxwellian(a,EO)

X 9999;

y = 10;

while(y > x*exp(-x/a))
x = rand*E0%*0.9;
y = randx(a/exp(1));

end
end
/» open source binary search code (slightly modified)

% bsearch(x,var)

% Written by Aroh Barjatya

’» Binary search for values specified in vector ’var’ within data vector ’x’
% The data has to be pre-sorted in ascending or decending order

% There is no way to predict how the function will behave if there

% are multiple numbers with same value.

% returns the index values of the searched numbers

function index = bsearch(x,var)

xLen = length(x);
[xRow xCol] = size(x);
if x(1) > x(xLen) % means x is in descending order
if xRow==1
x = fliplr(x);
else
x = flipud(x);
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end
flipped = 1;

elseif x(1) < x(xLen) % means x is in ascending order
flipped = O;

else

’badly formatted data. Type ’’help bsearch\’’)’;
return;
end

index = zeros(l,length(var));

for i = 1:length(var)
low = 1;
high = xLen;

if var(i) <= x(low)
index(i) = low;
continue;

elseif var(i) >= x(high)
index(i) = high;
continue;

end

flag = 0;

while (low <= high)
mid = round((low + high)/2);
if (var(i) < x(mid))

high = mid;

elseif (var(i) > x(mid))
low = mid;

else

index(i) = mid;

flag = 1;
break;

end

if (low == high - 1)
break

end

end
if (flag == 1)
continue;
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end

if (low == high)
index(i) = low;

elseif ((x(low) - var(i))"2 > (x(high) - var(i))~2)
index(i) = high;

else
index(i) = low;
end
end
if flipped

index = xLen - index + 1;
end



A Fission-Fusion Hybrid Reactor 261

C Cylindrical Monte Carlo Code

This is the path length sampling method for a fission-fusion hybrid Monte Carlo code in
cylindrical geometry. This could replace the corresponding sample_path method in the
toroidal code in Appendix B.

% sample path length in cylindrical geometry
function [pathlength_tot,region]
= sample_path(x,y,z,mu_x,mu_y,mu_z,region,sigma_t)

global al a2 a3 a4 ab;
% determine the positive real quadratic solutions

% for each elliptic cylinder
% no z coordinates necessary

pointsl = solvequadratic(al,x,y,mu_x,mu_y);
points2 = solvequadratic(a2,x,y,mu_x,mu_y);
points3 = solvequadratic(a3,x,y,mu_x,mu_y);
points4 = solvequadratic(a4,x,y,mu_x,mu_y);
pointsb = solvequadratic(ab,x,y,mu_x,mu_y);

% organize solutions and enumerte shells
totalPoints = length(pointsl) + length(points2)
+ length(points3) + length(points4) + length(points5);
points = zeros(l,totalPoints-5);
shell = zeros(l,totalPoints-5);
reg = zeros(1l,totalPoints-5);
path = zeros(1,totalPoints-5);
points(1) = -1;
for m = 1:(length(pointsl)-1)
points(m) = pointsl(m);
shell(m) = 1;
end
for m = 1:(length(points2)-1)
points(mt+length(pointsl)-1) = points2(m);
shell (m+length(pointsl)-1) = 2;
end
for m = 1:(length(points3)-1)
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end
for

end
for

end
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points(mt+length(pointsl)+length(points2)-2) = points3(m);
shell (m+length(pointsl)+length(points2)-2) = 3;

m = 1:(length(points4)-1)
points(mt+length(pointsl)+length(points2)+length(points3)-3)

= points4(m);

shell (m+length(pointsl)+length(points2)+length(points3)-3) = 4;

m = 1:(length(points5)-1)
points(mt+length(pointsl)+length(points2)+length(points3)
+length(points4)-4) = points5(m);

shell (m+length(pointsl)+length(points2)+length(points3)
+length(points4)-4) = 5;

% sort solutions

[points,indices] = sort(points);
shell = shell(indices);

% enumerate regions along flight path

% define path lengths between shells

reg(l) = region;
path(1) = points(1);
for m = 2:length(points);

end

if (shell(m-1) - reg(m-1) == 0)
reg(m) = reg(m-1) + 1;

elseif (shell(m-1) - reg(m-1) == -1)
reg(m) = reg(m-1) - 1;

else
error (’round-off error’);

end

path(m) = points(m) - points(m-1);

% perform sampling algorithm
pathlength_tot = 0;
for m = 1:length(points)

if (reg(m) == 1)
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% within plasma - no collisions
pathlength_tot = pathlength_tot + path(m);
else
pathlength = -log(l-rand)/sigma_t(reg(m));
if (pathlength < path(m))
region = reg(m);
pathlength_tot = pathlength_tot + pathlength;
break;
else
pathlength_tot
if (shell(m) == 5)
% neutron leak - kill it
region = 6;

pathlength_tot + path(m);

break;
end
end
end
end
end

% solve quadratic equation for elliptic cylinder
function radiiuseful2 = solvequadratic(ra,x0,y0,x1,yl)

global kappa;

% define standard quadradic coefficients

A = x172 + (yl1/kappa)~2;
B = 2x(x0*x1 + yOxyl/kappa~2);
C = x072 + (yO/kappa)”2 - ra”2;

% the famed quadratic equation!
radii(1) = (-B + sqrt(B"2 - 4*A*C))/(2%A);
radii(2) = (-B - sqrt(B~2 - 4%Ax*C))/(2xA);

% determine the positive real solution
radiiuseful = zeros(1,2);

m=1;

for j = 1:2
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r = radii(j);
if ((real(r) > 0) && (abs(imag(r)/real(r)) < 1le-3))
radiiuseful (m) = real(r);
m=m+ 1;
end
end
radiiuseful(m) = -1;

% put solutions into convenient format
radiiuseful2 = zeros(l,m);
for j = 1:m
radiiuseful2(j) = radiiuseful(j);
end
end

Mark Reed
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D Plasma Surface Neutron Flux Code

D.1 Toroidal Flux Monte Carlo

A Monte Carlo code for toroidal fusion source sampling. Although only a part of the full-
scale fission-fusion hybrid code, this stand-alone module can compute the scalar and angular
neutron flux distributions at any point on the plasma surface.

function result = toroidalFlux(bigN)

ra = 2.0;

R =6.2;
kappa = 1.75;
k=1;

% loop through neutrons
for i = 1:bigN

% print progress
if (mod(i,bigN/10) == 0)

i/bigN
end
x0 = Rx10;
yO = 0;
z0 = raxkappax*10;

% rejection sampling with toroidal source
while(inplasma(x0,y0,z0,R,ra,kappa) == 0)
x0 = (rand*2-1)*ra + R;
z0 = (rand*2-1)x*kappa*ra;
end

% fusion neutrons produced isotropically
theta = acos(rand*2 - 1);

phi = rand*2x*pi;

% define unit vectors
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x1 = sin(theta)*cos(phi);
yl = sin(theta)*sin(phi);
z1l = cos(theta);

% define quartic coefficients

L =R"2 -ra"2 + x0°2 + y0~2 + (z0/kappa)"2;
M = 2xx0xx1 + 2*xyO*xyl + 2*xz0%z1/(kappa”2);

N = x172 + y1°2 + (zl1/kappa)~2;

Al = N72;

Bl = 2x%Nx*M;

Cl = 2#N*L + M"2 - 4x(R"2)*(x1"2 + y172);

D1 = 2#M*xL - 8*(R"2)*(x0*x1 + yOx*y1l);

El = L"2 - 4x(R"2)*(x0"2 + y0~2);

% solve quartic equation
radii = quarticAlgebraic(A1,B1,C1,D1,E1);

% select smallest positive real solution

rmin = 10000;
for j = 1:4
r = radii(j);

if ((abs(imag(r)/real(r)) < 1le-10) && (real(r) > 0))
r = real(r);
if(r < rmin)
rmin = r;
end
end
end

radius = rmin;

% track neutron to position on toroidal wall

»
I

x0 + radius*sin(theta)*cos(phi);

yO + radius*sin(theta)*sin(phi);
z = z0 + radius*cos(theta);

% scalar flux (comment out others)
r = sqrt(x"2 + y~2);
angle(i) = atan2(abs(z),r-R);
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end

% angular flux at outermost point

ds = raxkappa/10;
r = sqrt(x”2 + y~2);
poloidal = atan2(y,x);
if (poloidal < 0)

poloidal = 2%pi + poloidal;
end
if((r > R) && (abs(z) < ds))

if (theta > pi/2)

theta = pi-theta;

end

angle(k,1) = theta;
angle(k,2) = phi - poloidal;
k =k + 1;

end

% angular flux at topmost point
ds = ra/10;
r = sqrt(x"2 + y~2);
poloidal = atan2(y,x);
if (poloidal < 0)
poloidal = 2%pi + poloidal;

end

if ((abs(r-R) < ds) && (z > 0))
angle(k,1) = theta;
angle(k,2) = phi - poloidal;
k =%k + 1;

end

% plot histograms
hist(angle(:,1),200);
[bar,xbar] = hist(angle,100);

%result = [xbar;bar];

result = angle;

(comment out others)

(comment out others)
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end

% test whether a point is within a toroid
function result = inplasma(x,y,z,R,a,kappa)

r = sqrt(x"2 + y~2);

if((r72 > (R-a)72) && (r"2 < (R+a)~2) && (abs(z) < kappa*sqrt(a”2-(r-R)"2)))
result = 1;

else
result = 0;

end

end

% Ferrari’s quartic equation solution
function result = quarticAlgebraic(A,B,C,D,E)

alpha = -(3%B~2)/(8%A~2) + C/A;
beta = (B"3)/(8%A"3) - (B*C)/(2*%A~2) + D/A;
gamma = -(3%B~4)/(256%A~4) + (C*B~2)/(16%A~3) - (B*D)/(4*A"2) + E/A;

P = -(alpha~2)/12 - gamma;
Q = -(alpha~3)/108 + alpha*gamma/3 - (beta~2)/8;
R = -Q/2 + sqrt((Q~2)/4 + (P"3)/27);
U = R™(1/3);
if (U == 0)
y = -bxalpha/6 + U - Q~(1/3);
else
y = -bxalpha/6 + U - P/(3%*U);
end

W = sqrt(alpha + 2*y);

x(1) = -B/(4xA) + (W + sqrt(-(3*alpha + 2%y + 2*beta/W)))/2;



A Fission-Fusion Hybrid Reactor 269

x(2) = -B/(4*xA) + (W - sqrt(-(3*alpha + 2*xy + 2xbeta/W)))/2;
x(3) = -B/(4*%A) + (-W + sqrt(-(3*alpha + 2%y - 2*beta/W)))/2;
x(4) = -B/(4*%A) + (-W - sqrt(-(3*alpha + 2%y - 2*beta/W)))/2;

result = x;

end
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D.2 Toroidal Volume - Spiric Sections

This function calculates the volume of toroid by integrating spiric sections from z = R — a
to R+ a.

function result = spiric(R,a)

dx = .001;
Vin = 0;
for x = (R-a):dx:(R+a)
Vin = Vin + oval(R,a,x)*dx;

end

Varc = (pi*a~2)*(2*R)*acos((R-a)/(R+a));
Vout = Varc + Vin;

Vout/Vin

result = [Vin,Vout];
end

% cross-sectional area of toroid in plane x
function result = oval(R,a,x)

d =2%x(a"2 + R"2 - x72);
e =2x(a"2 - R"2 - x72);
f=-(a+R+x)*x(a+R-x)x(a-R+x)x¥x(a - R - x);

r2 = @(theta) real((d*cos(theta) 2 + e*sin(theta) 2
+ sqrt((d*cos(theta) "2 + exsin(theta)”2)"2 + 4xf))/4);

result = quadv(r2,0,2*pi);

end
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E £k Monte Carlo Code

This is a geometry-independent Monte Carlo neutron transport code for calculating k.
Here we apply it to UO, for arbitrary enrichment.

function result = kinf_U02(N,enrichment,e,tU238,sU238,aU238,fU238,n2nU238
,n3nU238,tU235, sU235, alU235, fU235,n2n0235,n3nU235,t016,s016,a016,n2n016)

% neutron splitting during fission
% should be (nu < split < nu/k) for subcritical
split = 5;

% fixed constants

N_av = 6.022e23; % #/mol
barn_to_cm2 = 1le-24; % cm2/barn
density_U02 = 1.0; % g/cm3

% limit on number of generations
totalGen = 10;

% initialize various tallies
generations = zeros(l,totalGen);
generations(1) = N;
generations2 = zeros(1l,totalGen);
fission_count = 0;
fission_count2 = O;
energiesNext = zeros(1,N);
for j = 1:N

energiesNext(j) = sample_fission238(1.0);
end
weightsNext = zeros(1,N) + 1.0;
nextGenCount= N;
genCounts = zeros(1,totalGen);

% loop through neutron generations
for g = 1:totalGen-1

energies = energiesNext;
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weights = weightsNext;

genCounts(g) = nextGenCount;
thisGenCount = nextGenCount;
nextGenCount = 0;
generations(g)

thisGenCount

% loop through neutrons in each generation
for i = 1:thisGenCount

% print 207 progress in each generation
if (mod (i,thisGenCount/5) == 0)

(g-1) + i/thisGenCount
end

energy = energies(i);

weight = weights(i);

exists = 1;

% loop through collisions for each neutron
while(exists == 1)

index = bsearch(e,energy);

sigma_t_U235 = tU235(index)*barn_to_cm2*density_U02
xenrichment*(N_av/270.03);

sigma_t_U238 = tU238(index)*barn_to_cm2*density_U02
*(1 - enrichment)*(N_av/270.03);

sigma_t_016 = t016(index)*barn_to_cm2*density_U02x*2
*(N_av/270.03);

collisiontype = rand;
if(collisiontype <= sigma_t_U238/(sigma_t_U238 + sigma_t_U235

+ sigma_t_016))
% U-238
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sigma_a_U238 = aU238(index)*barn_to_cm2*density_U02

*(1 - enrichment)*(N_av/270.03);

sigma_f_U238 = fU238(index)*barn_to_cm2*density_U02

*(1 - enrichment)*(N_av/270.03);

sigma_s_U238 = sU238(index)*barn_to_cm2*density_U02

*(1 - enrichment)*(N_av/270.03);

sigma_n2n_U238 = n2nU238(index)*barn_to_cm2*density_U02
*(1 - enrichment)*(N_av/270.03);

sigma_n3n_U238 = n3nU238(index)*barn_to_cm2*density_U02
*(1 - enrichment)*(N_av/270.03);

collisiontype = rand;

if (collisiontype < sigma_a_U238/sigma_t_U238)
% (n,gamma)
exists = 0;
elseif (collisiontype < (sigma_a_U238
+ sigma_f_U238)/sigma_t_U238)
% fission
fission_count = fission_count + weight;
fission_count2 = fission_count2 + weight~2;

% initialize next-generation particles
weight = weight*nu(energy);
generations(g+l) = generations(g+l) + weight;
generations2(g+l) = generations2(g+l) + weight~2;
for j = 1:split
energiesNext (nextGenCount + j) =
sample_fission238(energy);
weightsNext (nextGenCount + j) = weight/split;
end
nextGenCount = nextGenCount + split;

exists = 0;
elseif (collisiontype < (sigma_a_U238 + sigma_f_U238
+ sigma_s_U238)/sigma_t_U238)

% elastic scatter

energy = sample_energy(energy,238) ;
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elseif (collisiontype < (sigma_a_U238 + sigma_f_U238
+ sigma_s_U238 + sigma_n2n_U238)/sigma_t_U238)

% (n,2n)

weight = weightx*2;

energy = maxwellian(energy/20,energy);
elseif (collisiontype < (sigma_a_U238 + sigma_f_U238
+ sigma_s_U238 + sigma_n2n_U238
+ sigma_n3n_U238)/sigma_t_U238)

% (n,3n)

weight = weight*3;

energy = maxwellian(energy/30,energy);
else
if (energy > 0.04)
% inelastic scatter
energy = energy*0.5;
end
end
elseif (collisiontype <= (sigma_t_U238 + sigma_t_U235)
/(sigma_t_U238 + sigma_t_U235 + sigma_t_016))

% U-235

sigma_a_U235 = aU235(index)*barn_to_cm2*density_U02
*xenrichment*(N_av/270.03) ;

sigma_f_U235 = fU235(index)*barn_to_cm2*density_U02
*enrichment*(N_av/270.03);

sigma_s_U235 = sU235(index)*barn_to_cm2*density_U02

*enrichment*(N_av/270.03) ;
sigma_n2n_U235 = n2nU235(index)*barn_to_cm2*density_U02
*enrichment*(N_av/270.03);
sigma_n3n_U235 = n3nU235(index)*barn_to_cm2*density_U02
*enrichment*(N_av/270.03) ;

collisiontype = rand,;

if(collisiontype < sigma_a_U235/sigma_t_U235)
% (n,gamma)
exists = 0;

elseif (collisiontype < (sigma_a_U235
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+ sigma_f_U235)/sigma_t_U235)
% fission
fission_count = fission_count + weight;
fission_count2 = fission_count2 + weight™2;

% initialize next-generation particles
weight = weight*nu(energy);
generations(g+l) = generations(g+l) + weight;
generations2(g+l) = generations2(g+l) + weight~2;
for j = 1:split
energiesNext (nextGenCount + j) =
sample_fission235(energy) ;
weightsNext (nextGenCount + j) = weight/split;
end
nextGenCount = nextGenCount + split;

exists = 0;
elseif(collisiontype < (sigma_a_U235 + sigma_f_U235
+ sigma_s_U235)/sigma_t_U235)

% elastic scattering

energy = sample_energy(energy,235);
elseif(collisiontype < (sigma_a_U235 + sigma_f_U235
+ sigma_s_U235 + sigma_n2n_U235)/sigma_t_U235)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);
elseif(collisiontype < (sigma_a_U235 + sigma_f_U235
+ sigma_s_U235 + sigma_n2n_U235
+ sigma_n3n_U235)/sigma_t_U235)

% (n,3n)

weight = weight*3;

energy = maxwellian(energy/30,energy);
else

if (energy > 0.04)

% inelastic scatter
energy = energy*0.5;

end

end
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else

end
end
end
end

Mark Reed

% 0-16

sigma_a_016 = a016(index)*barn_to_cm2*density_U02*2
*(N_av/270.03) ;

sigma_s_016 = s016(index)*barn_to_cm2*density_U02*2
*(N_av/270.03);

sigma_n2n_016 = n2n016(index)*barn_to_cm2*density_U02%2
*(N_av/270.03) ;

collisiontype = rand;

if(collisiontype < sigma_a_016/sigma_t_016)
% (n,gamma)
exists = 0;
elseif (collisiontype < (sigma_a_016
+ sigma_s_016)/sigma_t_016)
% elastic scattering
energy = sample_energy(energy,16);
elseif (collisiontype < (sigma_a_016 + sigma_s_016
+ sigma_n2n_016)/sigma_t_016)
% (n,2n)
weight = weightx*2;

energy = maxwellian(energy/20,energy);

else
if (energy > 0.04)
% inelastic scatter
energy = energy*0.5;
end
end

genCounts (totalGen) = nextGenCount;

>TALLIES AND ERRORS’
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fission_fraction = fission_count/N
error = sqrt((fission_count2/N - (fission_count/N)~2)/(N-1))

% print data

generations2

genCounts

generationsError = sqrt((generations2./genCounts
- (generations./genCounts)."2)./(genCounts-1));
generationsError(1) = 0;

generationsError

% computer errors
k(1) = -1;
kerror(1) = 0;
for j = 2:length(generations)

k(j) = generations(j)/generations(j-1);

Jkerror(j) = sqrt((generationsError(j)/generations(j-1))~2

+ ((generations(j)*generationsError(j-1))~2)/generations(j-1)~4);

end
kerror = k.*generationsError./generations;

Jprint data
generations
k

kerror

result = [k(2),kerror(2)];
end

% sample elastic scattering energy loss

function result = sample_energy(E1,A)
alpha = ((A-1)/(A+1))"2;
E2 = (l1-alpha)*Elxrand + alpha*E1;
result = E2;

end

function result = nu(E)



278 Mark Reed

if(E <= 1)

result = 2.432 + 0.066*E;
else

result = 2.349 + 0.15%E;
end
end

function result = sample_fission238(Ei)

x = 10;

y = 100;

while(y > chi238(x,Ei))
x = randx14;

y = rand;

end

result = x;

end

function result = sample_fission235(Ei)

x = 10;

y = 100;

while(y > chi235(x,Ei))
X = randx*14;

y = rand*0.8;

end

result = x;

end

function result = chi238(E,Ei)
if(Ei <= 1)

Ei*(0.89506-0.88111) + 0.88111;
3.4005 - Ei*(3.4005-3.2953);

a
b
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elseif (Ei <= 14)

a = (Ei-1)%*(0.96534-0.89506) /13 + 0.89506;

b = 3.2953 - (Ei-1)%(3.2953-2.833)/13;
else

a = 0.96534;

b = 2.833;

end
result = exp(-E/a)*sinh(sqrt(b*E));

end

function result = chi235(E,Ei)

if(Ei <= 1)
a = 0.988;
b = 2.249;

elseif (Ei <= 14)
a = (Ei-1)*(1.028-0.988)/13 + 0.988;

b =2.249 - (Ei-1)%*(2.249-2.084)/13;
else

a = 1.028;

b = 2.084;

end
result = exp(-E/a)*sinh(sqrt(b*E));

end

%, sample Maxwellian distribution
function result = maxwellian(a,E0)

X 9999;

y = 10;

while(y > x*exp(-x/a))
X = rand*E0*0.9;
y = rand*(a/exp(1));

end
result = x;
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end
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F Elastic Scattering

Here is a simple Monte Carlo code for calculating elastic scattering angular probability
distributions P(uz) for arbitrary nuclide mass A.

function anisotropic(A)
N = 7000000;
alpha = ((A-1)/(A+1))"2;
mu = zeros(1,N);
for i = 1:N
E = rand*(l-alpha) + alpha;
mu(i) = (2+E - (1 + alpha))/(1 - alpha);
end
mu = cos(atan2(sqrt(1-mu."2),1/A + mu));

x = hist(mu,1000);

end
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G Thermal Hydraulics Model

This is a gas-cooled pebble bed thermal hydraulics model in toroidal geometry.

function [vs,Re,pRatio] = thermal(p0,dT,d)

% temperature specification
Tin = 400; h C

Tout = Tin + dT; % C

Tavg = (Tout+Tin)/2; % C

% geometry specification
R =6.2; % m

a=2; % m

a2 = 2.02; % m

a3 = 2.22; % m

ad = 2.52; % m

kappa = 1.75;

e = 0.36; % "empty" fraction in packed bed

% fission power specification

Pfus = 500%(1e6); % W
Qfis = 8.5; % W
Pfis = Pfus*x(4/5)*Qfis/2; % W

% COOLANT FLOW ANALYSIS

%, mass/power balance
cp = 5195; % J/kg/K
m = Pfis/(cpxdT); % kg/s

% He properties

rho = 0.1786%(p0/101000)*(273/Tavg); % kg/m"3

mu = (3.674e-7)*(Tavg + 273)°0.7; % Paxs

k_He = (2.682e-3)*(1 + (1.123e-3)*(p0/100000))

*(Tavg + 273)°(0.71*x(1 - (2e-4)*(p0/100000))); % W/m/K

% flow rate
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d_h = dxe/(1-e); % m

Af = (a3-a2)*(2*pix(R+a)); % m"2
v_empty = m/(rhoxAf); % m/s

vs = v_empty/e; % m/s

Re = d_hxvs*rho/mu;

% pressure drop

psi = 505/(Re/(1-e)) + 0.1/(Re/(1-€))~0.1;

dPdx = psix((1-e)/e"3)*(1/d)*(1/(2*rho))*(m/Af)"2; % Pa/m
dP = dPdx*(pi*a*sqrt((l+kappa”2)/2)); % Pa

pRatio = dP/pO0;

% FUEL PEBBLE ANALYSIS

% U02 properties
k U =5.0; % W/m/K
Tmelt_U = 2865; % C

% U02 power density
V_U = pi*(a3°2 - a2"2)*(2xpi*R)*(1-e); % m"3
q3_U = Pfis/V_U; % W/m~3

% heat transfer coefficient

Pr = cp*mu/k_He;

Nul = 0.664*(Pr~(1/3))*((Re/e)"(1/2));

Nut (0.037*Prx(Re/e)"~0.8)/(1+2.443*%((Re/e) " (-0.1))*(Pr~(2/3)-1));
Nusp = 2 + (Nul~"2 + Nut~2)~(1/2);

Nu = (1+1.5%(1-e))*Nusp;

h = Nuxk_He/d_h; % W/m~2/K

% SiC cladding temperature drop
k_SiC = 4.0; % W/m/K

q2_U = q3_U*d/6; % W/m"2

dTclad = q2_U*(d/10)/k_SiC; % C

% max UO2 temperature
T_Umax = q3_Ux(d/2)/(3*h) + Tout + dTclad + q3_Ux((d/2)"2)/(6xk_U);
Tmelt_U - T_Umax

h C
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% LITHIUM ANALYSIS

% Li-Pb properties (approximate)
k_Li = 50.0; % W/m/K

Tmelt_Li = 500; Y% C

Tboil _Li = 1342; % C

% Li-Pb power density
V_Li = pi*(a4”2 - a372)*(2*pi*R); % m"3
q3_Li = Pfus*0.41/V_Li; % W/m~3

% Zr separation wall temperature drop

k_Zr = 23.0; % W/m/K

q2_Li = q3_Li*V_Li/(2*pi*a3*2*pi*R)/2; % W/m"2
dTwall = q2_Li*.02/k_Zr + q2_Li/h; % C

%» max Li-Pb temperature

T_Limax = ((q3_Li*a3)/(2*k_Li))*((a3-a4)/2 + ad*log(sqrt(a4/a3)))
+ Tout + dTwall; % C

T_Limin = Tin + dTwall; % C

% print temperature results
Tboil_Li - T_Limax

T_Limin - Tmelt_Li

Tmelt_U - T_Umax

end
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H Conversion Ratio Model

This is a MATLAB code that numerically integrates the uranium transmutation-decay chain
to compute conversion ratio as a function of time.

function result = conversion(energy,u238a,u238f,u239a,u239f,np239%a
,np239f ,pu239a,pu239f ,u235a,u235f ,u240a,u240f
,np240a,np240f ,pu240a, pu240f ,pu241a,pu241£f)

u238a = u238a(bsearch(u238a(:,1),energy),2); % barn
u238f = u238f (bsearch(u238f(:,1),energy),2);

u239a = u239a(bsearch(u239a(:,1),energy),2);

u239f = u239f (bsearch(u239f(:,1),energy),2);

np239a = np239a(bsearch(np239a(:,1),energy),2);
np239f = np239f (bsearch(np239f(:,1) ,energy),2);

pu239a = pu239a(bsearch(pu239a(:,1),energy),2);
pu239f = pu239f (bsearch(pu239f(:,1),energy),2);
u235f = u235f (bsearch(u235f(:,1),energy),2);

u236a = u23ba(bsearch(u235a(:,1),energy),2);
u240a = u240a(bsearch(u240a(:,1),energy),2);
u240f = u240f (bsearch(u240f(:,1) ,energy),2);
np240a = np240a(bsearch(np240a(:,1),energy),2);
np240f = np240f (bsearch(np240f(:,1) ,energy),2);
pu240a = pu240a(bsearch(pu240a(:,1),energy),2);
pu240f = pu240f (bsearch(pu240f(:,1),energy),2);
pu24la = pu24la(bsearch(pu24ia(:,1),energy),2);
pu241f = pu241f(bsearch(pu241£f(:,1),energy),2);

cm2barn = 1le-24; % barn/cm”~2

lambda_u239 = 5.18e-4; % #/s
lambda_np239 = 3.41le-6;
lambda_u240 = 1.37e-5;
lambda_np240 = 0.0016;
lambda_pu241 1.57e-9;

tmax = 3e6; % s
dt = 2; % s
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’» number of time steps
num = tmax/dt;

% preallocate number densities
Nu238 = zeros(1,num);
Nu239 = zeros(1,num);
Nnp239 = zeros(1,num);

Npu239 = zeros(1,num);
Nu235
Nu240
Nnp240 = zeros(1,num);
Npu240
Npu241

zeros (1,num) ;

zeros(1,num) ;

zeros (1,num) ;

zeros (1,num) ;

% preallocate gains/losses
Nu235loss = zeros(1,num);

Npu239gain = zeros(1l,num);
Npu241gain = zeros(1l,num);

% chose arbitrary flux magnitude

flux = 1lel2; % #/s/cm”2

% initialize number densities
Nu238(1) = .95; % #/cm”~3
Nu239(1) = 0;

Nnp239(1) = 0;

Npu239(1) = 0;

Nu235(1) = .05;

Nu240(1) = 0;

Nnp240(1) =
Npu240(1)
Npu241(1)
Nu235loss(1) = 0;
Npu239gain(1) = 0;

b

b

]
O O O -

[

i=2;
for t = dt:dt:tmax
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% numerically integrate

Nu238(i)

Nu238(i-1) - u238a*cm2barn*Nu238(i-1)x*flux*dt

- u238f*cm2barn*Nu238(i-1) *flux*dt;

Nu239(i)

Nu239(i-1) - u239ax*cm2barn*xNu239(i-1)*xflux*dt

- u239f*cm2barn*Nu239(i-1) *flux*dt
- lambda_u239*Nu239(i-1)*dt
+ u238a*cm2barn*Nu238(i-1)*flux*dt;

Nnp239(i)

+
Npu239(i)

+

Nnp239(i-1) - np239a*cm2barn*Nnp239(i-1)*flux*dt

np239f*cm2barn*Nnp239 (i-1) *flux*dt
lambda_np239*Nnp239 (i-1)*dt
lambda_u239*Nu239(i-1)*dt;

Npu239(i-1) - pu239a*cm2barn*Npu239(i-1)*flux*dt

pu239f *cm2barn*Npu239 (i-1) *flux*dt
lambda_np239*Nnp239 (i-1) *dt;

Nu240(i) = Nu240(i-1) + u239a*cm2barn*Nu239(i-1)*flux*dt
- u240f*cm2barn*Nu240 (i-1)*flux*dt
- lambda_u240*Nu240(i-1)*dt
- u240a*cm2barn*Nu240(i-1)*flux*dt;

Nnp240 (i)

+

Npu240 (i)

+
Npu241 (i)

Npu239gain (i)

Npu241igain(i)

Nnp240(i-1) + np239a*cm2barn*Nnp239(i-1)*flux*dt

np240f*cm2barn*Nnp240 (i-1) *flux*dt
lambda_np240*Nnp240 (i-1)*dt
np240a*xcm2barn*Nnp240 (i-1) *flux*dt
lambda_u240%Nu240(i-1)*dt;

Npu240(i-1) + pu239a*cm2barn*Npu239(i-1)*flux*dt

pu240f*cm2barn*Npu240 (i-1) *flux*dt
pu240a*xcm2barn*Npu240 (i-1) *flux*dt
lambda_np240*Nnp240 (i-1)*dt;

Npu241(i-1) + pu240axcm2barn*Npu240(i-1)*flux*dt

pu241f*cm2barn*Npu241 (i-1)*flux*dt
pu24la*xcm2barn*Npu241 (i-1)*flux*dt
lambda_pu241*Npu241(i-1)*dt;

-pu239a*xcm2barn*Npu239(i-1)*flux
- pu239f*cm2barn*Npu239(i-1)*flux
+ lambda_np239*Nnp239(i-1);
pu240a*xcm2barn*Npu240 (i-1) *flux
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- pu241f*cm2barn*Npu241(i-1)*flux
- pu24la*xcm2barn*Npu241(i-1)*flux
- lambda_pu241*Npu241(i-1);

Nu235loss(i) = Nu235(i-1)*u235f*cm2barn*flux
+ Nu235(i-1)*u235a*cm2barn*xflux;
Nu235(i) = Nu235(i-1) - Nu235(i-1)*u235f*cm2barn*flux*dt
- Nu235(i-1)*u235a*xcm2barn*xflux*dt;

end

% process and output data

conversion = (Npu239gain + Npu24igain)./Nu235loss;
ratio = Npu239gain./Npu241gain;

t = 0:dt:tmax;

plot(t,conversion,’LineWidth’,2);

result = conversion(num);

end
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I MCNP Input Files

I.1 Full Toroidal Hybrid Blanket

This is an MCNP input file for a fission-fusion hybrid in toroidal geometry. This produces
results consistent with the MATLAB Monte Carlo code in Appendix B.

Fission-Fusion Hybrid

1 0 -1 IMP:N=1
2 1 -2.247 1 -2 1IMP:N=1
3 2 -7.0208 2 -3 1IMP:N=1
4 3 -1.9067 3 -4 IMP:N=1
5 4 -4.437 4 -5 1IMP:N=1
6 O 5 IMP:N=0
1 TZ 0 0 0 620 350 200

2 TZ 0 0 0 620 353.5 202

3 TZ 0 0 0 620 388.5 222

4 TZ 0 0 0 620 441 252

5 TZ 0 0 0 620 525 300

M1 6000.73c -0.29905 14028.73c -0.70028 2004.73c -0.00067

M2 92235.73c -0.00619 92238.73c -0.87508 8016.73c -0.11847
2004.73c -0.00026

M3 3006.73c -0.18542 3007.73c -0.02404 82000 -0.79054

M4 26056.73c -0.8873 1001.73c -0.0125 8016.73c -0.1002

SDEF X=d1 Y=d2 Z=d3 ERG=14.1 PAR=1 CEL=1

SI1 -820. 820

SP1 0 1

SI2 -820. 820

SP2 0 1

SI3 -350. 350

SP3 0 1

MODE N

NPS 100000

F1:N 15

F2:N 1 5

F6:N 3
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F7:N 3

F4:N 3

KCODE 20000 1.0 0 10
prdmp O -0 1
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1.2 k, for U and UQO,

291

This is an MCNP input file for computing k., for UO,. This produces results consistent
with the MATLAB Monte Carlo code in Appendix E.

k-infinity

1

*1
*2
*3
*4
*5
*6

M1

o o o o o o o o o o0

MO

1 -

PX
PX
PY
PY
PZ
PZ

09
M1
M1
M1 O
SDEF
SI1
SP1
SI2
SP2
SI3
SP3
DE N

1.0 -1 2-34-56 1IMP:N=1 IMP:P=0

10
-10
10
-10
10
-10

2235 -0.0061705 092238 -0.8753295 008016 -0.1185
092238 -0.05 092235 -0.95

092235 -1

92238 -0.8815 008016 -0.1185
X=d1l Y=d2 Z=d3 ERG=1.0 PAR=1 CEL=1
-100. 100.

0 1

-100. 100.

0 1

-100. 100.

0 1

KCODE 20000 1.0 0 20
KSRC 0 0 O
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1.3 Infinite Array of UO, Pebbles in H,O Pool (Simple Cubic)

This is a MCNP input file for computing k., for an infinite array of UO4 pebbles in a pool
of HyO. We can vary the pebble radius to determine k., as a function of it.

pebbles
1 1-10.97 -1 1IMP:N=1
2 2-0.0056 1-23-45-67 IMP:N=1

1 s0 10

*2 PX 10
*3 PX -10
x4 PY 10
*5 PY -10
*6 PZ 10
x7 PZ -10

M1 92235 -0.0063 92238 -0.8752 8016 -0.1185
c M2 1001 -0.125 8016 -0.875

M2 2004 -1.0

SDEF X=d1 Y=d2 Z=d3 ERG=1.0 PAR=1 CEL=1
SI1 -300. 300

SP1 0 1

SI2 -300. 300

SP2 0 1

SI3 -300. 300

SP3 0 1

MODE N

KCODE 15000 1.0 0 20

KSRC 0 0 O

o o o o o o 0
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I.4 Typical Fast Reactor Spectrum

This is a MCNP input file for obtaining an approximate 248-group flux shape for a typical
fast reactor. We construct a 3 x 3 array of UO pin cells immersed in Na coolant and adjust
the physical dimensions such that k& = 1.0. We borrow 248 energy bins of equal lethargy

width from the MIT Reactor research group.

QOOO\]OBO'I»#OJ[\)I—\I&h
0]

=
= O

© 00 N O O b W N =

*10
*11
*12
*13
*14
*15

c M

ct

2 -10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.

1 -0.

NN NDNDDNDDNDDNDDN

C/z
C/Z
C/Z
C/Z
C/Z
C/z
C/Z
C/z
C/Z
PX
PX
PY
PY
PZ
PZ

1 10

97 -1 14 -15 1IMP:N=1
97 -2 14 -15 1IMP:N=1
97 -3 14 -15 1IMP:N=1
97 -4 14 -15 1IMP:N=1
97 -5 14 -15 1IMP:N=1
97 -6 14 -15 1IMP:N=1
97 -7 14 -15 1IMP:N=1
97 -8 14 -15 1IMP:N=1
97 -9 14 -15 1IMP:N=1

-10:11:-12:13:-14:15 1IMP:N=0

-2 -20.9
-2 00.9
-2 20.9
0-20.9
0 0.9
2 0.9
-2 0.9
0 0.9
2 0.9

N DN O O

01.73c -0.1111 8016.73c -0.8889

c M2 92235.73c -0.0441 92238.73c -0.8373

927 123456789 10 -11 12 -13 14 -15 1IMP:N=1

8016.73c -0.1186
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M1 11023.73c -1.0

M2 92235.73c -0.0781

92238.73c -0.8033 8016.73c -0.1186

MODE N

KCODE 10000 1.0 20 120

KSRC 0 0 O

fcl4 Flux Profile - 2PH1

eld 3e-6 0.1 20

fl4:n 5

c

fc64 Flux spectrum - constant lethargy (u=0.1) - ICSA

e64 1.00E-11 2.00E-11 5.00E-11 1.00E-10 2.00E-10 5.00E-10
6.87E-10 7.60E-10 8.40E-10 9.28E-10
1.03E-09 1.13E-09 1.25E-09 1.38E-09 1.53E-09 1.69E-09
1.87E-09 2.07E-09 2.28E-09 2.52E-09 2.79E-09 3.08E-09
3.41E-09 3.76E-09 4.16E-09 4.60E-09 5.08E-09 5.61E-09
6.20E-09 6.86E-09 7.58E-09 8.37E-09 9.26E-09 1.02E-08
1.13E-08 1.25E-08 1.38E-08 1.53E-08 1.69E-08 1.86E-08
2.06E-08 2.28E-08 2.52E-08 2.78E-08 3.07E-08 3.40E-08
3.75E-08 4.15E-08 4.58E-08 5.07E-08 5.60E-08 6.19E-08
6.84E-08 7.56E-08 8.35E-08 9.23E-08 1.02E-07 1.13E-07
1.25E-07 1.38E-07 1.52E-07 1.68E-07 1.86E-07 2.05E-07
2.27E-07 2.51E-07 2.77E-07 3.07E-07 3.39E-07 3.74E-07
4.14E-07 4.57E-07 5.05E-07 5.59E-07 6.17E-07 6.82E-07
7.54E-07 8.33E-07 9.21E-07 1.02E-06 1.13E-06 1.24E-06
1.37E-06 1.52E-06 1.68E-06 1.85E-06 2.05E-06 2.27E-06
2.50E-06 2.77E-06 3.06E-06 3.38E-06 3.73E-06 4.13E-06
4 .56E-06 5.04E-06 5.57E-06 6.16E-06 6.80E-06 7.52E-06
8.31E-06 9.18E-06 1.02E-05 1.12E-05 1.24E-05 1.37E-05
1.51E-05 1.67E-05 1.85E-05 2.04E-05 2.26E-05 2.50E-05
2.76E-05 3.05E-05 3.37E-05 3.72E-05 4.12E-05 4.55E-05
5.03E-05 5.56E-05 6.14E-05 6.79E-05 7.50E-05 8.29E-05
9.16E-05 1.01E-04 1.12E-04 1.24E-04 1.37E-04 1.51E-04
1.67E-04 1.85E-04 2.04E-04 2.25E-04 2.49E-04 2.75E-04
3.04E-04 3.36E-04 3.72E-04 4.11E-04 4.54E-04 5.01E-04
5.54E-04 6.12E-04 6.77E-04 7.48E-04 8.27E-04 9.14E-04
1.01E-03 1.12E-03 1.23E-03 1.36E-03 1.51E-03 1.67E-03
1.84E-03 2.03E-03 2.25E-03 2.48E-03 2.75E-03 3.03E-03
3.35E-03 3.71E-03 4.10E-03 4.53E-03 5.00E-03 5.53E-03
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f64:n
c

= 00 & NP, NN OOWNRER,O

5
THE END

.11E-03
.11E-02
.03E-02
.TOE-02
.T3E-02
.23E-01
.24E-01
.07E-01
.42E-01
.35E+00
.46E+00
.49E+00
.18E+00
.49E+01

O P DR, O PPN PERL, N PPN PPEO

.75E-03
.23E-02
.24E-02
.08E-02
.44E-02
.36E-01
.47E-01
.50E-01
.20E-01
.50E+00
. T2E+00
.96E+00
.04E+00
.65E+01

=~ 00 WL, O N 00N~ N

.46E-03
.36E-02
.48E-02
.51E-02
.22E-02
.50E-01
.73E-01
.98E-01
.07E-01
.65E+00
.01E+00
.48E+00
.00E+01
.82E+01

N O Wk, = O W~ O© & N~

.25E-03
.50E-02
. 7T4E-02
.99E-02
.09E-02
.66E-01
.02E-01
.50E-01
.00E+00
.83E+00
.33E+00
.06E+00
.11E+01
.00E+01

H , O W N, O WRL ~ 01w~ ©

.11E-03
.66E-02
.03E-02
.51E-02
.01E-01
.83E-01
.34E-01
.08E-01
.11E+00
.02E+00
.68E+00
. 7TOE+00
.22E+01

P NP NP, OOOWNRR, OO W e

.01E-02
.84E-02
.34E-02
.09E-02
.11E-01
.02E-01
.69E-01
.72E-01
.22E+00
.23E+00
.06E+00
.40E+00
.35E+01
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