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Abstract

The most prevalent criticism of fission-fusion hybrids is simply that they are too

exotic - that they would exacerbate the challenges of both fission and fusion. This is not

really true. Intriguingly, hybrids could actually be more viable than stand-alone fusion

reactors while mitigating many challenges of fission. This work develops a conceptual

design for a fission-fusion hybrid reactor in steady-state L-mode tokamak configuration

with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-

lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction.

Subcritical operation could obviate the most challenging fuel cycle aspects of fission.

The fission blanket augments the fusion power such that the fusion core itself need

not have a high power gain, thus allowing for fully non-inductive (steady-state) low

confinement mode (L-mode) operation at relatively small physical dimensions.

A neutron transport Monte Carlo code models the natural uranium fission blanket.

Maximizing the fission power while breeding sufficient tritium allows for the selection

of an optimal set of blanket parameters, which yields a maximum prudent fission power

gain of 7.7.

A 0-D tokamak model suffices to analyze approximate tokamak operating condi-

tions. If the definition of a “reactor” is a device with a total power gain of 40, then

this fission blanket would allow the fusion component of a hybrid reactor with the

same dimensions as ITER to operate in steady-state L-mode very comfortably with a

fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can

determine the approximate minimum scale for a steady-state L-mode tokamak hybrid

reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum

scale device operates barely within the steady-state L-mode realm with a thermal fusion

power of 1.7 GW.

This hybrid, with its very fast neutron spectrum, could be superior to pure fission

reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It
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could operate either as a breeder, producing fuel for pure fission reactors from natural or

depleted uranium, or as a deep burner, fissioning heavy metal and transmuting waste

with a cycle time of decades. Despite a plethora of potential functions, its primary

mission is deemed to be that of a deep burner producing baseload commercial power

with a once-through fuel cycle. Although hybrids are often purported a priori to pose

an elevated proliferation risk, this reactor breeds plutonium that could actually be more

proliferation-resistant than that bred by fast reactors. Furthermore, a novel method

(the “variable fixed source method”) can maintain constant total hybrid power output

as burnup proceeds by varying the neutron source strength.

As for engineering feasibility, basic thermal hydraulic analysis demonstrates that

pressurized helium could cool the pebble bed fission blanket with a flow rate below 10

m/s. The Brayton cycle thermal efficiency is 41%.

This device is dubbed the Steady-State L-Mode Non-Enriched Uranium Tokamak

Hybrid (SLEUTH). The purpose of this work is not any sort of elaborate design, but

rather the exploration of an idea coupled with corroborating numerical analysis. At

this point in the hybrid debate, viable conceptual designs are persuasive while intricate

build-ready designs are superfluous. This work conceives such a conceptual design,

demonstrates its viability, and will perhaps, incidentally, spur a profusion of pro-fusion

sentiment!
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1 The Fission-Fusion Concept

Fusion boasts a neutron plethora; fission copes with a neutron dearth. Fission requires

neutrons; fusion produces neutrons. This is why people talk about fission-fusion hybrids:

they couple a deficit with a surplus. D-T fusion reactions produce 14 MeV neutrons that

serve no purpose other than to breed tritium from lithium (through a primarily thermal

reaction!). These uncommonly-high-energy neutrons are essentially wasted. On the other

hand, fission reactions require neutrons and are limited completely and utterly by a delicate

neutron balance. So there is clearly some mutual benefit to exploit from these two branches

of nuclear engineering - the challenge is how to optimally configure the fission and fusion

components.

The geometry of a fission-fusion hybrid is usually constrained by the fusion component,

as the magnetic topology necessary to confine the plasma overrides any geometric constraints

in fission. Thus, the fission component conforms to the geometry of the fusion component

in such a way as to maximize the neutron fluence it intercepts. In the case of tokamaks, the

fission component is usually some sort of “blanket” coating the outer surface of the toroid.

It is essential to understand that the interaction between fusion and fission components

is not two-way but one-way. Fusion drives fission. Fusion produces neutrons, which drive

fission, while fission produces nothing that influences fusion. The procession of burnup

within fission component will not alter the fusion reaction, but any perturbation of the

fusion reaction will have a direct and immediate affect on the fission reaction. Thus, the flow

of information is exclusively from fusion to fission. Fusion is the master, fission the slave.

1.1 Hybrid History

This is not a new idea. Scientists began pondering hybrids little more than ten years after

they first achieved fission beneath those fabled bleachers in Chicago. To date, the only fission-

fusion hybrid actually constructed is the hydrogen bomb, first tested in 1952. Less excitingly,

the history of peaceable fission-fusion hybrids has consisted entirely of design proposals. Here

we will briefly outline some of the history.

1.1.1 Nascence

Lawrence M. Lidsky best chronicles the early evolution of the hybrid concept from its in-

ception in the early 1950’s until 1975 [34]. The concept of a power-multiplying blanket

surrounding a fusion reactor first arose from attempts to breed sufficient tritium to replenish

that consumed by D-T fusion. From this, the natural train of thought was to consider what

else such a marvelous 14 MeV neutron source could accomplish. People soon realized that

fissionable material in the blanket would have the effect of both multiplying and slowing the
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neutrons in order to facilitate tritium breeding from 6Li (which occurs primarily at thermal

energies). Most of these very early studies proposed depleted uranium, which is ideally suited

for (very) fast fission. In 1955, J. D. Lawson published a report claiming that fast fission of

a 238U blanket could augment a tokamak’s power approximately fivefold.

Subsequently, for the remainder of the 1950’s and throughout the 1960’s, a host of elab-

orate designs burst onto the scene. There were proposals for aqueous liquid fuel (UO2-SO4)

circulating annularly about a stellarator. There were proposals for UF4 salt doubling as

a coolant and a power-multiplier. There were proposals for thorium blankets doubling as

a breeders and power-multipliers. There were proposals for breeding blankets cooled with

lithium metal. There were proposals for graphite-moderated thermal blankets intended pri-

marily for breeding. Some designs in this litany were clearly more practical than others.

Many ignored such crucial considerations as corrosion and fission product buildup. See

Lidsky’s 1975 review paper for details and references for all of these [34].

Lidsky classifies fission-fusion systems into three categories: hybrid, symbiotic, and

augean. All three of these contain a fusion reactor and at least some surrounding fissionable

material. Hybrid systems contain fissile or fissionable material and produce power. Symbi-

otic systems contain fissionable material and utilize the fusion neutron source to breed fissile

material for pure fission reactors. Augean systems contain spent nuclear fuel and dispose of

waste through the transmutation of fission products or the fission of actinides. These three

categories overlap, as any fission-fusion system will accomplish each to at least some degree.

However, each fission-fusion system will likely tout only one of these as its primary mission.

1.1.2 Renaissance

The eminent physicist Hans Bethe became interested in fission-fusion hybrids and continued

to advocate them until the end of the 1970’s [40]. Subsequently, enthusiasm for hybrids

waned. Surprisingly, it was their least-touted augean mission of that revived them. Beginning

in the late 1990’s, woes of the Yucca Mountain political stagnation spurred renewed interest in

fast neutron sources to transmute high-level waste. However, this renaissance has blossomed

into studies with breeding or power-producing missions as well. At the Georgia Institute of

Technology, Professor Weston Stacey has led a series of hybrid design projects over the past

ten years culminating in the Subcritical Advanced Burner Reactor (SABR) [32]. Here at the

MIT Plasma Science and Fusion Center, Vincent Tang wrote a 2002 master’s thesis under

the auspices of Professor Ronald Parker analyzing a pebble bed blanket for ITER [22] and

went as far as to quantify temperature transients in loss of coolant accidents (LOCAs) [44].

He also investigated the viability of thorium tokamak blankets [39]. The University of Illinois

has also looked into the thorium blanket idea [41]. Beyond magnetic confinement, Lawrence

Livermore National Laboratory (LLNL) and the University of California at Berkeley have

conceived the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Reactor [31]. At the
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conclusion of this work, we will compare our conceptual design to those proposed by Stacey,

Tang, and LLNL.

Most recently, MIT Professors Jeffrey Freidberg and Andrew Kadak broached the hybrid

topic with a 2009 article in Nature Physics [46]. They concluded that the most effective

short-term (25-30 years) mission of hybrids is to transmute waste. The most effective long-

term (50-100 years) mission is to breed fissile fuel for pure fission reactors as natural uranium

reserves begin to run low.

A few months later, Freidberg chaired a conference entitled “Research Needs for Fusion-

Fission Hybrid Systems” in Gaithersburg, Maryland [21]. This produced a comprehensive

report on the current status of hybrid research and debate. This report identifies three

potential hybrids missions: energy production, fuel supply, and waste management. Note

that these correspond precisely to Lidsky’s prescient classification of hybrid, symbiotic, and

augean systems.

1.2 Present Limitations

The fission-fusion hybrid is a plausible solution for an existing set of problems, not (as some

would claim) a rogue solution that begs for a problem. Here we will outline the limitations

of both fusion and fission and articulate how hybrids could overcome or at least mitigate

them.

1.2.1 The Limitation of Fusion: Plasma Stability

Putting things together is harder than tearing things apart. To fission heavy atoms, the

atoms need only be stationary neutron targets. To fuse light atoms, the atoms themselves

must be in high-energy motion. This requires plasma, which we must confine. The great

challenge of fusion is simply to confine the plasma such that it is stable.

We will focus on magnetic confinement in the tokamak configuration. Tokamaks have two

distinct “modes” of operation: low confinement mode (L-mode) and high confinement mode

(H-mode). We will expound on these in Section 4.4, but for now we will state that H-mode

yields higher power densities while L-mode yields lower power densities. Unfortunately, H-

mode is also vulnerable to cantankerous instabilities called edge-localized modes (ELMs)

near the plasma “edge”. These ELMs are the bane of current fusion research. Operating in

L-mode would circumvent ELMs, but L-mode does not allow for large enough power gain to

constitute a reactor [7].

However, the addition of a fission blanket would multiply the fusion power such that the

hybrid system could operate in L-mode while still achieving a sufficiently high power gain.

We will show this with rudimentary physics in Section 1.3.1 and far more rigorously with

our 0-D tokamak model in Sections 6.3 and 6.4. We certainly do not claim that L-mode is
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any sort of panacea for fusion, but we do contend that it would ease certain constraints and

thus enhance the viability of fusion.

1.2.2 The Limitation of Fission: Criticality

This subtitle might seem strange to some readers. Criticality is not a limitation of fission

- it is precisely what makes fission possible! This is true if we take the narrow-minded

approach of considering only pure fission systems with no external neutron sources. In those

systems, criticality is clearly a constraint but not really a limitation. However, if we think

outside the box and take on a broader perspective of all possible fission systems (critical

and subcritical), we see that criticality is indeed a severe limitation on what fission can

accomplish. In a pure fission reactor, criticality dictates nearly everything - enrichment

level, flux shape, moderator choice, reactivity control systems, burnup level, fuel cycle, and

waste composition. Subcritical fission obviates all of these constraints.

Critics often claim that subcritical operation has no real advantage over critical operation

in terms of power production, because criticality accidents are not a major concern for pure

fission reactors. Light water reactors (LWRs) have negative fuel and coolant temperature

coefficients of reactivity. Most fast reactors have very small positive coolant temperature

coefficients but preponderantly negative fuel temperature coefficients. Loss of coolant acci-

dents (LOCAs) are much more ominous. This is all very true, and we accept that subcritical

operation offers only marginal safety improvements (although it does completely eliminate

the complexity and cost associated with reactivity control). However, subcritical operation

is not preferable due to safety - rather, it is preferable due to the numerous constraints it

lifts.

With subcritical operation, neither enrichment nor moderation is necessary. Only mate-

rials limit burnup and cycle time. As we will see in Section 7.3, it opens up the fuel cycle in

such a way as to allow for breeding tremendous quantities of fissile fuel.

Subcritical operation also facilitates transmutation of nuclear waste. The fusion neu-

tron source can bombard mixtures of actinides and fission products that are very far below

criticality. Additionally, a fission-fusion hybrid spectrum, which contains 14 MeV neutrons,

would transmute fission products and fission actinides more effectively than a typical fast

reactor spectrum. We will show this quantitatively in Section 7.6.

1.3 A New Conceptual Design

We have argued that fission-fusion hybrids could be mutually beneficial for both fission and

fusion, that they could obviate significant constraints and challenges for both. We now

propose a new conceptual fission-fusion hybrid design that takes advantage of these mutual

benefits. The primary mission of this design is to produce power, although we will also
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explore its potential to breed fissile fuel and transmute waste. Here we will outline its

distinguishing features.

1.3.1 Geometry and Fission Power Gain

Tokamaks are the most advanced, well-understood fusion devices. Although we will not

assume any specific tokamak design in this thesis, we will at least need to assume that the

fusion component is in fact some sort of tokamak. All the more specific properties of the

tokamak (size, geometry, magnetic field strength, etc.) will be free parameters. The fission

blanket will coat the tokamak surface. Figure 1.1 shows this very basic geometry.

Figure 1.1: A fission blanket (green) coats a tokamak. This is a very simple conceptual diagram.

Practically, the fission blanket would not coat the entire tokamak surface.

To show how a fission blanket could dramatically increase the power gain of a tokamak,

we need only to walk through some simple physics. In the D-T fusion reaction, the neutron

and α-particle carry 4/5 and 1/5 of the total energy, respectively. The α-particle is confined

by the magnetic fields and deposits its energy within the plasma. The neutron, however,

exits the plasma and deposits its energy in the blanket materials. As tokamak plasmas are

many orders of magnitude less dense than typical solids, it is reasonable to assume that the

neutrons never collide in the plasma.
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2
1H +3

1 H→4
2 He(3.5MeV) +1

0 n(14.1MeV) (1.1)

It is common to express the fusion power gain Qfus as a ratio of the total produced fusion

power Pfus to the total externally applied auxiliary power Paux. Here all powers have units

of Watts.

Qfus =
total fusion power

total supplied auxiliary power
=
Pfus

Paux

(1.2)

Let us express fission power gain Qfis as the ratio of the total fission power Pfis produced

in the blanket to the total power of all the D-T neutrons that enter the fission blanket.

Of course, not all the neutrons will enter the fission blanket. The fission blanket cannot

practically coat the entire tokamak, and many neutrons are needed for tritium breeding. We

will call the fraction of all D-T neutrons that enter the fission blanket η, which will depend

on the geometry and materials of the particular device. Also, not all neutrons that enter

the blanket will spur fission, but Qfis accounts for that. Now we can say that the total D-T

neutron power entering the fission blanket is (4/5)ηPfus and write a simple expression for

Qfis.

Qfis =
total fission power

total power of all D-T neutrons entering fission blanket
=

Pfis

4
5
ηPfus

(1.3)

Now let us define Qhyb as the total power gain for the entire fission-fusion device. The

total power produced has three components: the fusion power from α-particles, the fusion

power from neutrons that do not enter the fission blanket, and the fission power Pfis. The

total power consumed is still just the tokamak auxiliary power Paux.

Qhyb =
1
5
Pfus + 4

5
(1− η)Pfus + Pfis

Paux

(1.4)

Some simple algebra yields various expressions for Qhyb in terms of Qfus, Qfis, and η.

Below are two of them, the first more intuitive and the second more beautiful. Note that

when Qfis = 1, Qhyb = Qfus as if the tokamak were bare and had no fission blanket.

Qhyb = Qfus

[
1

5
+

4

5
(1− η) +

4

5
ηQfis

]
(1.5)

Qhyb = Qfus

[
4

5
(η(Qfis − 1) + 1) +

1

5

]
(1.6)

This is the crux of this thesis. We can clearly see that the fission blanket augments

the power gain of a pure fusion tokamak. The fission blanket multiplies the pure fusion

power gain by a factor that is linearly dependent upon the fission power gain. This means
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that for a given set of tokamak parameters, Qhyb can be much greater than Qfus such that a

relatively small L-mode tokamak could operate at high Qhyb. The main goal of this thesis is to

determine approximately how small such an L-mode tokamak could be while still producing

a high Qhyb.

A fission blanket, which essentially augments the fusion power gain, could allow a fairly

small L-mode tokamak to achieve a power gain sufficient to operate as a reactor. So instead

of complicating the already difficult challenges of fusion with a fission blanket, hybrids could

actually simplify a major challenge of fusion by allowing for L-mode operation.

1.3.2 Pebble Bed Blanket

Due to the unusual nature of toroidal geometry, which is unheard of in fission design, conven-

tional cylindrical fuel elements would be an awkward choice. Instead, we opt for small fuel

pebbles (spheres), which can be “poured” into any odd-shaped volume. Given our geometric

constraints, pebbles are the natural choice and perhaps the only feasible choice.

However, while the choice of fuel shape might be straightforward, the choice of fuel

composition is more open-ended. Pure fission pebble bed reactors use numerous tristructural-

isotropic (TRISO) particles embedded within graphite matrix pebbles. Each TRISO particle

is coated with silicon carbide to retain fission products, and the graphite matrix is impervious

to melting.

As we discussed above, a larger fission power multiplication Qfis would allow for a smaller

fusion power multiplication Qfus, which is our goal. Thus, we will choose UO2 pebbles over

graphite matrix pebbles due to their significantly higher power density (which naturally

corresponds to higher power multiplication). There are a number of engineering concerns

with this choice, which we will discuss in Section 8.1. We will compare and contrast UO2

pebbles with graphite matrix pebbles in Section 9.1.1.

1.3.3 Subcritical Operation

We have already lauded the advantages of subcritical operation. In short, criticality accidents

are impossible (as long as keff is not near 1), and no traditional criticality control systems

(such as control rods or neutron poison injection) are necessary. The whole science of point-

kinetics and delayed neutrons is irrelevant.

In our introductory statement, we emphasized that fusion drives fission. Indeed, the

fission power level is proportional to the tokamak power level. We can control the fission

reaction indirectly through control of the fusion reaction.
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1.3.4 Fast Spectrum

Since we have no desire to achieve criticality, there is no reason to moderate neutrons in order

to exploit the 1/v region of the 235U fission cross-section. We are free to shape our spectrum

however we please. Although our primary mission is power production, we would still like

to leave our options open in terms of fissile fuel breeding and waste transmutation. Ss we

will see in Section 7.6, fast spectra are likely preferable for transmuting hazardous fission

products. They are also superior for fissioning actinides that are fissionable (as opposed to

fissile). The very fast 14 MeV neutrons are precisely why fission-fusion hybrids are touted as

prolific waste transmuters, and it would be a shame to weaken that argument by softening

the spectrum. We prefer the spectrum to be hard.

Since we wish to avoid moderation, we will select helium gas as the blanket coolant.

This is also the coolant of choice (along with molten salt) for pure fission pebble beds,

so its thermal hydraulic aspects have already been analyzed in this geometry. Although

supercritical CO2 has the potential to increase Brayon cycle efficiency, we will stick with

helium because it is inert and virtually transparent to neutrons.

1.3.5 Natural or Depleted Uranium

A lack of concern for criticality also leaves us no compelling reason to enrich uranium.

Fission-fusion hybrids could run on natural or depleted uranium. At 14.1 MeV, the fission

cross-sections for 235U and 238U are not significantly different. Let us examine them.

Figure 1.2 shows the total 238U cross-section with constituent parts as a function of

energy. Fission virtually never occurs below approximately 1.3 MeV, and the fission cross-

section increases monotonically with energy.

Figure 1.3 shows the same data as Figure 1.2, but this time the total neutron cross-section

is normalized to 1.0. We can interpret this plot as showing the probability of each type of

neutron interaction (given that a collision occurs) as a function of energy. We have also

overlaid the fission χ(E) spectrum and the 14 MeV neutrons in red. Although fast reactors

(and all reactors, really) will fission 238U to some extent, it is the 14 MeV neutrons that

make fissioning 238U worthwhile. We will see in Section 3.2 that the initial generation of

fusion-born 14 MeV neutrons actually fissions enough 238U to produce a larger number of

second generation fission-born neutrons. Also, the 14 MeV neutrons also induce (n,2n) and

(n,3n) reactions on 238U that complicate the uranium transmutation-decay chains (and thus

the whole fuel cycle) in ways that pure fission neutron spectra do not. We will analyze this

in Section 7.3.

Figure 1.4 shows for the same information for 235U. Although it is fissile, it will still fission

more readily in the presence of 14 MeV neutrons than in a typical fast spectrum.

As we will show conclusively in Section 7.3, natural uranium (0.7% 235U) is sufficient to
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yield significant power multiplication due primarily to the fissioning of 238U with 14 MeV

neutrons. Thus, we have no need for 235U. Even pure 238U would be sufficient. Although we

will perform our quantitative analysis with natural uranium, our design would not change

in any significant way were we to select depleted uranium (0.2% - 0.4% 235U) instead.

Figure 1.2: The total 238U cross-section showing constituent parts as a function of energy. The

total cross-section is in red.
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Figure 1.3: Normalized constituent parts of the total 238U cross-section as a function of energy.

Here the total cross-section is always 1.0. We have outlined the fission χ(E) spectrum and the 14

MeV fusion-born neutrons in red. 238U is fissionable.
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Figure 1.4: Normalized constituent parts of the total 235U cross-section as a function of energy.

Here the total cross-section is always 1.0. We have outlined the fission χ(E) spectrum and the 14

MeV fusion-born neutrons in red. 235U is fissile.
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1.3.6 Tritium Breeding

Tritium is a precious and hazardous commodity. Since it is difficult to obtain and decays

with a half-life of 12.3 years, we must produce just as much of it as we consume. Since it

is hazardous, we must not produce much more of it than we consume. So for every triton

consumed in a D-T fusion reaction, we must breed one triton in the blanket. Thus, our

fission blanket must contain not only uranium fuel but also a tritium-breeding material. The

only viable choice is lithium, which is naturally composed of 92.5% 7Li and 7.5% 6Li. Both

isotopes breed tritium, but 6Li breeds much more than 7Li. We will discuss these reactions

and show how to meet the tritium breeding requirement in Section 3.

1.3.7 Shielding

We must note that the superconducting magnets (which must be exterior to the fission

blanket) can tolerate very little neutron fluence. The limit for Nb3Sn magnets is 3 × 1022

n/m2 [5]. Thus, we will need to incorporate an effective shield between the fission blanket

and the magnets. This will increase the required total blanket thickness

1.4 Mission

The primary mission of this fission-fusion hybrid is to produce power, which could be used for

electricity, hydrogen production, or any other suitable purpose. Our goal is to maximize the

power multiplication of a natural uranium blanket such that we can minimize the physical

size of a steady-state L-mode tokamak while still achieving a net hybrid power gain worthy of

a commercial reactor. Steady-state L-mode operation is advantageous for plasma stability,

and smaller size is economically advantageous. Subcritical operation is advantageous for

fission, primarily in the context of fuel cycle. It obviates enrichment and allows for extremely

high burnup through 238U fission. Fission-fusion hybrids can extract more than an order of

magnitude more energy from the world’s uranium resources than pure fission reactors. We

will dub this conceptual design the Steady-State L-Mode Non-Enriched Uranium Tokamak

Hybrid (SLEUTH).

Plausible alternative missions include (1) transmuting long-lived waste products in order

to reduce the necessary storage capacity of geologic waste repositories and (2) breeding fissile

fuel for pure fission reactors to solve the future fuel supply problem. Although these two

alternative missions do not constitute our main focus, we will analyze them as well and

demonstrate that they are indeed worthy pursuits.
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1.5 Scope and Outline

We will accomplish our mission by creating two models: a Monte Carlo fission blanket

model coupled with a 0-D tokamak fusion model. We will develop an original Monte Carlo

simulation in MATLAB that determines fission power and tritium breeding given a neutron

source in the plasma. Section 2 describes this methodology in detail. We will perform some

basic tests to ensure that it matches our intuition, and we will benchmark it with MCNP.

In Section 3, we will optimize various parameters (such as blanket layer thickness and

lithium enrichment) to maximize the fission power multiplication. We will also perform

detailed neutronics analysis to show that 238U alone can substantially multiply the fission

power.

In Section 4, we will turn to fusion and describe our 0-D tokamak model.

We will demonstrate how this model applies to pure fusion reactors in Section 5. This

will cultivate intuition and understanding of how our 0-D model works. We will repeat some

results of earlier work for instructive purposes.

In Section 6, we will couple our fission and fusion models and show quantitatively how

a power-multiplying fission blanket allows for steady-state L-mode operation with relatively

small physical dimensions. This will be the crux of our work. We will specify two designs: a

steady-state L-mode hybrid the same size as ITER and a minimum-scale steady-state L-mode

hybrid dubbed SLEUTH.

Although we do not perform a blanket burnup calculation, we propose a novel method for

maintaining constant hybrid power as burnup proceeds. We will perform fuel cycle analysis

to show that this natural uranium hybrid could be a prolific breeder of fissile fuel as well as

an excellent transmuter of fission product waste. We will also touch on the possibility of a

thorium cycle as well as some non-proliferation implications.

Finally, we will justify the engineering feasibility of our fission blanket through basic

thermal hydraulic analysis. Although this is certainly not our focus, it is essential that we

at least demonstrate that the general tokamak hybrid configuration is thermally practical.
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2 Fission Blanket Monte Carlo Code

To perform reactor physics analysis, we develop a neutron transport Monte Carlo code

from scratch. This produces criticality and tally results that are very consistent with the

Monte Carlo N-Particle (MCNP) Transport Code. We will explain significant aspects of the

methodology, delving into more or less detail as we feel so inclined.

It is true that MCNP is capable of performing all the analysis that our new code performs.

We chose this arduous route for a number of reasons, some practical and some preferential.

First, we tailored this code specifically for this configuration, and so the structure is efficient.

Second, this code expedites data analysis, because we have written it entirely in MATLAB.

The data is simple to extract, and the code is simple to modify. It is flexible. Third,

the overarching reason was to acquire a deep understanding of reactor physics and Monte

Carlo methods as well as particular appreciation for this problem. Anyone can run MCNP

with minimal grasp of the underlying physics, but developing a code from scratch cultivates

insight.

Our Monte Carlo code is completely analog except for fission and (n,xn) reactions. We

can, however, introduce limited variance reduction through fission, which we will discuss

below.

2.1 Path Length Sampling in Toroidal Geometry

We must solve the problem of neutron path length sampling in toroidal geometry, which is

not trivial. Here we will develop from scratch and test our sampling algorithm.

2.1.1 Flight Distance in Toroidal Geometry

Figure 2.1 shows the basic toroidal geometry with which we model the tokamak configuration.

This is identical to the geometry in our 0-D fusion tokamak model. R is the major radius,

and a is the minor radius. The torus has an elongation κ so that its poloidal cross-section

is an ellipse. Φ is the toroidal angle, and Θ the poloidal angle. We can write a sample

expression for a toroidal surface in cartesian (x,y,z) coordinates.(√
x2 + y2 −R

)2

+
(z
κ

)2

= a2 (2.1)

The problem of neutron path length sampling boils down to solving the distance from a

given point to a toroidal surface in a given direction. When a neutron is born or scatters,

it has a known position (x0,y0,z0) as well as a known direction that we can easily sample.

If we define the unknown quantity s as the distance such a neutron must travel to intersect

the toroidal surface, we can specify the (x,y,z) location of that intersection point.
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Figure 2.1: Simple toroidal geometry. R is the major radius and a the minor radius. The torus

has an elongation κ so that its poloidal cross-section is an ellipse. Φ is the toroidal angle and Θ

the poloidal angle.

x = x0 + sµx (2.2)

y = y0 + sµy (2.3)

z = z0 + sµz (2.4)

Here (µx,µy,µz) are the unit vector components of the neutron’s direction, and they are

simple to express in terms of θ and φ.

µx = sin θ cosφ (2.5)

µy = sin θ sinφ (2.6)

µz = cos θ (2.7)

We use this notation for elegance and algebraic convenience. µz is ubiquitous in neutron

transport theory, usually written as just µ. To avoid confusion, we will always use (θ,φ) for

a neutron’s direction in spherical coordinates and (Θ,Φ) for the fixed toroidal coordinates

shown above in Figure 2.1.
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We can combine Equations 2-4 with Equation 1 to yield a quartic equation in s with

coefficients A, B, C, D, and E.

As4 +Bs3 + Cs2 +Ds+ E = 0 (2.8)

Determining the five coefficients requires a bit of convoluted algebra, but the result is not so

ugly. The three parameters L, M , and N naturally arise and distinguish themselves. L is a

function of only the neutron’s initial position squared (x2
0,y2

0,z2
0) with units of length squared.

N is a function of only the neutron’s initial direction squared (µ2
x,µ

2
y,µ

2
z) and is unitless. M

is a function of only the intermediate quantity (x0µx,y0µy,z0µz) with units of length.

L = R2 − a2 + x2
0 + y2

0 +
(z0

κ

)2

(2.9)

M = 2x0µx + 2y0µy + 2
(z0µz
κ2

)
(2.10)

N = µ2
x + µ2

y +
(µz
κ

)2

(2.11)

Now we can compile L, M , and N to express the five quartic coefficients. We will not

attempt to impart much intuition here, although it is interesting to note that x2
0 + y2

0 = r2
0

and µ2
x + µ2

y = µ2
r if we define r2 = x2 + y2 and µr = sin θ.

A = N2 (2.12)

B = 2NM (2.13)

C = 2NL+M2 − 4R2
(
µ2
x + µ2

y

)
(2.14)

D = 2ML− 8R2 (x0µx + y0µy) (2.15)

E = L2 − 4R2
(
x2

0 + y2
0

)
(2.16)

Now that our equation is in standard form, there exists a plethora of techniques for

solving it. MATLAB has a function roots that solves any polynomial in standard form with

matrix eigenvalues. However, as we will show in Section 3.3.4, roots is not optimal for our

purposes. Instead, we will employ Ferrari’s method, conceived by the Italian mathematician

Lodovico Ferrari in the 16th century. This standard widely-known method can solve any

quartic equation with simple algebraic relationships, which constitute a mere 18 lines of

code (see Appendix B source code).

That the expression is quartic in s is intuitive, because a line can intersect a torus at a

maximum of four points. If we assume that a randomly sampled line will never be exactly

tangent to the torus, then we can say that an infinite line will always intersect the torus

at zero, two, or four points. This translates into zero, two, or four real values of s. In the
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context of neutrons, (x0,y0,z0) and (µx,µy,µz) define an infinite neutron path. Positive real

values of s represent distances the neutron must travel forward along (µx,µy,µz) to intersect

the torus. Negative real values of s represent distances the neutron would travel backward

along (−µx,−µy,−µz) to intersect the torus (if that were its direction). Naturally, we only

care about the positive real values of s. If the neutron begins inside the torus, there will be

either one or three intersection points. If the neutron begins outside the torus, there will be

zero, two, or four intersection points. Figure 2.2 illustrates this nicely.

Figure 2.2: A toroidal cross-section of a torus showing a neutron’s initial position (x0,y0,z0) and

direction (µx,µy,µz). Here all four solutions for s are real, three positive and one negative. Since

the negative solution corresponds to backward motion (−µx,−µy,−µz), we are only interested in

the positive solutions.

2.1.2 Sampling Algorithm

Now that we have shown how to determine s, the distance a neutron must travel to intersect

a torus, let us specify the full path length sampling algorithm. Our fission-fusion hybrid

model consists of concentric tori. Referring back to Figure 2.1, the parameters R, a, and

κ fully define an elongated torus. Our tori all have the same values R and κ but different
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values of a. The poloidal cross-sections of concentric tori are concentric ellipses.

Suppose there are n concentric tori. These n tori enclose n finite regions: one solid toroid

and n − 1 annular toroids. Each of these regions has a different total neutron cross-section

Σt. If each of these regions were infinite, we could sample the neutron path length like this,

where ξ is a random number on [0,1].

s∞ =
− ln ξ

Σt

(2.17)

Now the basic algorithm proceeds like this:

1. Given an initial (x0,y0,z0) and (µx,µy,µz) for a neutron, solve the quartic equation for

all n tori. This will yield 4n values of s.

2. Discard imaginary and negative s values.

3. Sort all positive real values of s from smallest to largest, keeping track of which tori

each s value corresponds to.

4. Sample s∞1 with Σt1 for the initial region that (x0,y0,z0) falls within. Here subscripts

denote successive regions defined by successive tori intersections.

5. If s∞1 is less than the smallest value s1, the neutron travels a total distance s∞,1 and

stops in region 1. The sampling is complete. If s∞1 is greater than s1, sample s∞2 in

region 2. If s∞2 is less than s2 − s1, the neutron travels a total distance s2 − s1 + s∞2

and stops in region 2. If s∞2 is greater than s2 − s1, sample s∞3 in region 3. Keep

repeating this for all s values in ascending order.

6. If the neutron reaches the outermost torus, we kill it. In reality, a neutron could exit

the outermost torus and subsequently reenter it. However, given that the outermost

region is a shield, we will assume that the reentrant neutrons are negligible. Of course,

neutrons often exit and reenter the inner tori.

Here is a short code segment that shows the heart of this algorithm. Here points contains

the s values, and path contains the segment length of s within each region so that path(1)

= s1 and path(2) = s2 − s1. reg contains the region index associated with each segment,

and shell contains the index associated with each shell. sigma t(n) is Σt in region n.

points, path, reg, and shell have the same length. The rest of this code segment should

be self-explanatory. Figure 2.3 illustrates this algorithm.

pathlength_tot = 0;

for m = 1:length(points)
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if(reg(m) == 1)

% in plasma

pathlength_tot = pathlength_tot + path(m);

else

pathlength = -log(1-rand)/sigma_t(reg(m));

if(pathlength < path(m))

region = reg(m);

pathlength_tot = pathlength_tot + pathlength;

break;

else

pathlength_tot = pathlength_tot + path(m);

if(shell(m) == 5)

region = 6;

break;

end

end

end

end

Note that we do not sample s∞ in region 1. In our hybrid model, the innermost torus is

filled with plasma, which we approximate as a vacuum. A typical D-T plasma ion density

for ITER is 7.5× 1019 m−2. At 1 MeV, this corresponds to a neutron mean free path of

about about 59,000 km, which is over 4.6 times the diameter of the earth. At 14 MeV, the

mean free path is about 152,000 km, approximately 40% of the distance from the earth to

the moon. Since we currently have no plans to build a device quite that large, we can safely

assume that no neutrons collide in the plasma.

2.1.3 Tokamak Wall Neutron Flux

Now that we have specified our geometry algorithm, it makes sense to test it independently

of other modules in our code (such cross-sections, scattering, and fission). Conveniently, our

model of neutron transport through the plasma is purely geometric - no collisions occur. We

can determine the 14-MeV neutron flux at any point on the toroidal plasma surface. This

constitutes the first step in each neutron history for our full Monte Carlo simulation.

1. Sample fusion sites uniformly in the plasma volume using rejection sampling. In real-

ity, the fusion power density is not quite spatially uniform, but this will be a decent

approximation for our purposes. Each 14 MeV neutron is emitted isotropically from

the fusion reaction.
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Figure 2.3: A poloidal cross-section of concentric tori showing neutron initial positions, directions,

and intersection points with the tori. Each region between tori has a different total cross-section

Σt. If the quartic solution sn is the distance to a neutron’s nth intersection point, then the total

distance that neutron would travel from its (n− 1)th intersection point to its nth intersection point

(if no collisions occur) is sn − sn−1. For convention, s0 = 0. We kill neutrons at the outermost

torus.

2. Given the initial position and initial direction, solve the quartic equation for the point

of when the neutron first intersects the plasma surface.

3. Tally the neutron’s direction (θ,φ) in association with that intersection point (Θ,Φ).

4. Transform and condense the intersection points according to toroidal symmetry. For

example, the torus is axisymmetric in Φ, so the neutron’s directions at different Φ

values must be transformed to be consistent relative to the surface the neutron’s path

intersects.

Of course, the actual flux at the plasma surface will include more than just the first

intersections of the fusion-born neutrons. Many fusion-born neutrons will travel back into

the plasma after leaving it, and many fission-born neutrons will also traverse the plasma.

However, this 14 MeV neutron flux is still useful for testing purposes, as it is easy to judge

whether the distributions accurately reflect toroidal geometry.
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Figure 2.4 shows the scalar neutron flux at the toroidal plasma surface as a function of

poloidal angle Θ. The ratio of flux at the outermost point to flux at the innermost point

is about 2, which is consistent with toroidal geometry in that much more of the plasma is

“visible”to points on the outboard edge than to points on the inboard edge. See Figure 2.9 for

an illustration of this. There is also a maximum flux that occurs at approximately Θ = 1.2.

These two quantities of interest, the flux ratio and the angular location of maximum flux,

vary with geometric parameters. Figure 2.5 shows the flux ratio as a function of aspect ratio

R/a. As R/a grows very large, the toroid resembles a cylinder, and the flux ratio approaches

1. At low R/a, the ratio grows rapidly, because a greater portion of the toroid volume is

“visible” to a point on the outboard edge. Figure 2.6 shows the flux ratio as a function of

elongation κ. The flux ratio has only a weak dependence on this. Figure 2.7 shows the Θ of

maximum flux as a function of elongation. When κ = 1, the tokamak’s poloidal cross-section

is a circle, and the maximum flux occurs at the outermost point Θ = 0. Thus, Figure 2.4

would be a continuously decreasing function for κ = 0. As κ increases, the angle of maximum

flux approaches 1.2 radians. All these results match our geometric intuition and verify that

we have correctly derived and computed our quartic solutions.

We can proceed further by computing the angular neutron flux at the toroidal surface at

certain unique points of interest: the outermost point (x2 + y2 = (R + a)2), the innermost

point (x2 + y2 = (R − a)2), and the topmost point (x2 + y2 = R2, z = ±κa). We compute

all these distributions assuming the standard ITER parameters of R/a = 3.1 and κ = 1.75.

Figures 2.8, 2.10, and 2.11 show the neutron flux distribution as a function of standard fixed

spherical coordinates θ and φ at these three points of interest. The azimuthal φ distributions

at the outermost and topmost points exhibit Bactrian camelback shapes. These shapes

arise not from the barren steppes of central Asia but from simple geometry. These angular

distributions are really nothing more than muddled reflections of how much toroidal volume

is “visible” in each direction from the surface point under consideration. See Figure 2.9 for an

illustration of this. Since the practical purpose of these plots is to ensure that our numerical

solutions match our intuition, it is sufficient to grasp how the general shapes arise from

geometry.

A naive way to interpret the scalar distribution in Figures 2.8, 2.10, and 2.11 would be to

suppose that the relative flux magnitudes at each poloidal angle are precisely proportional

to the total plasma volume that is “visible” from that point. While the “visible” concept

provides general intuition, it is not actually precise. Fusion neutrons that are born far from

a surface point are less likely to hit the close vicinity of that surface point than neutrons

born closer. Since fusion reactions produce neutrons isotropically, the probability that a

fusion-born neutron will hit a small area dA on the plasma surface is dA/r2, where r is the

distance between that small area and the fusion reaction location. Thus, if we desire to

calculate neutron scalar fluxes based on “visible” volumes, we must weight the differential
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volume element dV with some factor that depends on distance.

Nevertheless, computing volumes “visible” to a point on a torus is still useful in that it

shows us the volume of plasma that contributes to the neutron flux at that point. Let us

begin with the innermost torus point defined by Θ = 0 or x2 + y2 = (R− a)2. We can define

total toroidal volume “visible” to this point as the toroidal volume on one side of the plane

x = R− a.

Slicing tori with planes is something people have thought about for a while, even predating

contemporary bagel shops. In fact, there exists an entire taxonomy for the various quartic

curves that comprise intersections of tori and planes. The intersection of a torus with any

plane is a toric section. The intersection of a torus with a plane parallel to the s axis is

a spiric section. Figure 2.12 illustrates various spiric sections. The unique spiric section

formed by the z = R − a plane is shaped like a figure-eight. We could also rightly call it a

lemniscate. This is the spiric section that bounds the toroidal volume that is “visible” to the

innermost point, which is z > R−a. For the dimensions of R/a = 3.1 and κ = 1, this volume

is is about 1/4 the total plasma volume. We determine this value by first determining spiric

sections as a function of z and then integrating the areas enclosed by those spiric sections

from z = R − a to z = R + a. We could also determine the plasma volume “visible” to the

outermost point by evaluating other spiric sections. The ratio of the volumes “visible” to

the outermost and innermost points is approximately the ratio we determined with Monte

Carlo in Figures 2.5 and 2.6. To analytically evaluate this ratio precisely, we would need

to introduce the convoluted distance weighting factors discussed above, but we will gladly

relegate that effort to a future study.

2.1.4 Quartic Solution Comparison

We have already described how to convert neutron path length sampling in toroidal coordi-

nates into a standard quartic equation. We have also stated that we employ Ferrari’s method

to solve it. However, it is worth comparing the performance of our direct implementation of

Ferrari’s method to reputable polynomial solvers.

MATLAB contains the built-in function roots, which computes the roots of any poly-

nomial in standard form. roots does this by solving eigenvalues of a companion matrix.

While this method might be superior for polynomials of higher degree, it is inferior to a

direct implementation of Ferrari’s method for quartic polynomials. Figures 2.13 and 2.14

show CPU runtime analyses for our tokamak neutron flux Monte Carlo code and our entire

hybrid Monte Carlo code, respectively. Ferrari’s method reduces the runtime of our entire

hybrid Monte Carlo simulation by about 27%, which is delightful.

The only drawback to an algebraic implementation of Ferrari’s method is that it intro-

duces rounding error. This is a problem for neutrons that just barely graze any of the toroidal

surfaces. Their paths are very nearly tangential to the tori. This causes some quartic solu-
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tions to be very slightly real or very slightly imaginary to the point where it is difficult to

resolve whether the solution is truly real or only real due to rounding error. We can intro-

duce tolerance thresholds, but with millions of flight paths, the error magnitudes will always

overlap with the actual values in a few cases. Thus, we must introduce error trapping. If a

neutron path’s intersections with successive tori becomes out-of-order or irrational in some

other specific way, we immediately kill that neutron. Fortunately, this only occurs a few

times for every ten thousand source neutrons. roots does not exhibit this problem at all,

but we judge that the runtime advantage overrides this issue.

2.1.5 Cylindrical Comparison

It is common practice to model a tokamak as a cylinder, which is most accurate for large

aspect ratios. This is the approach Vincent Tang took in his 2002 master’s thesis [22].

We have chosen to implement the full toroidal geometry. While there is no question that a

toroidal model is be more accurate than a cylindrical model, it is worth some time to examine

how much more accurate it is. Solving quartic equations in toroidal geometry is much more

computational expensive than solving quadratic equations in cylindrical geometry, and it is

important to ask whether the gain in precision is worth the computational expense.

Since we used elongated tori in our toroidal model, we will use elliptic cylindrical shells

in our cylindrical model. In this way, a radial cross-section of our cylinder will be identical

to a poloidal cross-section of our toroid. We can define the elliptic cylinder as

x2 +
(y
κ

)2

= a2 (2.18)

We can follow the same general procedure as in toroidal geometry to derive expressions for

the three coefficients in a standard quadratic equation As2 +Bs+ C = 0.

A = µ2
x +

(µy
κ

)2

(2.19)

B = 2
[
x0µx +

y0µy
κ2

]
(2.20)

C = x2
0 +

(y0

κ

)2

− a2 (2.21)

Now we can use the same basic toroidal geometry algorithm to determine neutron flight

paths, except that now there are only two solutions instead of four. Figure 2.15 shows the

scalar flux as a function of polar angle. The maximum flux occurs at the elongated end

of the ellipse. That this flux distribution is not flat utterly debunks any assertion that

“visible” plasma volume is an accurate predictor of neutron flux. In an elliptic cylinder, the

entire plasma is visible to every surface point. Yet the distribution is very far from flat due



36 Mark Reed

to distance weights of the form 1/r2 as discussed in the previous section. Of course, the

distribution is flat for a circular cylinder (κ = 1) due to symmetry.

In order to test cylindrical geometry in our full hybrid model, we replaced our quartic

solver method with this quadratic solver method while keeping shell radii all the same.

The total fission and tritium breeding tallies were not substantially different (within 10%)

than in the case of ITER aspect ratio (R/a = 3.1). However, while a cylindrical model

might yield very approximate values averaged throughout the entire device, it does not

yield accurate values in localized regions of the hybrid blanket. Comparing Figure 2.15

with Figure 2.4 shows that toroidal geometry yields many more fission and tritium breeding

events in the outboard blanket than in the inboard blanket, while cylindrical geometry yields

equal values on both sides. This consequence of the toroidal model is important in terms

of burnup, because the inboard blanket will need to be replaced less frequently than the

outboard blanket. Since the inboard blanket would be much more difficult to replace, this

is advantageous. We conclude that although cylindrical geometry is a decent approximation

in terms of cumulative values, it does not sufficiently capture spatial dependence.

2.2 Monte Carlo Methodology

Now that we have exhausted geometry concerns, we will turn to the more generic aspects of

neutron transport Monte Carlo, including cross-section evaluation, scattering, and fission.

2.2.1 ENDF Cross-Sections

We employ cross-section data from the Evaluated Nuclear Data File (ENDF). To evaluate

a cross-section, we perform a binary search of energy values and select the corresponding

cross-section value. In order to optimize our code performance, we align all cross-sections on

the same set of energy values, approximately 20,000 in number. In this way, we only need to

perform one binary search per collision. With a thermal neutron spectrum, the temperature

dependence of resonance broadening would be a major concern. However, our spectrum is

fast, and so the effects of this will be negligible.

2.2.2 Elastic Scattering

In any Monte Carlo transport simulation, when to approximate scattering (in the lab frame)

as isotropic is always an important question. Here will take an in-depth look at the angular

distribution of elastic scattering. It is common knowledge that elastic scattering is virtu-

ally isotropic for heavy nuclei but quite anisotropic for light nuclei. For hydrogen, elastic

backscattering is not even theoretically possible. However, it is instructive to perform some

analysis here to quantify how heavy a nucleus must be for scattering off it to be considered

isotropic.
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Let us begin with energy. The standard probability distribution for energy shift P (E →
E ′) is

P (E → E ′) =

{
1

(1−α)E
αE < E ′ < E

0 0 < E ′ < αE
(2.22)

Here α = (A− 1)2/(A+ 1)2 as usual, where A is the nuclide mass number. Given a certain

lab frame energy shift E ′L/EL, we can conveniently derive the scattering angle in center

of mass coordinates, where everything is isotropic. The standard relationship between lab

frame energy shift and center of mass scattering angle is

E ′L
EL

=
(1 + α) + (1− α)µC

2
(2.23)

Here µ = cos θ as usual, and subscripts L and C denote lab and center of mass coordinates.

So once we sample the energy shift, we can quickly determine µC , which will always be evenly

distributed on [-1,1]. However, since we are really only interested in µL, we must employ the

law of cosines to relate scattering angles in the two frames.

tan θL =
sin θC

1/A+ cos θC
(2.24)

Now we have fully specified the sampling process for µL, which is nothing new. Of course,

we always sample the azimuthal angle φ uniformly on [0,2π]. To develop intuition for how

P (µL) varies with A, we can run a simple Monte Carlo simulation to determine P (µL) for

various values of A. Figure 2.16 shows this for A = 1, 4, 16, and 56. Obviously, elastic

scattering for 1H is very anisotropic. Backscattering is not even possible. As A increases,

the scattering becomes more isotropic. For 56Fe, the scattering is nearly isotropic. These

distributions are well-known, and they are effective in providing insight into isotropy.

However, eyeing distribution shapes is quite arbitrary, and a much better measure of how

isotropic scattering is would be the quantity P (µL = 1)/P (µL = −1), the ratio of forward

scattering to backward scattering. If this ratio is close to 1, the scattering is isotropic. If it is

much greater than 1, the scattering is anisotropic. There are a number of ways to calculate

this ratio as a function of A, but we will proceed with our own derivation. Since P (µL) and

P (µC) are the same distribution of two related variables, it is a mathematical fact that

P (µL)dµL = P (µC)dµC (2.25)

Now we know that P (µC) is a constant, because scattering is always isotropic in center

of mass coordinates. Its value is 1/2 on [-1,1]. So we say with confidence that P (µL) is

proportional to dµC/dµL. Now we can reexamine our relationship between µL and µC and

express it free of trigonometric functions to avoid phase and range ambiguity.
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√
1− µ2

L

µL
=

√
1− µ2

C

1/A+ µC
(2.26)

Now let the left side of this equation be f(µL) and the right side be g(µC). Since f and g

are equal, we can express dµC/dµL as

dµC
dµL

=
df/dµL
dg/dµC

(2.27)

For the sake of showing the convoluted explicit expression for P (µL), here it is.

P (µL) =
1

2

dµC
dµL

=
1

2

1√
1−µ2L

+

√
1−µ2L
µ2L

µC

(1/A+µC)
√

1−µ2C
+

√
1−µ2C

(1/A+µC)2

(2.28)

Of course, to practically evaluate this, we need to replace µC with µC(µL), which we can

solve numerically. We can also express this more elegantly in terms of θL and θC .

P (µL) =
1

2

[
sin θC
sin θL

] [
cot θL + tan θL
cot θC + tan θL

]
(2.29)

Although A no longer appears here directly, it is here implicitly in that A is necessary to

convert between θL and θC . A bit more messy algebra and trigonometry can yield P (µL) as

a function of only µL and A.

P (µL) =
1

2A

(
µL +

√
µ2
L + A2 − 1

)2

√
µ2
L + A2 − 1

(2.30)

This is the standard form that appears in some new reactor physics textbook (such as

Applied Reactor Physics by Alain Hebert [32]) but is surprisingly absent from many older

ones.[32]. This satisfies Equation 2.25.

For the raw pleasure of it, we can now generate a surface plot of P (µL) as a function of

A. Figure 2.17 shows this surface, which is consistent with its four slices in Figure 2.16. We

can discern how the shape of P (µL) smoothly evolves as A increases.

We must now painfully avert our eyes from the this mesmerizing surface to continue with

the task at hand - quantifying P (µL = 1)/P (µL = −1). The difficult way to do this is with

Equation 2.28. The limits are necessary, because df/dµL and df/dµC both approach zero at

-1 and 1.

P (µL = 1)

P (µL = −1)
=

lim
µL→1

dµC
dµL

lim
µL→−1

dµC
dµL

(2.31)
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However, it is much more efficient to simply evaluate Equation 2.30, which yields a very

elegant result.

P (µL = −1)

P (µL = 1)
=

(
A− 1

A+ 1

)2

= α (2.32)

That the ratio of the probability of backward scattering (dµL about µL = -1) to the prob-

ability of forward scattering (dµL about µL = 1) is α should not be terribly surprising. α

arises from simple collision kinematics, and α is also the ratio of the final and initial neu-

tron energies when µL = µC = −1. This is an interesting and instructive way to define α,

although few (if any) reactor physics texts touch on it.

Figure 2.18 shows P (µL = 1)/P (µL = −1) = α as a function of A from A = 4 to 200.

The ratio becomes less than 1.1 at A ≈ 50. However, we will require that the ratio be less

than 1.05, which occurs at A ≈ 100. Thus, we will treat all elastic scattering collisions with

A > 100 as isotropic and collisions with A < 100 as anisotropic.

Now that we have quantified isotropy and chosen a reasonable boundary between isotropic

and anisotropic scattering, we should explain how we transform angular coordinates in the

case of anisotropic scattering. In isotropic scattering, we can easily sample the post-collision

angles independently of the pre-collision angles. In anisotropic scattering, we can only sample

the angle shifts, and then we must transform those shifts into our fixed angular coordinate

system. We can derive the mathematical relationships that define such a coordinate trans-

formations from rotation matrices, but we will not delve into that here. The manual for

PENELOPE, an electron and photon transport code, explains this very well [27]. We will

simply write it down. Let µ and φ represent the sampled angular shifts.

µx2 = µx1µ+

√
1− µ2

1− µ2
z1

(µx1µz1 cosφ− µy1 sinφ) (2.33)

µy2 = µy1µ+

√
1− µ2

1− µ2
z1

(µy1µz1 cosφ+ µx1 sinφ) (2.34)

µz2 = µz1µ−
√

(1− µ2)(1− µ2
z1) cosφ (2.35)

2.2.3 (n,xn) and (n,α) Reactions

There are a number of interactions that we must model very approximately, in far less intri-

cacy than elastic scattering. First let us consider (n,xn) reactions, in which a nucleus absorbs

a neutron and subsequently emits at least two. In our set of hybrid blanket materials, we

only encounter (n,2n) and (n,3n) reactions of significant magnitude. Since this is not a scat-

tering interaction, the neutrons are emitted isotropically. We do not kill or split the particle
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but simply increase its weight by x. Other than fission, this is the only circumstance under

which our Monte Carlo simulation is not strictly analog. For a crude approximation of the

emitted neutron energies, we sample them from a simple truncated Maxwellian distribution

with an average energy 10 times less than the incident neutron energy. This is very roughly

consistent with ENDF energy distributions.

A
ZQ + n→A−X

Z Q + Xn (2.36)

Now let us turn to the tritium breeding reactions. In the case of 6Li, the incident neutron

is absorbed, and no neutrons are emitted. It is straightforward to tally tritium production.

This reaction produces 4.8 MeV, which contributes to the total hybrid power.

6
3Li + n→4

2 He +3
1 H (2.37)

In the case of the 7Li reaction, a neutron is emitted along with the tritium and α-particle.

Interestingly, this reaction consumes 2.5 MeV and only occurs at incident energies above

that threshold. We compute the emitted neutron energy as inversely proportional to its

mass share, just as in a D-T fusion reaction. So the emitted neutron energy E in terms of

the incident neutron energy E0 is E = (E0 - 2.5 MeV)(12/19).

7
3Li + n→4

2 He +3
1 H + n (2.38)

2.2.4 Inelastic Scattering

From a quantum perspective, inelastic scattering is a misnomer. Physically, it is (n,1n). The

nucleus absorbs a neutron, forms a compound nucleus, and ejects a neutron. The ejected

neutron is not necessarily the same neutron that was absorbed - that is unknowable, because

identical nucleons are indistinguishable. In the case of elastic potential scattering, we know

that the incident and scattered neutron are one and the same.

Unlike (n,2n) and (n,3n) reactions, inelastic scattering comprises a substantial portion

of the uranium cross-sections at high energy. While elastic scattering by uranium has only

a very small effect on the flux energy distribution, inelastic scattering causes neutrons to

lose large fractions of their energies and thus has an enormous effect on the flux energy

distribution. In the case of 238U, inelastic scattering effectively“pushes”the neutron spectrum

away from the fissile threshold. If the 238U cross-section were renormalized without inelastic

scattering, the natural uranium k∞ would be well above 1.0 (the actual value is less than

0.3).

We will assume that inelastic scattering is isotropic, just like the emission of secondary

neutrons in (n,2n) and (n,3n) reactions. The sampling of energy loss in inelastic scattering

is convoluted. The ENDF repository contains a plethora of applicable distributions, but
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in the interest of keeping our code clean and simple, we will introduce an average energy

loss parameter. This parameter is the ratio of the ejected neutron energy to the absorbed

neutron energy. We calibrate it with MCNP, and it is typically near 0.4.

2.2.5 Fission

Although our Monte Carlo simulation is largely analog, we do employ weights for fission and

(n,xn) reactions. In (n,xn) reactions, we simply multiply the neutron weight by x. This is

acceptable, because (n,xn) reactions constitute only a small portion of neutron multiplication.

However, in the case of fission, simply multiplying neutron weights by ν would be extremely

problematic for k convergence. In this code, we define k as the ratio of the number of

neutrons produced by fission in each successive generation (except the first generation, which

is produced by fusion). We tally them at the instant they are produced. Imagine a situation

with k = 1.2, ν = 3.0, and 0.4 fissions per neutron in each generation. Then the number

of neutron histories in the nth generation would be 0.4n, and the total weights of those

neutrons would be 1.2n. Eventually, only a few particles would hold tremendous weight.

The simulation would end prematurely when the last particle, holding the entire weight of

the system, is absorbed. This would be ridiculous. It would be “variance expansion”, the

antithesis of variance reduction.

So we must split particles at fission. We could do this the purely analog way with a

discrete distribution function for the number of particles that are released in fission (this

would average to ν). However, a more interesting and flexible way to manage fission is to

stipulate that each fission-inducing neutron splits into a fixed number of next-generation

neutrons. We will call this fixed integer Ψ, because we like pictograms. We can vary Ψ

depending on the criticality of our system and convergence preferences. Large Ψ values will

increase variance reduction, while small Ψ values will decrease variance reduction (“variance

expansion”). If the weight of each fission-inducing particle is w0, then the weight of each

resulting fission-born neutron is

w = w0

( ν
Ψ

)
(2.39)

For any given value of k, we can choose Ψ such that the number of particle histories (not

particle weights) increases or decreases with each subsequent generation. If Ψ is below a

certain threshold, the number of particle histories will continually decrease to zero, ending

the simulation. If Ψ is above that same threshold, the number of particle histories will

increase, the simulation will be an infinite loop, and we will need to truncate it after a

certain number of generations. The threshold is

Ψ =
k

ν
(2.40)
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Here ν is ν averaged over the energy spectrum. When this equality holds, the number of

histories will remain roughly constant in each generation. It now makes sense to define a

new kind of k, one that applies not to total particle weight but to the number of particle

histories. Let this be kH .

kH =
kΨ

ν
(2.41)

kH describes the number of particle histories in precisely the same way that k describes the

total particle weight. kH is the ratio of particle histories in one generation to the previous

generation. When kH < 1, all particles will eventually be absorbed. When kH ≈ 1, the

number of particle histories remains constant in each generation, and the system is “simu-

lation critical”. When Φ = ν, kH = k, and the system is nearly analog in the sense that

all particle weights remain near 1.0. In the case of our subcritical hybrid blanket, we know

that k is much less than 1, actually near 0.3. It makes sense for us to set kH much higher

at around 0.9. We would like to keep kH < 1 so that our simulation terminates itself when

all neutrons are absorbed, but we want kH to be higher than k in order to take advantage of

variance reduction. Otherwise, a much larger number of initial neutrons would be required

to converge a system with such a low k.

To summarize, there are two important properties of kH . First, variance reduction occurs

when kH > k. Second, a Monte Carlo simulation will terminate itself when kH < 1 regardless

of k, because all neutrons will eventually be absorbed.

Our Monte Carlo code tracks one generation at a time. When a fission occurs, we kill

the incident neutron, sample the emitted neutron properties, and store the fission location

until the subsequent generation.

2.3 MCNP Benchmark

Now that we have explained our Monte Carlo model, we must ensure that it is accurate. We

must compare it to a reputable code. We choose MCNP.

First, in order to test our cross-sections, tracking, and fission methodology, we compare

k∞ as a function of uranium enrichment for UO2 and pure U metal. Since k∞ is purely a

function of material properties (in a homogenous medium), this eliminates concerns relating

to our geometry model and algorithms. Figure 2.19 shows the results. Evidently, our code

yields results quite consistent with MCNP. UO2 has a slightly lower k∞, because the oxygen

moderates neutrons enough to push the spectrum away from the high 238U cross-section

but not enough to push it anywhere near the thermal region. Infinite UO2 becomes critical

at about 8% enrichment, while U metal becomes critical at about 6% enrichment. Both

materials have k∞ ≈ 2.25 at 100% enrichment.
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Now that we are confident that our cross-sections, tracking, and fission methodology are

correct, we can ensure that our geometry is correct by comparing our complete hybrid model

to MCNP. Figure 2.20 shows the results. Here we compare the initial neutron multiplication

k0 and the asymptotic neutron multiplication k for varying uranium pebble layer thickness.

For an in-depth discussion of these quantities, see the Section 5.2. Clearly, these quantities

are in fair agreement with MCNP. There is certainly some deviation, but this is much smaller

than the deviation that would occur between cylindrical and toroidal models. We deem this

close enough for a scoping study.
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2.4 Pebble Homogenization

Until now, we have assumed that homogenizing our uranium pebbles and helium coolant

does not significantly affect the reactor physics. This is a reasonable assumption, because

the neutron mean free path in helium is orders of magnitude larger than that in UO2. Also,

since the neutron spectrum is fast, mean free paths will generally be larger than the pebble

diameter.

It is still interesting to quantify the validity of pebble bed homogenization. We perform

kcode calculations in MCNP for UO2 pebbles of varying diameter in helium. These pebbles

are in an infinite standard cubic array. We find that pebble size and homogenization make

virtually no difference in this case of helium-cooled UO2 pebbles, so there is no problem with

homogenization.

However, we were interested in studying pebble bed homogenization further, so we per-

formed the same MCNP runs with water in place of helium. Figure 2.21 shows k∞ as a

function of pebble size. Again, the pebbles are in infinite standard cubic formation. The

zero pebble radius limit corresponds to homogenization. k∞ initially increases as the peb-

bles grow larger, and the keff for each individual pebble increases. When the pebble radius is

roughly equal to the 1 MeV neutron mean free path in UO2 and H2O (which is approximately

1.8 cm for both), k∞ attains a maximum and subsequently decreases far below the homoge-

nized k∞. This is because neutrons can no longer easily traverse the gaps between pebbles.

In this case of UO2 pebbles in H2O, a pebble radius of less than 0.1 cm is necessary for

homogenization to be an accurate approximation. Although this particular example is not

applicable to our hybrid, it provides physical insight into why homogenization is generally

valid.
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Figure 2.4: Scalar neutron flux at the plasma surface as a function of poloidal angle Θ. Θ = 0

corresponds to the outermost point on the tori (x2 + y2 = (R + a)2), while Θ = π corresponds to

the innermost point (x2 + y2 = (R− a)2). The flux is about twice as large at the outermost point

than at the innermost point, and there is a maximum at approximately 1.2 radians.
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Figure 2.5: The ratio of scalar neutron flux at the outermost point (x2 + y2 = (R + a)2) to the

innermost point (x2 + y2 = (R − a)2) as a function of tokamak aspect ratio R/a. As R/a grows

very large, the toroid resembles a cylinder, and the flux ratio approaches 1. Here the elongation κ

is 1.75.
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Figure 2.6: The ratio of scalar neutron flux at the outermost point (x2 + y2 = (R + a)2) to the

innermost point (x2 + y2 = (R − a)2) as a function of tokamak elongation κ. As κ increases, the

flux ratio increases moderately. Here the aspect ratio R/a is 3.1.
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Figure 2.7: The poloidal angle Θ of maximum scalar neutron flux as a function of tokamak

elongation κ. Here the aspect ratio R/a is 3.1. When κ = 1, the tokamak’s poloidal cross-section is

a circle, and the maximum flux occurs at the outermost point Θ = 0. Thus, Figure 2.4 would be a

continuously decreasing function for κ = 0. As κ increases, the angle of maximum flux approaches

1.2 radians.
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Figure 2.8: The angular neutron flux distribution in standard spherical coordinates (θ,φ) at the

outermost point on the plasma surface (Θ = 0). The camelback shape of the azimuthal distribution

reflects the two “arms” of the toroid visible from this point. See Figure 2.9 for further illumination

on this.
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Figure 2.9: Neutrons that impinge on a given point on a tokamak surface originate from D-T

fusion reactions at all points in the plasma that are “visible” from that surface point. This clarifies

the camelback shape of the azimuthal distribution in Figure 2.8. Of course, this “visible” concept

only applies to neutrons that intersect the tokamak surface for the first time.
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Figure 2.10: The angular neutron flux distribution in standard spherical coordinates (θ,φ) at the

innermost point on the plasma surface (Θ = π). Now there is no camelback shape, because most

of the tokamak curvature is not visible from this point.



52 Mark Reed

Figure 2.11: The angular neutron flux distribution in standard spherical coordinates (θ,φ) at the

topmost point on the plasma surface (Θ = π/2). The camelback shape of the azimuthal distribution

reflects the two “arms” of the toroid visible from this point. See Figure 2.9 for further illumination

on this. The azimuthal distribution exhibits a camelback shape similar to Figure 8 and reveals the

inner curvature of the tokamak quite nicely. The polar angle distribution approaches at θ = 0 only

because the spherical integrand sin θdθ approaches zero.
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Figure 2.12: Five spiric sections of a torus. These are the five general shapes that arise from

intersections of tori with planes parallel to the toroidal axis (the z direction).

Figure 2.13: A CPU runtime analysis of our tokamak surface neutron flux Monte Carlo code com-

paring the MATLAB function roots to a direct calculation of Ferrari’s method. toroidalMatrix is

the entire code using roots, and toroidalAlgebraic is the entire code using quarticAlgebraic,

which contains Ferrari’s method. Clearly, a direct implementation of Ferrari’s method is superior

to roots and reduces runtime by 27%.
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Figure 2.14: A CPU runtime analysis of our entire hybrid Monte Carlo simulation comparing

the MATLAB function roots to a direct calculation of Ferrari’s method. toroidal edit5 roots

is the entire code using roots, and toroidal edit5 is the entire code using quarticAlgebraic,

which contains Ferrari’s method. Clearly, a direct implementation of Ferrari’s method is superior

to roots and reduces the total runtime time by over 25%.
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Figure 2.15: Scalar neutron flux at the plasma edge (an elliptic cylindrical surface) as a function

of polar angle Θ. The flux achieves its maximum at the elongated ends of the elliptic cylinder.
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Figure 2.16: Elastic scattering P (µL) for 1H, 4He, 16O, and 56Fe. As A increases, the scattering

becomes more isotropic. In the case of 1H, scattering is anisotropic to the point that backscattering

is impossible.
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Figure 2.17: The analytical solution for P (µL) for A = 1 to 10. We display this as a surface

function of both µL and A. This is consistent with Figure 2.16, which we created with Monte Carlo.
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Figure 2.18: P (µL = 1)/P (µL = −1) = α as a function of A from A = 4 to 200. This ratio α is

an excellent way to quantify the degree of isotropy of a nuclide. α becomes less than 1.1 at A ≈ 50.
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Figure 2.19: k∞ as a function of uranium enrichment for UO2 (blue) and pure U metal (red).

The solid lines represent our Monte Carlo model, and the asterisks represent MCNP.
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Figure 2.20: The initial neutron multiplication k0 (red) and the asymptotic neutron multiplication

k (blue) in our hybrid model as a function of uranium pebble layer thickness. The solid lines

represent our Monte Carlo model, and the asterisks represent MCNP.
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Figure 2.21: k∞ for an infinite standard cubic array of UO2 pebbles in an infinite H2O pool. For

very small pebble sizes, k∞ corresponds to the homogenized k∞. As the pebbles grow larger, k∞
initially increases but subsequently decreases after the pebble size exceeds the neutron mean free

path in H2O.
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3 Fission Blanket Analysis

Now that we have expounded on our Monte Carlo fission blanket model, all that remains is to

run it repeatedly to ascertain how fissioning and tritium breeding change with various system

parameters. In this section, we will focus on toroidal layer thicknesses, relative positioning

of toroidal layers, lithium enrichment, and lithium content in the Li-Pb alloy.

3.1 Blanket Parameter Analysis

Our neutronics model consists of five concentric tori that bound layers of SiC (the first wall),

UO2 pebbles (natural uranium) immersed in helium coolant, liquid Li-Pb tritium breeder,

and a steel and H2O shield. Figure 3.1 shows a poloidal cross-section of this model. Of course,

an actual device would include additional structural components, but this will suffice as a

simple model. It is sufficient for our purposes. See Section 1 for a more detailed description

as well as our motivation for choosing this conceptual design.
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Figure 3.1: A basic schematic of a poloidal cross-section of our neutron transport hybrid model.

The toroidal plasma is incased within four toroidal layers: a silicon carbide first wall, a UO2 pebble

fission layer with helium coolant, a liquid lithium-lead alloy, and a steel shield. Five concentric tori

bound these layers. Layer thicknesses and pebble sizes are not to scale.



64 Mark Reed

3.1.1 Uranium Layer Thickness

First we will show what happens when we vary the uranium pebble layer thickness while

holding all other parameters constant. Figure 3.2 shows the two quantities of most in-

terest - fissions per fusion neutron and bred tritons per fusion neutron - as a function of

the uranium pebble layer thickness. We will call these two quantities the fission ratio and

tritium breeding ratio. When there is no uranium layer, each fusion neutron breeds about

0.65 tritons. As the uranium layer thickens, the each fusion neutron can spur up to about

0.75 fissions. However, after a thickness of about 25 cm, there is little to gain from further

thickening. The effect on tritium breeding is much more interesting. When the uranium

layer thickens, two competing effects are at play. First, the uranium multiplies the fusion

neutrons. Second, the uranium pushes the lithium away from the fusion neutron source. For

thin uranium layers (less than 8 cm), the first effect is preponderant such that the tritium

breeding per fusion neutron more than doubles. However, as the uranium layer thickness

surpasses a certain threshold, the second effect dominates such that the tritium breeding per

fusion neutron gradually decreases. A uranium layer thickness of 27 cm would yield the same

tritium breeding ratio as in the case of no uranium layer at all. This neat fact is convenient

for us. We can insert a sizable fissionable layer without any cost in terms of tritium breeding.

Figure 3.3 shows the initial fission multiplication factors k0 (first generation) and k (suc-

cessive generations) as a function of uranium pebble layer thickness. k0 is the ratio of the

number of neutrons in the first fission-born generation to the number of neutrons in the

initial fusion-born generation. Due to the high fission cross-section of 238U at high energies,

k0 is well above 1. k is the standard multiplication factor for fission-born neutrons in all

successive generations when the flux distribution has converged. k is precisely equivalent to

keff , which is the common denotation in reactor physics texts. Since we use natural uranium

and rely mostly on the fusion-born neutrons to achieve a larger power gain, k is much lower

than k0. The fission ratio in Figure 3.2 is an increasing function of both k0 and k, and it is

directly proportional to k0.

Our goal in this analysis is to maximize the fission ratio while still achieving a tritium

breeding ratio slightly greater than 1. It is paramount that we breed at least one recoverable

triton per every triton consumed in a fusion reaction (or per fusion-born neutron). Looking

at Figure 3.2, we could easily breed a plethora of tritium, but our fission ratio would be

fairly low. We could also achieve a high fission ratio with a very thick uranium layer, but

that would thwart tritium breeding altogether. It is simple to see that a uranium layer

thickness of slightly less than 20 cm is optimal. This would produce a fission ratio of about

0.5 (which corresponds to a power gain of about 7) while satisfying the tritium breeding

requirements. Of course, here we have held other parameters constant, and so these curves

will shift around a bit when we vary those. However, the basic shapes of the curves will not

significantly change.
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Figure 3.2: Fissions and bred tritons per fusion-born neutron as a function of uranium pebble

layer thickness. Here the lithium layer is 30 cm thick with 90% 6Li enrichment. The error bars

represent Monte Carlo uncertainty.
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Figure 3.3: The fission multiplication factors k0 (first generation) and k (successive generations)

as a function of uranium pebble layer thickness. Here the lithium layer is 30 cm thick with 90%
6Li enrichment.
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3.1.2 Lithium Layer Thickness

Now we will vary the lithium layer thickness while holding the fission layer thickness constant

at our favored 15 cm. See Figure 3.4. Unsurprisingly, a thicker lithium layer produces a higher

tritium breeding ratio. Somewhat less unsurprising, the lithium layer thickness has virtually

no effect on the fission ratio. Of course, a small number of neutrons do backscatter into the

uranium layer from the fission layer, but these neutrons, having scattered from lithium, are

nearly all below the fissionable energy of 238U. Of course, there is also lead in the lithium

layer, but lead has a sizable inelastic scattering cross-section that is comparable to its elastic

scattering cross-section. Under the conditions in Figure 3.4, we would need the lithium layer

to be at least 15 cm thick to achieve a tritium breeding ratio of 1.

Figure 3.4: Fissions and bred tritons per fusion-born neutron as a function of lithium layer

thickness. Here the uranium layer is 15 cm thick, and the 6Li enrichment is 90%.
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3.1.3 Lithium Enrichment

Beyond physical dimensions of the layers, we must also consider the material compositions

of the layers. We have decided that the uranium layer should be UO2 pebbles with natural

uranium, so we must only examine the Li-Pb composition in detail. First we will analyze

the effect of lithium enrichment.Natural lithium is 92.5% 7Li and 7.5% 6Li (atomic fraction).

Both isotopes breed tritium. In pure fusion reactors, the lithium is enriched to 90% 6Li. The

reason for this is evident from the cross-sections.

Figure 3.5 shows the 6Li total cross-section broken down into constituent parts as a

function of energy. The tritium breeding component, denoted 6Li(n,t)α, is small at high

energies but extremely large at low energies. There is a large elastic scattering component at

high energies that serves to scatter neutrons to lower energies where they can more readily

breed tritium. Figure 3.6 shows the same 6Li cross-section, but now we have normalized it

so that the total cross-section is always 1. Here the scale is not linear (not logarithmic),

so we can see the relative probabilities of various reactions as a function of energy. We

have outlined the fission energy spectrum χ(E) and the 14 MeV neutrons with dotted red

lines. The unscattered (14 MeV) fusion-born neutrons will breed only a negligible quantity

of tritium. However, since the total scattering cross-section comprises over 90% of the total

cross-section above 3 MeV, the fusion-born neutrons will scatter to lower energies where the

tritium breeding cross-section comprises over half of the total scattering-cross-section.

Figure 3.7 shows the normalized constituent parts of the 6Li total cross-section as a

function of energy. The tritium breeding reaction 7Li(n,t+n)α only occurs at very high

energies, above 4 MeV. In this high energy range, tritium breeding is actually a bit more

probable per n-7Li collision than per n-6Li collision. However, virtually no fission-born

neutrons will breed tritium with 7Li. Even in a pure fusion reactor, the neutrons scatter and

slow down far below 4 MeV such that it is difficult to breed tritium with natural lithium.

Thus, pure fusion reactors usually enrich lithium to 90% 6Li, a near reversal of the natural

abundances. We strongly prefer 6Li to 7Li.

However, there is one caveat in the case of fission-fusion hybrids. Although 6Li tritium

breeding consumes a neutron, 7Li tritium breeding does not. Here are the reactions for both

isotopes.

6
3Li + n→4

2 He +3
1 H + 4.8MeV (3.1)

7
3Li + n→4

2 He +3
1 H + n− 2.5MeV (3.2)

In pure fusion reactors, no one cares about the extra neutron. In fact, eliminating neutrons

is preferable. Furthermore, 6Li(n,t)α produces energy, while 7Li(n,t+n)α consumes energy.

In contrast, we prefer more neutrons in a fission-fusion hybrid. Although 7Li(n,t+n)α only
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Figure 3.5: The total 6Li cross-section showing constituent parts as a function of energy. The

total cross-section is in red.

occurs at high energies, the extra neutron per bred triton will spur more fission. The question

is whether this extra neutron is worth the drawbacks of 7Li.

Figure 3.8 shows the fission and tritium breeding ratios as a function of lithium enrichment

(atomic fraction 6Li). Clearly, 6Li is vastly superior to 7Li in terms of tritium breeding. In

terms of fission, the effect seems to be negligible, because backscattering into the uranium

layer from the lithium layer is rare to begin with. Given all these facts, we will prudently

stick with the lithium enrichment of 90% 6Li in pure fusion reactors. More 6Li is always

better, but there comes a point where the cost of enrichment outweighs the benefits. As

enrichment becomes very high (above 90%), it becomes exponentially more difficult to filter

out the rarefied 7Li atoms.
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Figure 3.6: Normalized constituent parts of the total 6Li cross-section as a function of energy.

Here the total cross-section is always 1.0. We have outlined the fission χ(E) spectrum and the 14

MeV fusion-born neutrons in red.
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Figure 3.7: Normalized constituent parts of the total 7Li cross-section as a function of energy.

Here the total cross-section is always 1.0. We have outlined the fission χ(E) spectrum and the 14

MeV fusion-born neutrons in red.
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Figure 3.8: Fissions and bred tritons per fusion-born neutron as a function of 6Li enrichment.

Here the uranium and lithium layers are 20 cm and 30 cm thick, respectively.
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3.1.4 Layer Positioning

Until now, we have assumed that the lithium layer is exterior to the uranium layer. This

works well, because the uranium layer acts like both a neutron multiplier and a neutron

“moderator’ in the sense that fission-born neutrons are much slower than fusion-born neutrons

(the 6Li(n,t)α cross-section is exponentially higher at lower energies). It is a nice little

system. However, to be thorough, we should at least quantify how much more favorable this

arrangement is than the reverse - uranium exterior to lithium.

Figure 3.9 shows the fission and tritium breeding ratios as a function of lithium enrichment

for a 7 cm lithium layer interior to 40 cm uranium layer so that the lithium abuts the tokamak

first wall. While we saw that lithium enrichment has only a negligible effect on fission when

the lithium is exterior to the uranium, in this case there is a noticeable difference. In this

case, all fusion-born neutrons that spur fission must traverse the lithium layer. The extra

neutron from 7Li(n,t+n)α contributes to the number of neutrons that fully traverse the

lithium layer. Of course, this neutron is emitted isotropically, but even if its direction is

directly away from the uranium, it will simply traverse the plasma and enter the uranium

layer on the opposite side (if it does not collide in the lithium a second time). Furthermore,
7Li(n,t+n)α is more likely to occur in the very fast neutron spectrum that forms when the

lithium abuts the plasma. However, even though the 7Li(n,t+n)α neutron contributes to

fission, 7Li still has no advantage in terms of tritium breeding. As Figure 3.9 shows, even

though pure 7Li yields a fission ratio about 30% higher than pure 6Li, 7Li is devastating for

tritium breeding. Even in this reversed layer positioning, we prefer the lithium enrichment

to be as high as possible.

Figure 3.10 shows the fission and tritium breeding ratios as a function of uranium layer

thickness for a 30 cm lithium layer. Here we hold lithium enrichment constant at the favored

90%. As the uranium layer (which is exterior to the lithium layer) thickens, more fissions

occur and more tritium is bred. This is similar to Figure 3.2, except that there is no

subsequent drop in tritium production, because the uranium does not separate the lithium

from the fusion-born neutron source. However, it is very difficult to achieve both a tritium

breeding ratio of 1 and a reasonably high fission ratio. Note that the tritium breeding ratio

just barely reaches 1 and that the fission ratio is only about 0.1, which would correspond

to a measly power gain of 1.4. If we make the tritium layer much thinner and the uranium

layer much thicker, as in Figure 3.9, then it is possible to achieve a fission ratio of 0.3 with

a tritium breeding ratio of 1. However, this requires more than twice as much UO2 fuel (40

cm at a larger poloidal radius versus 20 cm at a smaller poloidal radius). It also poses a

technical challenge in that the liquid Li-Pb would be asinine to periodically remove if it is

interior to the uranium layer. Lastly, 0.3 is still significantly less than the 0.5 we achieve

with the uranium layer abutting the first wall.

Figure 3.11 shows the fission and tritium breeding ratios as a function of lithium layer
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Figure 3.9: Fissions and bred tritons per fusion-born neutron as a function of 6Li enrichment.

Here the uranium layer is exterior to the lithium layer. The uranium and lithium layers and 40 cm

and 7 cm thick, respectively.

thickness for a 20 cm lithium layer. Interestingly, the tritium breeding ratio rises precipitously

to 0.75 with a thickness of only 5 cm, while a thickness of 25 cm is necessary for a breeding

ratio of 1. In that same thickness range, the fission ratio falls exponentially to approach

zero. This plot capture exactly why this positioning of layers is unworkable - it pits fission

and tritium breeding at odds with each other. Compare this to Figure 3.2, in which fission

enhances the tritium breeding (for thin uranium layers). We conclude that a uranium layer

abutting the first wall and an exterior lithium layer is the superior option.
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Figure 3.10: Fissions and bred tritons per fusion-born neutron as a function of uranium pebble

layer thickness. Here the uranium layer is exterior to the lithium layer, which is 30 cm thick with

90% 6Li enrichment.
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Figure 3.11: Fissions and bred tritons per fusion-born neutron as a function of lithium layer

thickness. Here the uranium layer is exterior to the lithium layer. The uranium layer is 20 cm

thick, and the lithium is enriched to 90% 6Li.
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3.1.5 Li-Pb Content

Now one last parameter remains - the lithium content in the liquid Li-Pb alloy. Li-Pb

is standard in pure fusion tokamak designs, because it is chemically benign and relatively

easy to extract the bred tritium from. Pure lithium would pose safety issues due to its

ravenous corrosive behavior. Pure fusion designs use the eutectic Pb84Li16 (84% lead by

atomic fraction) for its low melting point. Li-Pb with lead content below 5% also has a low

melting point, but then there might be corrosive danger.

Figure 3.12 shows the fission and tritium breeding ratios as a function of lithium content

in Li-Pb (atomic fraction). Here we fix the layer thickness near our optimal values of 20 cm

for uranium and 30 cm for lithium. The fission ratio increases very slightly for higher lead

content, because the lead causes more backscattering (inelastic as well as isotropic elastic)

from the lithium layer to the uranium layer. However, high lead content is devastating to

tritium breeding. Pb84Li16 yields a tritium breeding ratio that is less than half that of pure

lithium. If we were designing a pure fusion reactor, this could be overcome with a much

thicker Li-Pb layer. However, with a 20 cm uranium layer between the neutron source and

the Li-Pb, there is no thickness of Pb84Li16 that will yield a breeding ratio of 1. The lithium

atomic density is too low, and the isotropic lead scattering prevents deep neutron diffusion.

Thus, we cannot use Pb84Li16 for this hybrid. An addition of a neutron multiplier (such as

beryllium) might help the situation somewhat, but we leave that analysis to future work.

Tang’s 2002 thesis uses solid lithium titanate as a tritium breeder with a beryllium neutron

multiplier [22]. These were also in pebble form, so his design is a “double pebble bed”. We

chose to stick with the more conventional liquid Li-Pb material for this thesis, because it is

more expedient to remove the bred tritium from a liquid than from solid pebbles.

Since Pb84Li16 is not feasible, we will need to use a lower lead content. As we will discuss

in more depth in our thermal hydraulic analysis (see Section 12), the Li-Pb melting point

becomes far too large at lead contents between 5% and 60%. Consequently, we are forced

to work with 5% lead. Corrosion could be a problem, although we do not know the lead

content at which Li-Pb becomes benign.
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Figure 3.12: Fissions and bred tritons per fusion-born neutron as a function of lithium atomic

fraction in Li-Pb. Here the uranium and lithium layers are 20 cm and 30 cm thick, respectively,

and the 6Li enrichment is 90%. The lithium layer is exterior to the uranium layer.
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3.2 The Optimal Fission Blanket

Now that we have performed the bulk of our blanket analysis, we can settle on an approximate

set of optimal parameters as shown in Table 3.1. A uranium thickness of 18 cm and a lithium

thickness of 25 cm produces the highest fission ratio while maintaining a tritium breeding

ratio above 1. The fission ratio is 0.47, and the total fission gain Qfis is 7.7. Qfis is a bit higher

than the fission ratio indicates, because tritium breeding also produces substantial energy.

We tally the energy generation very precisely in our Monte Carlo code. The fusion-born

neutron multiplication k0 is 1.16, while the converged k is a mere 0.27.

Table 3.1: Optimal Blanket Parameters

UO2 pebble layer thickness 18 cm

Li-Pb layer thickness 25 cm

Li enrichment 90%

Li atomic fraction in Li-Pb 10%

fission ratio 0.47

Qfis 7.7

tritium breeding ratio 1.05

k0 1.19

k 0.27

Even though we have selected an approximate set of optimal parameters, our work is

not yet done. Since this is an unusual type of fission reactor, and since we have developed

our own code from scratch to model it, we should perform additional analysis to convince

ourselves that what we have done is correct. We must perform a “sanity check”. From here

forward, we will assume the optimal blanket parameters shown in Table 3.1.

Figure 3.13 shows the relative number of neutrons in each neutron generation, beginning

with the fusion-born neutrons (generation 1). As we expect, the first generation of fission-

born neutrons (generation 2) are a factor of k0 = 1.2 greater in number than the fusion-born

neutrons. After generation 2, each successive generation of neutrons is smaller by a factor

of k = 0.27. Of course, the fission-born neutron spectrum does not converge precisely at

generation 2. Instead, k will not converge to precisely 0.27 until after many generations.

However, k does come quite close to its asymptotic value beginning with generation 2. The

most interesting thing about this plot is that it reveals just how tremendously important

the fusion-born neutrons are. It is clear that they produce a huge portion of the total

fission power. These fusion-born neutrons are not merely a source that spurs something

more interesting - they are the real engine of this system. The fission-born neutrons are a
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convenient side-effect.

Figure 3.14 shows this from a different perspective. This shows the entire hybrid power

broken down into sources. We tally these quantities with our Monte Carlo code. Fission

spurred by fusion-born neutrons comprise 55% of the total system power, while all sub-

sequent generations of fission-born neutrons comprise less than half that (27%). This is

consistent with Figure 3.13. The large 238U cross-section at high energies empowers the

fusion-born neutrons. Continuing on, the next-largest energy source is the slowing-down

energy of fusion-born neutrons prior to fission. Many of these neutrons do not spur fission,

and many of those that do slow significantly beforehand. The total energy deposition of

fusion-born neutrons prior to fission comprises 10%. Amazingly, this means that the fusion-

born neutrons directly produce 65% of the total hybrid power. The net energy production

of the exothermic tritium breeding reaction 6Li(n,t)α and the endothermic tritium breeding

reaction 7Li(n,t+n)α comprises 4%. The fusion α-particles comprise 3%, which is deposited

directly in the plasma.

Some might still be skeptical of these data, especially the huge amount of energy produced

by the fusion-born neutrons. To dispel this, we have created Figure 3.15, which shows the

fate of the fusion-born neutrons. 8% spur fission without any scattering. 23% spur fission

after at least one scattering event. Note that these neutrons can backscatter, traverse the

plasma, and still spur fission on the opposite side of the blanket. So a total of 31% of

fusion-born neutrons eventually spur fission. Since ν is near 4 at these high energies, this

is consistent with k0 in Figure 3.13. A surprisingly large fraction (41%) breed tritium but

nearly all do so after multiple scattering events. The fraction of fusion-born neutrons that

breed tritium without prior scattering is negligible. Finally, 28% leak to freedom or (more

likely) eventually succumb to absorption.

To further corroborate our data, we should note that the neutron mean free paths in our

homogenized UO2 pebble layer are 7.1 cm (14 MeV) and 2.7 cm (1 MeV). These numbers

are consistent with our analysis here.

Figure 3.16 shows the full neutron energy spectrum in the uranium pebble layer. We

derive this from a collision tally in our Monte Carlo code and then construct this weighted

histogram. The large spike at 14 MeV represents the fusion-born neutrons before collision.

The smaller spike to its left is an artificial result of our inelastic scattering approximation.

Oxygen resonances cause conspicuous flux dips at lower energies. The average energy is 0.94

MeV, and so we can rightfully call this spectrum fast. This average energy is significantly

higher than typical fast spectrum energies due to the 14 MeV neutrons and the very low k.

The spectrum peak occurs at 0.1 MeV, which is more typical.

It serves our intuition to take this further by superimposing the fission-inducing energy

spectrum on top of the total energy spectrum. We compute this fission-inducing energy

spectrum by tallying each incident neutron energy in all fission events. Figure 3.17 shows
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Figure 3.13: The number of neutrons in each generation throughout the hybrid system. The

first generations contains only fusion-born neutrons, and all subsequent generations contain only

fission-born neutrons. The multiplication factor k0 is the ratio of generation 2 to generation 1,

while the multiplication factor k is the ratio of generation n to generation n− 1 for n > 2.

this superposition. The total spectrum (identical to Figure 3.15) is in red, and the fission-

inducing spectrum is in blue. The magnitudes of the two spectra are not to scale - we only

wish to analyze their distributions. The average fission-inducing energy is 9.9 MeV! This is

consistent with Figures 3.14 and 3.15, from which we can infer that fusion-born neutrons

spur 67% of all fissions. Furthermore, 17% of all fissions are spurred by virgin fusion-born

neutrons at 14 MeV (no scattering).

Figure 3.18 shows the total neutron energy spectrum in the Li-Pb layer. The fusion-

born neutrons spike is evident but not nearly as prominent as in the uranium layer. The

massive chasm centered around 0.3 MeV is the result of a large resonance in 6Li. The average

neutron energy here is 0.77 MeV, so the spectrum is a bit slower than in the uranium layer.

Figure 3.19 shows a superposition of the tritium-breeding spectrum (blue) on top of the total
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spectrum (red). The tritium-breeding spectrum is notably slower with an average energy of

0.29 MeV. This is due to the high 6Li(n,t)α cross-section at lower energies.

Although we can infer form Figures 3.15 and 3.17 that the fission-inducing neutrons do

not undergo many scattering events, we can demonstrate that the tritium-breeding neutrons

undergo numerous scattering events. Figure 3.20 shows a distribution of the number of

collisions a tritium-breeding fusion-born neutron undergoes prior to breeding tritium. The

average value is about 33. This shows that the fusion-born neutrons scatter off the lead and

lithium numerous times until they reach lower energies where the 6Li(n,t)α cross-section is

high.

The main thing to take away from this is that our neutron spectrum straddles the high
6Li tritium breeding cross-section at low energies and the high 238U fission cross-section at

high energies. The uranium layer capitalizes on the high-energy fusion-born neutrons to

induce fission, while the lithium layer slows the neutrons to breed tritium. The spectrum

slows as it moves further away from the fusion source. This is the fundamental reason why

the lithium layer should be external to the uranium layer. It just makes sense.

Finally, we can perform a bit of analysis with the spatial distribution of the neutron flux.

Figure 3.21 shows the poloidal angular distribution of neutron flux in the uranium layer. We

produce this with a collision tally. This figure is very important, because it shows how our

toroidal model captures what a cylindrical model does not. This distribution is similar to

the tokamak wall neutron flux distribution we computed in Section 2. This distribution is

similar to the fission power distribution, which we would need to take into account were we

to perform detailed thermal hydraulic analysis. Since the flux magnitude varies by a factor

of 2, this distribution would also be very important for spatially-depenent burnup analysis.

Figure 3.22 shows the radial distribution of neutron flux. Here we have corrected for

elongation by normalizing the radii as if κ = 1.

r′ = r

√
sin2 Θ

κ2
+ cos2 Θ (3.3)

We have plotted the distribution as a function of r′, and Θ is the poloidal angle of each tally

at poloidal radius r. In diffusion theory, the shape of this curve would be a superposition

of modified Bessel functions I0(r) and K0(r). It is noteworthy that the flux magnitude

attenuates by a factor of 6 through the 20 cm layer, which is consistent with what we expect

for a subcritical reactor with a source coming from the left. This also shows that there would

be paltry gain from thickening the layer any further. These spatially-dependent flux plots

are the only place in the subsection where we use a uranium layer thickness of 20 cm instead

of the optimal 18 cm, but there is little substantial difference.
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Figure 3.14: The composition of the total hybrid power from various sources. Astonishingly,

fission spurred by the 1st generation fusion-born neutrons generates over half the total hybrid

power. Fission spurred by all other (fission-born) neutrons accounts for only about one quarter.

A substantial fraction (1/10) is due to the slowing down of fusion-born neutrons prior to fission.

The remainder is from exothermic tritium breeding reactions and α-particles, which deposit their

energy in the plasma.
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Figure 3.15: The fate of fusion-born (1st generation) neutrons. 8% spur fission on their first

collision, while 31% eventually spur fission. 41% pass through the uranium layer to breed tritium,

and the remaining 28% are absorbed or leaked.
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Figure 3.16: The total neutron energy spectrum in the uranium pebble layer. The large spike

at 14 MeV represents the fusion-born neutrons before collision. The smaller spike to its left is an

artificial result of our inelastic scattering approximation. Oxygen resonances cause conspicuous flux

dips at lower energies. The average energy is 0.94 MeV, and so we can rightfully call this spectrum

fast.
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Figure 3.17: The total neutron energy spectrum (red) and the fission-inducing neutron energy

spectrum (blue) in the uranium pebble layer. To obtain the latter, we tally the energies of all

incident neutrons in fission events. While the average neutron energy is 0.94 MeV, the average

fission-inducing neutron energy is 9.90 MeV! The spectra magnitudes are not to scale with each

other.
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Figure 3.18: The total neutron energy spectrum in the Li-Pb layer. The fusion-born neutrons

spike is evident but not nearly as prominent as in the uranium layer. The massive chasm centered

around 0.3 MeV is the result of a large resonance in 6Li. The average neutron energy here is 0.77

MeV, so the spectrum is a bit slower than in the uranium layer.



88 Mark Reed

Figure 3.19: The total neutron energy spectrum (red) and the tritium-breeding neutron energy

spectrum (blue) in the Li-Pb layer. To obtain the latter, we tally the energies of all incident

neutrons in tritium breeding events. While the average neutron energy is 0.77 MeV, the average

fission-inducing neutron energy is 0.29 MeV. The spectra magnitudes are not to scale with each

other.
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Figure 3.20: A distribution of the number of collisions a fusion-born neutron undergoes before

breeding tritium (considering only the neutron that do eventually breed tritium, of course). The

neutrons typically scatter off the lead and lithium numerous times until they reach lower energies

where the 6Li tritium breeding cross-section is high.
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Figure 3.21: The total neutron flux in the uranium pebble layer as a function of poloidal angle.

This generally reflects the neutron flux distribution on toroidal surfaces that we computed in Section

2.
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Figure 3.22: The total neutron flux in the uranium pebble layer as a function of radius (normalized

as if κ = 1). This is consistent with what we expect for a subcritical reactor with a source coming

from the left.
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4 A Tokamak Fusion Core Model

We have completed our fission blanket analysis in toroidal geometry, but we have not yet said

anything substantial about the fusion core. We have optimized the blanket layer thicknesses,

but we have not optimized the basic physical dimensions of the tokamak (R, a, and κ). In

order to proceed, we have developed a simple model to relate various tokamak parameters

such as total fusion power, magnetic field strength, physical dimensions, and input auxiliary

power. We explain that model here in this section.

We originally developed this model as part of the Fall 2008 MIT Nuclear Science and

Engineering Design Project, which produced the HYPERION conceptual design [4]. We

expanded it for our May 2009 Bachelor of Science thesis in the Department of Physics [28].

In those studies, we analyzed various tokamak parameters as well as economic concerns to

determine the optimal tokamak size and minimum tokamak size that allow for steady-state

L-mode operation. In subsequent sections of this thesis, we will couple this tokamak model

to our new fission blanket model to explore how the fission power gain eases constraints on

tokamak operation.

4.1 Concept and Geometry

Tokamaks are toroidal chambers which magnetically confine plasma. Figure 4.1 shows the

basic geometry of a tokamak. We also used this in Section 2, but it is pertinent again here.

R is the major radius, and a is the minor radius. Φ and Θ represent the toroidal and poloidal

angular directions, respectively. In practice, tokamaks usually have D-shaped poloidal cross-

sections to achieve favorable magnetic topologies. For simplicity, we will model the poloidal

cross-section as an ellipse with elongation κ, which is equal to the ratio of the major axis κa

to the minor axis a.

Superconducting coils are wound around the tokamak poloidally (not helically, as in

stellarators) to produce a purely toroidal (Φ direction) magnetic field. A large solenoid

filling the center of the tokamak produces flux swing and thus induces a toroidal current in

the plasma. This toroidal current in turn produces a poloidal (Θ direction) magnetic field.

The toroidal and poloidal magnetic fields confine the plasma such that it can, with sufficient

temperature and density, produce fusion reactions to generate enormous thermal power.

We will focus on deuterium-tritium (D-T) fusion reactions and assume that the plasma

consists of half deuterium and half tritium. The fusion reaction is

2
1H +3

1 H→4
2 He(3.5MeV) +1

0 n(14.1MeV) (4.1)

It is important to note that while the charged α-particle is confined by the magnetic fields,

the uncharged neutron is not. The plasma absorbs the α-particle energy, which is 1/5 the

total energy produced by the fusion reaction.
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Figure 4.1: An elliptical torus model for a tokamak. R is the major radius, a the minor radius,

and κ the elongation. Φ and Θ represent the toroidal and poloidal angular directions, respectively.
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4.2 0-D Core Model Overview

A “perfect” model of a tokamak would include 1-D or 2-D distributions. However, for the

purpose of obtaining a model that is computationally simple enough to perform extensive

analysis with, a 0-D model is the most efficient approach. Since we plan to formulate only an

approximate conceptual design, 0-D will both meet our design goals and allow us to provide

general insight into tokamak design.

0-D analysis assumes the plasma has only volume-averaged parameters, meaning that

all its properties (temperature, pressure, density, magnetic fields, etc.) are represented by a

single “average” 0-D value rather than by a spatial distribution. The plasma is fully ionized

and consists of half deuterium and half tritium with negligible densities of α-particles and

impurities.

Though not precise, the 0-D model greatly simplifies computational analysis so that we

can take more considerations into account and explore wider parameter spaces at higher

resolution. Later on, we will verify the chosen 0-D operating point with 1-D analysis.

4.3 0-D Core Model System Parameters

Here we will define specify all the interrelationships of our entire 0-D model. Let R/a be the

aspect ratio of the tokamak. The aspect ratio is the most distinguishing geometric parameter,

as it determines if the tokamak looks like sphere, a doughnut, or a hula hoop. Any tokamak

model will be very sensitive to R/a.

The poloidal cross-sectional area is simply

ACS = πκa2 (4.2)

The toroidal volume is approximately that area multiplied by the toroidal circumference:

V = (2πR)ACS (4.3)

Using a good approximation for the perimeter of an ellipse as 2πa[(1 + κ2)/2]1/2, the toroidal

surface area is

AS = (2πR)(2πa)

(
1 + κ2

2

)1/2

(4.4)

It is also important to note that a shielding blanket of width wB covers this entire toroidal

surface. In the case of a hybrid, wB is the fission blanket thickness.

Now that the geometry is defined, consider the toroidal magnetic field BΦ. It is generated

by current-carrying coils wrapped around the torus in the poloidal plane. We can calculate

its magnitude in the toroidal direction using a simple application of Ampere’s law (with a
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toroidal loop) to find that BΦ has a 1/R (inverse major radius) dependence. Assuming that

BΦ has some value Bmax on the coil surface, BΦ(R) is

BΦ =

(
R− a− wB

R

)
Bmax (4.5)

In 0-D analysis, this is the “average”BΦ. For simplicity, we will often call it B.

A very important quantity is the safety factor q, which is a measure of how tightly wound

the magnetic field lines are about the torus. It is quantified as the inverse of the number of

poloidal revolutions per toroidal revolution (∆Θ/2π)−1 along a magnetic field line [7]. This

is related to dΦ/dΘ along a field line. If q is low, the magnetic field is primarily poloidal and

confines the plasma quite well but is potentially vulnerable to current-driven instabilities. If

q is high, the magnetic field is primarily toroidal and confines the plasma less well but is not

vulnerable to such instabilities. Essentially, the toroidal current (which the poloidal field is

proportional to) must not be too large relative to the toroidal field. Thus, q is a measure

of how stable the plasma is against current-driven instabilities, and we prefer it to be high,

even at the expense of confinement.

q(ψ) =
R0BΦ

2π

∮
d`Θ

R2BΘ

≈
[
BΦ

℘Φ

] [
℘Θ

BΘ

]
=

[
2π

〈∆Θ〉

]
field line

(4.6)

Here R0 is the fixed major radius, and d`Θ the differential poloidal length. ℘Θ and ℘Φ

are the toroidal and poloidal cross-section perimeters, respectively. In order to make this

approximation, we have assumed that all magnetic fields have“average”0-D values. We treat

this as a cylindrical “screw pinch”.

Although q has only one value for a whole tokamak and is a function of the plasma

flux q(ψ), we can define it locally as a function of poloidal radius q(r) if we assume that

each plasma flux ψ contour maps directly to a unique radial position r. This assumes that

the flux contours are concentric with the plasma poloidal cross-section. Of course, this

cross-section is elliptic rather than circular, so we must also assume that the flux ψ(r) in

the horizontal direction maps to the flux ψ(κr) in the vertical direction and to the flux

ψ(r
√

cos2 Θ + κ2 sin2 Θ) in any arbitrary direction within the poloidal plane. These are

significant simplifications, but they are adequate for a 0-D or 1-D model. In 0-D analysis,

q is constant and equal to q*, which in turn is equal to q(r = a) as long as R/a is not too

large [7]. We can calculate the“average”BΘ with another simple application of Ampere’s law

(this time with a poloidal loop) given that the total plasma current is IP . Let the toroidal

and poloidal cross-section perimeters be ℘Φ = 2πR and ℘Θ = 2πa[(1 + κ2)/2]1/2. Equation

4.7 expresses q* in terms of BΦ, IP , and geometry.
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q∗ ≈ q(a) ≈
[
BΦ

℘Φ

] [
℘Θ

BΘ

]
=

[
BΦ

2πR

] 2πa
(

1+κ2

2

)1/2

µ0IP
/

2πa
(

1+κ2

2

)1/2

 =
BΦ

µ0IP

πa2

R
(1 + κ2) (4.7)

Given the total plasma current and the poloidal cross-section, the total ion density n is

n = ne = FG

(
IP
πa2

)
(4.8)

FG is the Greenwald fraction, the ratio of plasma density to the Greenwald empirical density

limit of IP/πa2, with IP in MA and n in 1020/m3. FG can range from 0 to 1 and sets a limit

on the plasma density available without disruption [7].

Power balance requires that the total power lost Ploss balance the total power consumed,

which is the auxiliary heating power Paux and the α-particle power Pα [15]. We neglect

radiative power in 0-D.

Paux + Pα = Ploss (4.9)

Since the α-particles are confined and eventually transfer all their energy to the plasma, we

can express Pα as the product of the α-particle energy Eα (J) and the reaction frequency

freac (s−1) [15]. The density of each colliding particle is n/2, and the D-T reactivity rate

coefficient (m3/s) is 〈σv〉. Equation 4.10 expresses n in single particles per cubic meter and

Pα in watts.

Pα = Eαfreac =
n2

4
〈σv〉EαV (4.10)

Ploss represents the natural rate of internal energy loss in the plasma. The internal energy of

a plasma is 3nkT , where T is the temperature in Kelvin and k is the Boltzmann constant.

τe is the energy confinement time in seconds, the e-folding time of internal energy (W) decay

due to heat conduction [15].

Ploss =
W

τe
=

3nkT

τe
V (4.11)

Then the explicit power balance is [15]

Paux +
n2

4
〈σv〉EαV =

3nkT

τe
V (4.12)

Paux is the externally-applied power, and so the plasma must “ignite” and sustain itself when

Paux = 0. The ignition condition (often called the Lawson criterion) is thus [15]
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nτe ≥
12kT

〈σv〉Eα
(4.13)

Q is the fusion power gain, the ratio of the total fusion power PF to the total externally-

applied power Paux. It is important to note that PF is always five times greater than Pα,

because the energy released in each fusion reaction is five times the α-particle energy (see

Equation 4.1). Most of the fusion power does not contribute to heating, because the un-

charged product particles (neutrons) are not confined [15].

Q =
PF
Paux

=
5Pα
Paux

=
(n2/4)〈σv〉(5Eα)V

Paux

(4.14)

The fusion power per surface area PF/AS is another important quantity. The blanket

material will, after exhausting power for a long enough time, inevitably require replacement.

Also, the blanket must be feasible to cool from a thermal hydraulics perspective. This

puts a practical limit on PF/AS that the HYPERION team determined with economic and

sustainability analysis. Thus, fusion power is a function of the reactor size only.

A useful scaling parameter is the enhancement factor H, which defines the tokamak

operating mode (L-mode or H-mode) and has been empirically determined as a function

of operating parameters. Equation 4.15 shows the 1989 scaling for H, which we will use

throughout this analysis [7].

τe = (0.048)HR1.2I0.85
P κ0.5M0.5a0.3B0.2n0.1(Paux + Pα)−0.5 (4.15)

M is the average atomic mass of the plasma nuclei, which is 2.5 amu for D-T fusion. Equation

4.15 expresses n in 1020/m3, M in amu, IP in MA, R and a in meters, B in Tesla, Paux and

Pα in MW, and τe in seconds.

In 0-D analysis, the volume-averaged pressure (MJ/m3) is due to heating power. It is on

the order of a few bar.

〈p〉 =
2

3

(Paux + Pα)τe
V

(4.16)

The normalized plasma pressure β is the ratio of the kinetic plasma pressure to the

magnetic pressure. It is a measure of how well the magnetic field confines the plasma and

thus how stable the plasma is. We can now calculate the toroidal and poloidal β values βT
and βP . We evaluate BΦ(a) and BΘ(a) as shown previously [7].

βT =
〈p〉

B2/2µ0

(4.17)

βP =
〈p〉

B2
Θ(a)/2µ0

=
4π2a2(1 + κ2)〈p〉

µ0I2
P

(4.18)



98 Mark Reed

Another pressure parameter is βN , which has been found to be the most useful measure

of stability in tokamaks. βN is βT normalized with a ratio of the poloidal field to the toroidal

field at the outermost edge of the toroid, where the toroidal field is weakest. Even though

the toroidal field is uniform in 0-D analysis, βN is still quite important.

βN =
βT (%)

µ0IP/aB
=

a〈p〉
50IPB

(4.19)

4.3.1 D-T Fusion Rate Coefficient

The D-T fusion reaction rate coefficient 〈σv〉 is a critical part of the 0-D model. It depends

only on T but has no simple analytic form. The Naval Research Laboratory (NRL) Plasma

Formulary lists empirical values of 〈σv〉 for values of T between 1 and 1000 keV [10]. We fit

a logarithmic polynomial to this data:

log10 〈σv〉 = −(log10 T )5

16.61
+

(log10 T )4

1.78
− (log10 T )3

0.64
+

log10 T

0.19
− 26.11 (4.20)

〈σv〉 is expressed in m3/s and T in keV. Figure 4.2 shows that this fit function and the NRL

data points are very consistent for 1 keV < T < 1000 keV.

4.3.2 Elongation vs. Aspect Ratio

To reduce the number of free parameters, it is useful to express the elongation κ in terms of

R/a by realizing that there is a maximum κ that depends on R/a. When R/a is very large,

the tokamak can be treated like a cylindrical “screw pinch” with κ = 1. As R/a decreases,

the maximum allowed κ increases. Examining R/a and κ for the C-Mod, the DIII-D, and

two NHTX tokamaks shows that an excellent model for the relationship is

κ ≤ 5.276

(
R

a

)−0.985

(4.21)

We desire high κ, because it yields high surface area and thus high fusion power without

affecting the density-current relationship (Equation 4.8). We will set κ at this limit.

4.3.3 Plasma Current and Sustainment

The total plasma current IP is a sum of three currents from three different sources.

IP = ICD + Iboot + Iinduced (4.22)

Iinduced is the current induced by the solenoid. ICD is the externally-driven current from

the complex processes of electron-cyclotron heating and optical steering, which we will not
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Figure 4.2: A log-log plot of the D-T reactivity coefficient 〈σv〉 as a function of temperature T .

The polynomial fit function is shown in red, and the NRL data points are shown in blue. This fit

is valid for 1 keV < T < 1000 keV. Note that 〈σv〉 has an absolute maximum at approximately 65

keV.

describe in detail here [6]. We can express ICD quantitatively as PF/nR with a current-drive

efficiency ηCD, which is approximately constant at 0.3 × 1020 A/Wm2 for temperatures above

20 keV [9] [12].

ICD =
ηCDPF
nR

(4.23)

Iboot is the“bootstrap current”, which naturally arises from neoclassical transport through

density and temperature gradients [7]. A common expression for the total Iboot is

Iboot =

(
βN
100

)
(12.5)cBSa

2B(1 + κ2)

(aR)1/2
(4.24)

cBS is a fitting constant, and we can assume it is approximately 0.8 in 0-D analysis [12] [7].
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fCD = ICD/IP and fboot = Iboot/IP are the current-drive and bootstrap fractions, respectively.

The non-inductive current fraction fNI (the fraction of current that is not induced by the

solenoid) is

fNI =
ICD + Iboot

IP
= fCD + fboot (4.25)

When fNI is 1 or greater, the tokamak is “fully non-inductive” and “steady-state”, because it

can recharge the solenoid without ceasing operation. fNI > 1 is also called “overdrive”, and

it is a primary design goal.

In order to externally drive current with electron-cyclotron heating, the electron-cyclotron

frequency ωce absolutely must be greater than the electron plasma frequency ωpe so that the

electron-cyclotron waves can propogate without interference [7]. These two frequencies are

standard in basic plasma physics [3].

ωpe =

(
ne2

ε0me

)1/2

(4.26)

ωce =
eB

me

(4.27)

The tokamak begins operating by “ramping up” induced current with the solenoid. For

this process to work, the solenoid flux swing ∆Φsol must be sufficiently larger than the

plasma flux ΦP . ITER studies suggest that ∆Φsol/ΦP must be at least ∼ 2 [4]. We can

simply express ∆Φsol as

∆Φsol = (2Bmax)(πr2
sol) (4.28)

rsol = R− a− wB −
R

6.2m
(0.5m) (4.29)

The maximum field within the solenoid is simply Bmax. The factor of 2 represents the

fact that the flux “swings” from -Bmax to +Bmax. The maximum solenoid radius rsol is the

difference between R and the sum of a, the blanket width wB, and the coil thickness. Given

that the coil thickness for ITER (R = 6.2 m) is 0.5 m, we scale it up in proportion to R.

Determining ΦP requires deriving the toroidal inductance of the tokamak. The result is

approximately [4]

ΦP = µ0RIP

[
ln

(
R

(κa)1/2

)
+

1

2

]
(4.30)

Ensuring that ωce/ωpe > 1 and ∆Φsol/ΦP ∼ 2 is essential.
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4.4 L-mode and H-mode

Low confinement mode (L-mode) and high-confinement mode (H-mode) are two distinct

operating modes of a tokamak plasma. L-mode is characterized by smooth temperature,

density, and power profiles. It is predictable and well-understood physically. At one time, it

was the only known operating mode. As one increases the auxiliary power Paux in an L-mode

tokamak plasma, a sudden transition occurs in which the density profile becomes nearly flat

throughout the plasma. The temperature profile also flattens to a degree. The high edge

density and edge temperature cause a high edge pressure, called an “edge pedestal”. This in

turn slows energy loss through the plasma surface, increasing the energy confinement time

τe. These changes characterize H-mode, a high confinement mode [7]. The physical basis for

H-mode and the sudden L-H transition are not fully understood. The enhancement factor

H (see Equation 4.15) was developed in part to quantify this transition. There are different

scalings for H, but we will always use the 1989 scaling. Figure 4.3 shows that H-mode is

only possible for H greater than approximately 1.5.

Figure 4.3: The 1989 ITER scaling for H vs. radiative power fraction. There is a distinct division

between H-mode (ELM-free and ELMy) and L-mode at approximately H = 1.5. Higher radiative

power fractions tend to drive H-mode plasmas into L-mode [8].

H-mode has natural advantages and disadvantages, and the choice of operating mode

depends on one’s design priorities. τe is about twice as long in H-mode as in L-mode.
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However, the H-mode “edge pedestal” can cause instabilities known as edge-localized modes

(ELMs). Though ELMs are the focus of a large portion of current plasma physics research,

it is still not possible to predict ELM behavior. Thus, ELMs pose significant challenges for

H-mode tokamaks [7].

Since we intend to analyze large scale tokamaks, we can assume that τe, which generally

increases with size, will be sufficiently large regardless of operational mode. With that

consideration off the table, we prefer L-mode in order to avoid the challenges of ELMs. Also,

the addition of a fission blanket (which augments the fusion power) allows for lower Q. Thus,

we will require H to be less than 1.5 throughout this analysis.
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5 Pure Fusion Core Analysis

Now that we have formulated a feasible 0-D model, we can apply it to any standard tokamak.

We could plunge headlong into our fission-fusion hybrid analysis, but that would obscure the

advantages of hybrids relative to pure fusion reactors. First we will show how to use this

model in the context of pure fusion tokamaks, and we will show how to determine the

minimum scale of a tokamak. Once we have done this in Section 5, our coupled fission-fusion

analysis in Section 6 will be much more lucid. This analysis follows our 2009 Bachelor of

Science thesis in the Department of Physics [28].

5.1 0-D Allowable Parameter Space

The first step in the analysis is to determine which combinations of system parameters yield

“allowable” plasma conditions given our design specifications. It is most efficient to narrow

down the parameter space in this way before we do any optimization work. In order to avoid

eliminating any potentially favorable parameter space, we impose only the most essential

constraints. Of course, all physical parameters must be real and positive, and the other

constraints are:

• T > 10 keV is necessary to achieve a sufficient D-T fusion rate coefficient (see Figure

4.2).

• q* > 2 is necessary to ensure confinement and prevent current-driven instabilities. The

toroidal field must be sufficiently large relative to the poloidal field [7].

• βN < 3 is the β “no-wall” Troyon stability limit that applies when no conducting wall

is present near the plasma [7].

• H < 1.5 is necessary to operate in L-mode and thus avoid instabilities and other

complications associated with H-mode (see Section 4.4) [8].

To determine a preliminary allowable parameter space, we first stipulate that many pa-

rameters have values consistent with existing tokamaks. We will hold these values constant

throughout the 0-D allowable parameter space analysis.

• Bmax = 13 T is the peak on-coil magnetic field possible with niobium-tin superconduc-

tors (see Section 5.3.1) [11] [7].

• wB = 1 m is necessary to stop a high fraction of 14.1 MeV neutrons from D-T fusion

reactions [7]. Later on, we will match this to our optimal fission blanket thickness.

• PF/AS = 5 MW/m2 is a reasonable limit for the blanket material (see Section 5.3.2) [13] [12].



104 Mark Reed

Given these constants, we can manipulate the equations in Section 4.3 to write all system

parameters as some function f of five parameters: R, q*, FG, R/a, and Q.

[R, IP , n, B, PF , βN , H] = f(R, q∗, FG, R/a,Q) (5.1)

If R and R/a are known, then all the tokamak geometry is known (Equations 4.2-4 and

4.21). If q* is known, then the plasma current is known (Equation 4.7). Then if FG is

known, the density is known (Equation 4.8). If PF/AS and Q are known, then all terms of

the power balance are known (Equation 4.9). Given the scaling for H and the relationship

between 〈σv〉 and T , all other parameters can be known. This analysis will determine which

parameter “spaces” in the 5-D parameters space [R,q*,FG,R/a,Q] meet our constraints.

5.1.1 Allowable [R,q*,FG] Space

To begin, we examine just the 3-D parameter space [R,q*,FG] for R/a and Q fixed:

• R/a = 3 is close to ITER (3.1) and Alcator C-Mod (3.05) [11].

• Q = 40 is typical for fusion reactor designs that are intended to be economically viable.

See Section 5.5 for a more in-depth discussion of this.

Now we can write

[R, IP , n, B, PF , βN , H] = f(R, q∗, FG) (5.2)

So we can define every property of the plasma throughout the parameter space [R,q*,FG] by

some function f . The following contour plots show IP , n, T , βN , and H in the [R,q*] plane

at a fixed FG value of 0.9.

Due to a fixed Bmax, B depends only on R and asymptotically approaches (1 - a/R)Bmax

(see Equation 4.5). Due to fixed PF/AS and R/a, PF also depends only on R and increases

as ∼ R2.

Figure 5.1 shows IP (R,q*) for fixed FG. It is roughly proportional to R (note the R

dependence of B) and exactly inversely proportional to q* (see Equation 4.7).

Figure 5.2 shows n(R,q*) for fixed FG. Given that n ∼ IP/R2 (see Equation 4.8), n has

the same inverse q* dependence as IP . However, its R dependence is roughly ∼1/R.

Figure 5.3 shows volume-averaged T (R,q*) for fixed FG. Many areas in [R,q*] space

require a reactivity rate coefficient 〈σv〉 that is unphysically large, meaning that it is greater

than the maximum shown in Figure 4.2. Thus, there is no solution for T , and the reactor is

not viable. These unphysical areas occupy the high R and high q* space. At the boundary

of this area, R(q*/B)2 is constant. Furthermore, since B is constant at large R, we can say
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that Rq*2 is approximately constant at the boundary for large R. This shows that when we

consider only reactivity, the maximum possible q* decreases as ∼R−1/2.

Figures 5.4 and 5.5 show βN(R,q*) and H(R,q*), respectively. They exhibit complex

behavior but have approximately the same form as each other. At a fixed q*, both βN(R)

and H(R) decrease rapidly for R < 10 meters. This means that confinement improves

significantly with reactor size when R is less than about 10 meters, allowing large reactors

to operate in L-mode.

Figure 5.1: The plasma current IP in the [R,q*] plane. It is inversely proportional to q* and

roughly proportional to R.



106 Mark Reed

Figure 5.2: The total ion density n in the [R,q*] plane. It is inversely proportional to q* and

roughly inversely proportional to R.
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Figure 5.3: The temperature T in the [R,q*] plane. Many combinations of R and q* in this space

require a D-T cross-section 〈σv〉 that is larger than the maximum possible 〈σv〉 (see Figure 4.2),

meaning that those values of R and q* are not feasible. In such cases, T has no solution and is set

to zero. The large dark blue area represents the unphysical areas, and the thick dark line represents

the boundary between the physical and unphysical areas.
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Figure 5.4: βN in the [R,q*] plane. The unphysical areas in which T has no solution are also

represented here by dark blue, as βN requires a solution for T . Again, the thick dark line represents

the boundary between the physical and unphysical areas.
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Figure 5.5: H in the [R,q*] plane. The unphysical areas in which T has no solution are also

represented here by dark blue, as H requires a solution for T . Again, the thick dark line represents

the boundary between the physical and unphysical areas.
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Now it is simple, given the constraints in Section 5.1 (H < 1.5 for L-mode and βN < 3

for the “no-wall” limit), to determine what subspace of [R,q*,FG] is allowable. The following

plots show cross-sections of this allowable subspace in the [R,q*], [R,FG], and [q*,FG] planes.

Figure 5.6 shows the allowable subspace (red) in the [R,q*] plane for FG fixed at 0.9. The

maximum allowable q* as a function of R has a broad maximum between 10 and 15 meters.

The allowable area is limited by unphysical reactivity at high R and by confinement (high

βN and high H) at low R. This is a critical result, because it means that to achieve a certain

level of stability (a certain q* value), we must design the tokamak within a finite range of

major radii. It also shows that only large tokamaks (R ∼ 10 meters) can operate in L-mode

with high q*. Tokamaks the size of ITER (6.2 meters) or smaller are forced to operate in

H-mode in order to achieve high q*.

There is a crucial advantage associated with this result. To achieve maximum q*, the

operating point should be located at the peak shown in Figure 5.6 (approximately R = 13

m and q* = 3). Referring back to Figure 5.3, such an operating point is located near the

boundary of the unphysical region, near where T quickly becomes large. This means that

it is also located not too far below the maximum reactivity coefficient shown in Figure 4.2.

Were T to suddenly increase, the reactivity would only increase slightly before decreasing.

The tokamak would then have a negative reactivity coefficient and naturally return to a

lower T . Thus, the tokamak is intrinsically stable with respect to temperature instabilities.

Figure 5.7 shows a similar allowable parameter space in the [R,FG] plane for q* fixed

at 2.5. It shows that as FG increases, the finite range of allowable R increases in width.

Figure 5.8 shows the height of the q* maximum as a function of FG. One can see that q*

is 3 when FG is 0.9, which is consistent with Figure 5.6. This shows that the height of this

q* maximum increases with FG. Thus, as FG increases, both the width and height of the q*

maximum also increase. Indeed, the curve in Figure 5.6 shifts upward as FG increases. This

is in part because n2〈σv〉 is constant for fixed size, and so reactivity must decrease as the

Greenwald fraction and density increase. As Figure 5.8 reveals, t he relationship is linear,

meaning that the highest allowable q* is proportional to FG. Thus, we prefer to operate near

the Greenwald limit (FG < 1) and will choose FG = 0.9.
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Figure 5.6: Areas in the [R,q*] plane that satisfy (red) and do not satisfy (blue) the parameter

constraints. This shows that R between 10 and 15 meters will yield a maximal q*.
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Figure 5.7: Areas in the [R,FG] plane that satisfy (red) and do not satisfy (blue) the parameter

constraints. This shows that a high FG requires an R between 10 and 15 meters.
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Figure 5.8: The maximum value of q* (at whichever R that maximum occurs) as a function of

FG. The relationship is roughly linear.
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From this [R,q*,FG] space analysis, it is clear that we prefer high FG in order to achieve

high q*. From this point forward, we will assume FG = 0.9. It is also clear that R should lie

in or near the range of 10 to 15 meters to maximize q*, though other performance factors

will determine a more precise R.

5.1.2 Allowable [R,q*,R/a] Space

Throughout Section 5.1.1, we held R/a constant at 3. Now that as FG is fixed at 0.9, we

will vary R/a and repeat the same analysis. We can write

[R, IP , n, B, PF , βN , H] = f(R, q∗, R/a) (5.3)

So every property of the plasma is defined throughout the parameter space [R,q*,R/a] by

some new function f .

Figure 5.9 shows the allowable parameter space in the [R,q*] plane for three different

values of R/a. Clearly, the same broad q* maximum appears between 10 and 15 meters.

R/a changes the height and width of this maximum in the same way that FG does. This

time, however, the maximum q* decreases as R/a increases.

To see the exact form of this relationship, Figure 5.10 shows the maximum q* as a function

of R/a in the same way that Figure 5.8 shows the maximum q* as a function of FG. This

time, the relationship is not linear but closer to ∼(R/a)−1. In large part, this is due to the

∼(R/a)−1 dependence of the elongation κ. Smaller R/a and larger κ imply larger surface

area, larger fusion power, and a larger volume to surface area ratio, which obviate the need

for a high 〈σv〉. So clearly, in the interest of stability, we desire a low R/a. However, since

R/a affects much more than just stability, choosing a precise R/a requires sustainability

analysis.

From this [R,q*,R/a] space analysis, it is clear that varying R/a does not significantly

affect the key findings of the previous [R,q*,FG] space analysis. It is also clear that an R/a

lower than 3 (our starting point) is favorable.
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Figure 5.9: Areas in the [R,q*] plane that satisfy the parameter constraints for R/a values of

2.5, 3, and 3.5. The R-location of the q* maximum is independent of R/a, and the maximum q*

increases dramatically as R/a decreases.
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Figure 5.10: The maximum value of q* (at whichever R that maximum occurs) as a function of

R/a. The relationship is roughly of the form ∼(R/a)−1.
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5.1.3 Allowable [R,q*,R/a,Q] Space

As a final check of the parameter space, it is prudent to test the sensitivity of the allowable

areas to changes in the gain Q. We perform a 4-D analysis in [R,q*,R/a,Q] space in order

to determine how changes in Q affect the [R,q*] plane shown in Figure 5.6.

[R, IP , n, B, PF , βN , H] = f(R, q∗, R/a,Q) (5.4)

Examination of the [q*,Q] and [R/a,Q] planes show that Q has no effect on the allowable

ranges of q* or R/a when other parameters are held constant. However, examination of the

[R,Q] plane shows that Q does have a marginal effect on the allowable range of R. Figure

5.11 shows that for q* and R/a both fixed at 3, the range of allowable R (the width of the

maximum shown in Figure 5.6) decreases as Q increases. Nevertheless, this increase is slight

as long as Q is much greater than 5 so that the ratio of total heating power to fusion power

(1/5 + 1/Q) changes little with Q. We can conclude that Q is not an important contributor

to the allowable parameter space. However, Q will become much lower (and much closer to

5) when we perform the coupled fission-fusion analysis in Section 6.

5.2 Minimum Tokamak Scale Defined

For each point in any of these parameter spaces, we can also compute plasma current quan-

tities. The most important quantity for us is the non-inductive current fraction fNI . We

defined this in Equation 4.25. We desire fNI > 1 in order to achieve“steady-state”operation.

Figure 5.12 shows fNI in the [R,q*] plane for the HYPERION operating parameters [4]. The

fully non-inductive (fNI > 1) region is outlined in white. There is clearly a sharply-defined

minimum fully non-inductive R at approximately 9 m. This is precisely what we refer to

when we write “minimum scale” or “minimum R”. This is important for design purposes, as

capital cost usually scales with R. As we will see in the following sections, varying system

parameters (especially Q) can dramatically alter this minimum R.
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Figure 5.11: Areas in the [R,Q] plane that satisfy the parameter constraints for q* and R/a values

of 3. This shows that the width of the broad q* maximum (see Figure 5.6) decreases slightly as Q

increases. This is also a more intuitive way to show that R is limited by confinement on the low

end and by reactivity on the high end.
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Figure 5.12: fNI for areas in the [R,q*] plane that satisfy the parameter constraints. The

parameters are those of the large scale HYPERION operating point: R/a = 2.6, Q = 40 and

PF /AS = 7 MW/m2. The fully non-inductive (fNI > 1) region is outlined in white. In this case,

the minimum R for fully non-inductive L-mode operation is slightly less than 9 m. The shape of

this plot is similar to that in Figure 5.6.
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5.3 Technology Limits

5.3.1 Maximum On-Coil Magnetic Field Bmax

In the HYPERION design, Bmax is 13 T, the approximate maximum on-coil field for niobium-

tin (Nb3Sn) superconductors in ITER [11] [7]. It is difficult to achieve fields higher than this

with conventional superconductors (critical temperatures TC ≤ 20 K). This is because a cer-

tain magnetic field strength can “quench” superconductivity at a certain temperature below

TC . This certain magnetic field strength is proportional to [1 - T/TC ]2 so that the further

a superconductor is cooled below TC , the higher the magnetic field it can withstand while

remaining superconducting [16]. Of course, material stress also poses significant limitations.

High-temperature superconductors (HTS), usually cuprate (containing copper oxide), often

have TC values much higher than 20 K. Yttrium barium copper oxide (YBa2Cu3O7), often

abbreviated YBCO, has TC ≈ 90 K [16]. By cooling YBCO to T < 10 K, we can produce sig-

nificantly higher fields [1] [5]. Considering material stress limitations and economic factors,

HTS tokamak studies have shown that the highest sensible field strength is approximately

16 T [1].

Figure 5.13 shows the effect of varying Bmax on the minimum R. This shows the familiar

allowable area in the [R,q*] plane for three different values of Bmax. The fully non-inductive

area (fNI > 1) is outlined in white. As Bmax increases, the allowable area in the [R,q*] plane

moves to higher q*, and the minimum fully non-inductive R decreases. This is intuitive,

because higher magnetic fields increase plasma current and thus (indirectly) confinement,

allowing the tokamak to be smaller without losing energy too quickly. Given a fixed point

in the [R,q*] plane, a higher magnetic field requires a higher plasma current, which in turn

requires a higher density and a lower temperature.

Figure 5.14 shows this minimum R as a function of Bmax. It decreases rapidly for Bmax

≤ 14 T but more gradually at higher Bmax. Consequently, it is important to ensure Bmax ≥
14 T by using HTS technology. Beyond that point, higher Bmax is certainly favorable but

not essential. However, since we are minimizing R, we will choose Bmax = 16 T consistent

with the HTS tokamak studies. We will assume this choice for the remainder of this pure

fusion analysis.
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Figure 5.13: Areas in the [R,q*] plane that satisfy the parameter constraints for maximum on-coil

magnetic field Bmax values of 13, 14.5, and 16 T. Here R/a = 2.6, PF /AS = 7 MW/m2, and Q =

40. As Bmax increases, the highest available q* increases while the minimum (fully non-inductive)

R decreases. Consequently, we prefer higher Bmax.
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Figure 5.14: The minimum R in the [R,q*] plane for fully non-inductive L-mode operation as a

function of Bmax. The minimum R decreases dramatically for Bmax ≤ 14 T but only marginally

for Bmax ≥ 14 T. The parameters here are the same as those in Figure 5.13.
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5.3.2 Blanket Fusion Power Density PF/AS

In the HYPERION design, PF/AS is 7 MW/m2, which resulted primarily from economic

analysis [4]. While 7 MW/m2 may certainly be possible, ARIES-AT blanket performance

studies have shown maximum power loading of only 4.8 MW/m2 on a silicon carbide (SiC)

blanket [13]. Given this, it would not be prudent to let PF/AS exceed ≈ 5 MW/m2 [12].

Figure 5.15 shows the effect of varying PF/AS on the minimum R. The allowable area in

the [R,q*] plane shifts to lower q* when PF/AS increases from 5 MW/m2 to 7 MW/m2. This

is intuitive, because given constant geometry and constant 〈σv〉, increasing power requires

increasing density, which in turn requires increasing plasma current and decreasing q*. The

interesting thing here is that while the allowable area shifts to lower q* for increasing PF/AS,

the minimum R decreases.

Figure 5.15: Areas in the [R,q*] plane that satisfy the parameter constraints for fusion power

per surface area PF /AS values of 5 and 7 MW/m2. Here R/a = 2.6, Bmax = 16 T, and Q = 40.

As PF /AS increases, the highest available q* decreases while the minimum (fully non-inductive) R

also decreases. Consequently, we prefer higher PF /AS .
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Figure 5.16 shows this decrease in minimum R as a function of PF/AS. The relationship

is somewhat linear, and thus higher PF/AS is obviously favorable. However, given the

uncertainty of whether PF/AS ≥ 5 MW/m2 is practically workable, we will choose PF/AS
= 5 MW/m2. We will assume this choice for the remainder of this thesis.

It is interesting to examine the relationship between PF/AS and the total fusion power

PF at minimum scale. Equations 4.4 and 4.21 show that PF ∝ R2(PF/AS) at fixed R/a, and

Figure 5.16 shows that R decreases linearly with PF/AS. Therefore, PF does not necessarily

increase with PF/AS. It may in fact decrease, a counterintuitive result.

Figure 5.16: The minimum R in the [R,q*] plane for fully non-inductive L-mode operation as a

function of PF /AS . The minimum R decreases fairly linearly with PF /AS . The parameters here

are the same as those in Figure 5.15.
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5.4 Aspect Ratio R/a Considerations

In the HYPERION design, R/a is 2.6. We made this choice based on the requirement that

∆Φsol/ΦP be at least in the vicinity of 2 [4]. As R/a decreases given a fixed R, the solenoid

area becomes too small to generate a sufficient flux swing ∆Φsol. The only hard limit on R/a

is of course that it must exceed 1, though the solenoid may require a more complex model

for R/a ∼ 2.

Figure 5.17 shows the effect of varying R/a on the minimum R. The allowable area in the

[R,q*] plane shifts to higher q* when R/a decreases, which we have already shown in Figure

5.9. Now we also show that the minimum R decreases as R/a decreases. This is intuitive,

because tokamaks with smaller R/a have higher densities (and lower temperatures) due to

larger κ.

Figure 5.17: Areas in the [R,q*] plane that satisfy the parameter constraints for aspect ratio R/a

values of 2.3, 2.6, and 2.9. Here Bmax = 16 T, PF /AS = 5 MW/m2, and Q = 40. The allowable

area is especially sensitive to R/a. As R/a increases, the highest available q* decreases while the

minimum (fully non-inductive) R increases. Consequently, we prefer lower R/a.

Figure 5.18 shows minimum R as a function of R/a. Minimum R increases more rapidly
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with R/a at large R/a ≥ 2.8. Note that for ITER (R/a = 3.1), the minimum R is over 12

m. The HYPERION choice of R/a = 2.6 avoids the high-slope region, though lowering R/a

below 2.6 could still certainly provide a modest decrease in minimum R.

To make any choice for R/a, we must consider flux swing. For the purposes of a pure

fusion reactor with Q = 40, flux swing will not constrict R/a any more than the basic

assumptions of our 0-D model already do. However, this is not the case for much low Q, as

we will address in our coupled fission-fusion analysis in Section 6.2.

All this suggests that we should dramatically lower R/a. However, our 0-D core model

is based on the geometry and physics of a standard tokamak, not a spherical tokamak. In

particular, our model of the blanket (wB = 1 m) and solenoid may not be accurate for

R/a ≈ 2. Also, as R/a becomes low, the poloidal cross-section must be less elliptical and

more D-shaped. These uncertainties, coupled with the fact that minimum R has a much less

significant dependence on R/a below 2.6 than above 2.6 (see Figure 5.18), make it reasonable

to keep R/a fixed at 2.6. Also, since this minimum scale reactor is meant to demonstrate

the viability of HYPERION, it makes sense to at least keep the geometry consistent. We

will choose R/a = 2.6 but emphasize the subjectivity of this choice.
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Figure 5.18: The minimum R in the [R,q*] plane for fully non-inductive L-mode operation as

a function of R/a. The minimum R increases with R/a very rapidly for R/a ≥ 3 but much less

rapidly for lower R/a. The parameters here are the same as those in Figure 5.17.
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5.5 A “Reactor” Defined

So far, we have assumed Q = 40 to ensure that the tokamak is a “reactor”. However, there

is really no precise definition of a reactor in terms of tokamaks. While Q = 40 is definitely a

reactor and Q = 5 is definitely not a reactor, there is certainly no threshold of Q at which a

tokamak suddenly transitions into “reactor mode” as it does into L-mode or H-mode. Thus,

we investigate possible benefits of changing Q.

As Q increases, the L-mode allowable area in the [R,q*] plane shrinks, eventually ex-

cluding all fully non-inductive areas. Thus, there is an absolute maximum Q for fully non-

inductive L-mode operation. Figure 5.19 shows this maximum Q (at any q*) as a function

of R. Q increases fairly linearly for R ≤ 10 m but then levels off at ≈ 70 for R ≥ 13 m. This

plot can be read two ways: as a maximum Q corresponding to a certain R or as a minimum R

corresponding to a certain Q. We are interested in the latter interpretation, though the two

are equivalent. At Q = 40, the minimum R is approximately 8.5 m. Lowering Q improves

the minimum R by approximately 0.1 m per unit Q.

The question is by how much to lower Q. The answer is somewhat arbitary, but for

the purpose of defining a specific operating point, we choose to decrease Q to 30 so that

the minimum R is approximately 7.5 m. This improves the minimum R by ≈ 1 m while

maintaining “reactor” status.

The only way for a pure fusion tokamak “reactor” at an anything-less-than-huge size is

to operate in H-mode. That’s ITER. Many people interested in fission-fusion hybrids have

suggested modeling them after ITER, simply because ITER is what’s being built right now.

Unfortunately, that would miss the greatest potential advantage of hybrids: operating in

L-mode at small size.

Figure 5.20 shows the same relationship as in Figure 5.19 for the ITER R/a of 3.1. The

maximum Q at the ITER R of 6.2 m is 12.5. Since ITER is designed for Q ≈ 10, this shows

that ITER could potentially operate in fully non-inductive L-mode given Bmax ≈ 16 T and

PF/AS ≈ 5 MW/m2.

It is important to emphasize the reality that choices of R/a and Q are very subjective.

The choices of R/a = 2.6 and Q = 30 are actually quite conservative and may overestimate

the true miniumum R.
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Figure 5.19: The maximum Q in the [Q,q*] plane for fully non-inductive L-mode operation as a

function of R. The relationshp is fairly linear for 5 m ≤ R ≤ 10 m. At Q = 40, the minimum R is

approximately 8.5 m. At Q = 30, the minimum R is approximately 7.5 m. Here R/a = 2.6. The

jaggedness at R > 12 m is an artificial result due to insufficient q* resolution.
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Figure 5.20: The maximum Q in the [Q,q*] plane for fully non-inductive L-mode operation as a

function of R for the ITER aspect ratio of 3.1. At the ITER major radius of 6.2 m, the maximum

Q is 12.5. ITER is designed for Q ≈ 10.
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6 Coupled Fission-Fusion Analysis

Thus far, we have developed a Monte Carlo neutron transport code to analyze the fission

blanket as well as a 0-D tokamak model to analyze the fusion core. Now we will marry them

to perform coupled fission-fusion analysis. We have already defined limiting magnetic field

strength and surface power density, but now we can vary the physical dimensions (R and a)

along with q* and Q to optimize for steady-state L-mode operation in conjunction with our

optimal fission blanket parameters.

6.1 Effect of Tokamak Geometry on Fission Blanket

In Section 3, we determined an optimal set of fission blanket layer thicknesses assuming ITER

geometry (R = 6.2 m, a = 2.0 m, κ = 1.75). Now that we plan to vary the physical dimensions

of the tokamak, we must determine to what extent these optimal blanket parameters would

change for different tokamak geometry. We have run our neutronics model for varying R, a,

and κ. Varying R or a while holding everything else fixed has very little effect on the fission

and tritium breeding ratios as long as the aspect ratio R/a remains above 2.0 and a remains

larger than 1.0 m. However, varying κ does have a notable effect on the tritium breeding

ratio. Figure 6.1 shows this. The fission ratio is largely unaffected, but the tritium breeding

ratio decreases markedly as κ increases. The reason for this is that the effective thickness

of the uranium layer increases near the top and bottom of the torus as κ increases. If the

thickness at the midplane is w, then the thickness at the top and bottom is κw. When the

subcritical uranium layer is thicker, fewer neutrons reach the lithium. However, since we

have defined κ as a function of R/a, we will assume that κ varies only minimally throughout

this analysis and does not have any substantial effect on the tritium breeding ratio. Also, in

practice, this hybrid device would be constructed so that the layer thicknesses are constant

throughout the poloidal plane (not precise ellipses).

6.2 Solenoid Size vs. Blanket Thickness

We have stated that the tokamak fusion core drives the fission blanket, while the fission

blanket has no effect on the fusion reaction. This is absolutely true for a fixed geometry, but

it is not entirely true when we vary the geometry. The size of the tokamak solenoid, which

must fit within the inner “hole” of the torus, is limited by how thick the fission blanket is.

When the blanket is thicker, the solenoid must have a smaller radius. Quantitatively, the

maximum solenoid radius is R− a−wB −wM , where wB is the blanket thickness and wM is

the magnetic coil thickness (around 0.5 m for ITER). In our pure fusion analysis (Sections

4 and 5), we set wB = 1, which is the usual thickness for pure fusion tokamaks. This is

the thickness of shielding material necessary to protect the magnetic coils from neutron and
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Figure 6.1: The fission and tritium breeding ratios as a function of elongation κ for ITER tokamak

dimensions and the optimal blanket thicknesses. Only tritium breeding is sensitive to κ.

gamma fluence. In this thesis, we do not perform detailed shielding calculations to determine

how much thicker the blanket must be when it is fissionable. Our optimal uranium and

lithium layer thicknesses sum to 45 cm. There must also be at least 3 cm of material for

the first wall and dividing the uranium pebbles from the lithium (in our neutronic analysis,

we assumed this was silicon carbide). That brings the total blanket thickness to 48 cm.

However, since even a pure fusion tokamak must have a first-wall and a tritium breeding

layer, we have only really added the 18 cm uranium layer to the total thickness. We believe

it is reasonable to assume that a steel and water shield about 40 cm thick beyond the lithium

will adequately protect the magnetic coils. Our neutronics model (as well as MCNP) shows

that the neutron fluence will be well below the limit of 3 × 1022 n/m2 for Nb3Sn [5].
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6.3 Steady-State L-mode ITER-PBR

With our arguments in the previous two subsections, we have effectively decoupled the

fission and fusion components. We have essentially argued, based on neutronics data and

general reasoning, that the fission gain Qfis is independent of tokamak geometry within the

range of geometric parameters we wish to consider. This is not wishful thinking - it is a

valid approximation that, given the data, is not any less accurate than the approximations

already inherent in our 0-D model. What we can now state is that for a fission-fusion hybrid

“reactor” to operate with Qhyb = 40 given a fixed Qfis, we can obtain the necessary Qfus from

Qhyb = Qfus

(
1

5
+

4

5
Qfis

)
(6.1)

If we require Qhyb = 40 and use Qfis = 7.7 from Table 3.1, then Qfus must be approximately

6.3. This dramatically changes the analysis we performed in Section 5. Although much of

that analysis is redundant from our 2009 MIT bachelor’s thesis, we will expand on it here.

First, let us introduce a new variety of R-q* “phase diagram” to further elucidate the

analysis. Figure 6.2 shows L-mode and H-mode regions in the R-q* plane for a pure fusion

reactor with Q = 40. It also shows the forbidden regions where βN exceeds the Troyon limit

and where the required reactivity is unphysically high. The H-mode region is bounded by

the H = 1.5 curve and the βN = 3 curve. For a fixed q* and fixed R/a, L-mode is only

possible in a larger tokamak than H-mode. This figure is similar to Figure 5.6, except that

it shows multiple “phases” instead of only L-mode. We will call this new type of figure an

R-q* tokamak phase diagram. These diagrams are useful for the initial planning of tokamaks.

We can expand on this with Figure 6.3, which is identical to Figure 6.2 except with an

additional subdivision between pulsed and steady-state modes. The additional curve that

does not appear in Figure 6.2 represents fNI = 1. This also qualifies as an ‘R-q* tokamak

phase diagram”. Here we can clearly see the steady-state L-mode region that was the focus

of our 2009 bachelor’s thesis and has a sharply-defined minimum R associated with it [28].

While Figures 6.2 and 6.3 has R/a fixed at 2.6, Figure 6.4 has R/a fixed at 3.1 to match

ITER. There is no steady-state L-mode here - that highly favorable region disappears for

R/a > 3. This is the reason why a steady-state L-mode tokamak must have an aspect ratio

lower than that of ITER.

Now we will keep everything the same except Q - we will lower it to 6.3 as recommended

by our fission blanket analysis. This changes everything. Figure 6.5 shows the result. By

lowering Qfus from 40 to 6.3, we have narrowed the H-mode swath and dramatically lowered

the fNI curve to open up a vast expanse of the steady-state L-mode phase. Comparing Figure

6.5 to Figure 5.4 shows just how powerful the addition of a fission blanket to a tokamak can

be.
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Figure 6.2: A “phase diagram” over [R,q∗] showing L-mode, H-mode, and areas forbidden by

reactivity and the Troyon limit. This is for a pure-fusion “reactor” with Qfus = 40. Here we use

R/a = 2.6, Bmax = 15 T, and PF /AS = 5 MW/m2.
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Figure 6.3: A “phase diagram” over [R,q∗] showing L-mode, H-mode, and areas forbidden by

reactivity and the Troyon limit. This is for a pure-fusion “reactor” with Qfus = 40. We subdivide

L-mode and H-mode into “pulsed” and “steady-state” zones with the curve defined by fNI = 1.

Here we use R/a = 2.6, Bmax = 15 T, and PF /AS = 5 MW/m2.
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Figure 6.4: A “phase diagram” over [R,q∗] showing L-mode, H-mode, and areas forbidden by

reactivity and the Troyon limit. This is for a pure-fusion “reactor” on the scale of ITER with Qfus

= 40, R/a = 3.1, Bmax = 15 T, and PF /AS = 3 MW/m2. We subdivide L-mode and H-mode into

“pulsed” and “steady-state” zones with the curve defined by fNI = 1.
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Figure 6.5: A “phase diagram” over [R,q∗] showing L-mode, H-mode, and areas forbidden by

reactivity and the Troyon limit. We subdivide L-mode and H-mode into “pulsed” and “steady-

state” zones with the curve defined by fNI = 1. This is for a fission-fusion hybrid “reactor” with a

fission gain of 7.7 and Qfus = 6.3. This is on the scale of ITER with R/a = 3.1, Bmax = 15 T, and

PF /AS = 3 MW/m2. This shows that ITER could operate in steady-state L-mode with our fission

blanket.
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With the results shown in Figure 6.5, we can choose a set of approximate operating

parameters for a fission-fusion hybrid based on ITER geometry (R = 6.2 m, R/a = 3.1,

κ = 1.75). Figure 6.5 shows that a tokamak fission-fusion hybrid with this fixed geometry

(ITER) could operate in steady-state L-mode. We show the complete set of operating points

in Table 6.1.

This proves that the addition of this optimal fission blanket to ITER would allow ITER

to operate in steady-state L-mode (with adjustments to its magnets and a few other param-

eters). Tang’s ITER-PBR concept focused solely on the fission aspects of adding a fission

blanket to ITER [22], but here we have shown that there could also be substantial advantages

in terms of the fusion operation.

Table 6.1: Steady-State L-mode ITER-PBR Operating Parameters

R= 6.2 m PF = 2.1 GW

R/a = 3.1 Paux = 310 MW

κ = 1.75 H = 1.4

Bmax = 15 T τe = 1.0 s

B = 7.7 T T = 14.5 keV

Q = 6.7 βN = 2.2

PF/AS = 3 MW/m2 ωce/ωpe = 2.2

q* = 3.0 ∆Φsol/ΦP = 3.1

IP = 16.6 MA fboot = 0.46

n = 1.2 1020/m3 fCD = 0.76

FG = 0.9 fNI = 1.22
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6.4 Minimum Scale Steady-State L-mode Fission-Fusion Hybrid

We have analyzed the case of a steady-state L-mode hybrid with the geometry of ITER, but

now we will turn to a more interesting scenario - that of minimum size. This is a point of

significant interest, because capital costs of tokamaks tend to scale with major radius R.

In the ITER-PBR analysis, we were forced to deviate from the ITER aspect ratio in

order to achieve steady-state L-mode. Now that we are more free in our geometry, we should

strive to determine the optimal R/a if one exists. We know from our analysis in Section 5.4

that a lower aspect ratio allows for a smaller minimum R, and so we should always favor low

R/a. However, there must be a lower limit on R/a. Otherwise, our tokamak would evolve

(or emphdevolve) into a spherical tokamak.

One property that depends largely on R/a is the flux ratio Φsol/ΦP , the ratio of solenoid

flux to plasma flux. As we explained in Section 4.3.3, this ratio must exceed 2. If we fix

Qfus at 6.7 as in the ITER-PBR analysis and assume other appropriate values such as q∗ =

3.0, we can calculate Φsol/ΦP and the minimum R (for steady-state L-mode operation) as a

function of R/a. Figure 6.6 shows this. Φsol/ΦP exceeds 2 for R/a > 2.8, which we must

now set as our lower limit on R/a. Since the minimum R is also an increasing function of

R/a, it is easy to see that we should set R/a at its limit of 2.8 and choose our minimum

scale R as the corresponding value of slightly more than 5 m.

To confirm this, we can generate yet another R-q* “phase diagram” for R/a = 2.8. Figure

6.7 shows this. Clearly, at q* = 3.0, the minimum steady-state L-mode R is slightly more

than 5 m. A closer look reveals that it is approximately 5.2 m.

Table 6.2 shows the corresponding complete set of parameters for the fusion component

of this minimum scale steady-state L-mode fission-fusion hybrid. Clearly, it is steady state

with fNI ≈ 1.0 and L-mode with H < 1.5.. The total fusion power is 1.7 GW. Thus, the

total hybrid thermal power, given a fission blanket multiplication of 7.7, is 10.8 GW. Since

the auxiliary power is 260 MW, the net Qhub is an admirable 41. This is unequivocally a

true reactor.



140 Mark Reed

Figure 6.6: Minimum major radius R (for steady-state L-mode) and flux ratio Φsol/ΦP as a

function of aspect ratio R/a at q∗ = 3.0. Here Bmax = 15 T, PF /AS = 3 MW/m2, and Qfus = 6.7.

The flux ratio is above 2 for R/a > 2.8, which corresponds to R = 5.2 m.
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Figure 6.7: A “phase diagram” over [R,q∗] showing L-mode, H-mode, and areas forbidden by

reactivity and the Troyon limit. We subdivide L-mode and H-mode into “pulsed” and “steady-

state” zones with the curve defined by fNI = 1. This is for a fission-fusion hybrid “reactor” with a

fission gain of 6.0 and Qfus = 6.7. We use the minimum feasible aspect ratio R/a = 2.8 along with

Bmax = 15 T and PF /AS = 3 MW/m2. This set of parameters would allow for the minimum scale

steady-state L-mode reactor with our fission blanket.
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Table 6.2: Minimum Scale Steady-State L-mode Operating Parameters

R= 5.2 m PF = 1.7 GW

R/a = 2.8 Paux = 260 MW

κ = 1.91 H = 1.48

Bmax = 15 T τe = 0.94 s

B = 6.8 T T = 12.2 keV

Q = 6.7 βN = 2.3

PF/AS = 3 MW/m2 ωce/ωpe = 1.8

q* = 3.0 ∆Φsol/ΦP = 2.02

IP = 17.4 MA fboot = 0.46

n = 1.4 1020/m3 fCD = 0.60

FG = 0.9 fNI = 1.06
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6.4.1 1-D Profiles

To ensure the viability of this minimum scale 0-D operating point, we perform 1-D profile

analysis similar to that performed on the HYPERION operating point. We can express

density and temperature profiles as parabolas raised to some power α plus a constant edge

value [4]. Equation 6.2 expresses this in terms of a generic profile X(r), which could be

either density or temperature. Note that X(a) = Xedge and X(0) = X0 + Xedge.

X(r) = X0

[
1−

(r
a

)2
]α

+Xedge (6.2)

In the case of density, we assume α = 0.5 and an edge value of nedge = 0.25〈n(r)〉, where

0.25 is called the density offset fraction and 〈n(r)〉 is the volume-averaged 0-D density [4].

Figure 6.8 shows the n(r) profile, normalized so that 〈n(r)〉 = n0−D.

Figure 6.8: Ion density n as a function of minor radius r with an offset fraction of 0.25.

In the case of temperature, we assume α = 1.25 and a small edge value of Tedge = 0.15

keV [4]. Figure 6.9 shows the T (r) profile, normalized so that 〈T (r)〉 = T0−D. Note that
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T (0) is less than 65 keV, and so no portion of the plasma reaches the maximum 〈σv〉.

Figure 6.9: Plasma temperature T as a function of minor radius r with an edge temperature of

0.15 keV. In this model, we assume that the electron and ion temperatures are equal. Note that T

never nears 65 keV, the temperature which yields the maximum 〈σv〉.

It is simple to calculate 〈σv〉(r) from T (r), which we show in Figure 6.10. In HYPERION,

〈σv〉(r) is very flat for r < a/2 and even a bit hollow, which provides inherent stability. This

minimum scale reactor does not have such an advantage, but 〈σv〉(r) does flatten a bit as T

approaches its maximum.

Figure 6.11 shows the PF density profile, computed from 〈σv〉(r) and n(r). The PF
density is very small in the outer 0.3 m of the plasma, which we call the “mantle” region. In

the mantle, the temperature is low enough so that radiative power losses dominate. In fact,

nearly all radiative power loss occurs in the mantle, which justifies our neglect of radiation

in the 0-D model.
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Figure 6.10: The D-T fusion reactivity rate coefficient 〈σv〉 as a function of minor radius r. 〈σv〉
never nears its physical maximum.



146 Mark Reed

Figure 6.11: Fusion power PF density as a function of minor radius r. Very little power is

generated in the outer 0.3 m of the plasma (the mantle).
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Current profiles are also instructive, and here we will complete an analysis similar to

that in the HYPERION report [4]. Equation 6.3 shows that the bootstrap current density

profile Iboot(r) is a function of n(r), T (r), the electron pressure profile pe(r), and the poloidal

field profile BΘ(r) [7]. pe(r) is simply n(r)kT (r)/2, where k is the Boltzmann constant [3].

We can compute BΘ(r) from IP (r), the total plasma current density. Of course, since IP (r)

depends on Iboot(r), we must either employ an iterative solution or assume a plausible initial

IP (r) profile. We choose the latter approach and assume IP (r) = J0[1-(r/a)2], where J0 is

a normalization constant we choose so that the integral of IP (r) over the poloidal plane is

equal to IP . Equation 6.3 is derived from neoclassical transport theory [7]. Figure 6.12 shows

Iboot(r), which we renormalized to be consistent with fboot = 0.46 in Table 6.2.

Iboot(r) =
( r
R

)1/2
(
pe(r)

BΘ(r)

)[
−4.88

1

n(r)

dn(r)

dr
− 0.27

1

T (r)

dT (r)

dr

]
(6.3)

BΘ(r) =
µ0

℘Θ

∫ r

0

2πκr′IP (r′) dr′ (6.4)

In order to compute a total plasma current density profile IP (r), we must know the

current drive density profile ICD(r). Due to electron-cyclotron current drive (ECCD) and

optical steering, we can assume ICD(r) is concentrated in the region r < a/2 [6] [9]. Given

a healthy amount of current diffusion, we can assume ICD(r) is of the form

ICD(r) = C1erfc
[
C2

(
r − a

2

)]
(6.5)

where erfc(x) is the complementary error function. ICD(r) is mostly flat for r < a/2 and

smoothly drops to zero for r > a/2. C2 represents the width of the drop. We choose C2 =

a/2. C1 is a normalization constant that we use to ensure ICD(r) is consistent with fCD =

0.60 in Table 6.2. Figure 6.13 shows IP (r). For purely illustrative purposes, ICD(r) sits on

top of Iboot(r).

Now that we know IP (r), we can calculate q(r) directly from Equation 6.6, which is no

more than a generalized version of Equation 4.7. Figure 6.14 shows the result. q(r) is a

smooth profile with a minimum at approximately r ≈ a/4, which is called a “reversed q

profile”. The 0-D q* value is q* = q(a) = 2.9, which confirms that our model is satisfactorily

self-consistent (see Table 6.2). Note that q0 = q(0) ≈ 2.2. q(r) is always greater than 2,

ensuring excellent current stability. No sawtooth or surface tearing instabilities will occur [7].

q(r) =
πr2(1 + κ2)

R

BΦ

µ0

∫ r
0

2πκr′IP (r′) dr′
(6.6)
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Figure 6.12: Bootstrap current density Iboot as a function of minor radius r. The bootstrap

current Iboot is a fraction fboot = 0.46 of the total plasma current IP . It is concentrated near the

plasma edge.
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Figure 6.13: The total current density IP (with constituent parts ICD and Iboot) as a function

of minor radius r. The bootstrap current density Iboot is as shown in Figure 6.12, and Equation

6.5 is our approximation for ICD. Here the topmost curve represents IP , and the area between

the two curves represents ICD. The current drive density ICD is concentrated almost entirely in

the plasma interior r < a/2 with a profile of the form in Equation 6.5. This is plausible given

electron-cyclotron current drive (ECCD) control.
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Figure 6.14: The safety factor q profile as a function of minor radius r given the total plasma

current profile given in Figure 6.13. This is consistent with the 0-D safety factor q∗ = q(a) ≈ 3.

Note that q is always greater than 2, ensuring a very stable current distribution.
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6.4.2 Radiative Power

Since H = 1.48 is close to the L-H transition at H = 1.5, it is important to confirm L-mode

operation in terms of radiative power. As we described in Section 4.4, the L-H transition

occurs when a certain amount of auxiliary power is applied. More specifically, it is the power

conducted through the “scrape-off layer”Psol that causes the L-H transition [7]. The scrape-

off layer is a thin zone between the mantle and the blanket where significant radiation occurs.

We can express Psol as

Psol = (Pα + Paux)− Prad = (Pα + Paux)(1− frad) (6.7)

where frad is the ratio of radiative power Prad to input power (Pα + Paux) [12]. For the L-H

transition to occur, Psol must be greater than the L-H transition power PL−H . As long as

Psol is less than PL−H , the reactor is in L-mode. Psol is defined with the scaling shown in

Equation 6.8.

PL−H =
(2.84)CB0.82n0.58Ra0.81

M
(6.8)

The constant C is 3.5 in this case. PL−H is in MW, B is in T, n is in 1020/m3, R and a are

in m, and M = 2.5 amu [4] [7]. This yields PL−H = 355 MW. Then, given that Pα + Paux

= 1.612 GW, frad must exceed 0.78 for the reactor to operate in L-mode. Referring back to

Figure 4.3, frad ≥ 0.78 is quite reasonable.

Due to the very small PF density (see Figure 6.11) and low temperature (see Figure 6.9)

in the mantle, we can assume that nearly all radiative power losses occur in the mantle and

therefore do not significantly affect the 0-D PF [4]. The HYPERION report shows this, and

the 1-D profiles we show here (see Figures 6.8-11) indicate that the same is likely true for this

minimum scale reactor. Thus, our neglect of radiative power losses in the 0-D core model is

a reasonable approach.
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6.4.3 Operating Point Access

Just as with HYPERION, it is essential to ensure that the operating point is accessible.

Figure 6.15 shows the auxiliary power Paux in the [n,T ] plane for the 0-D operating point

specified in Table 6.2. In contrast with HYPERION, there is no Paux < 0 zone within the n

or T ranges of the operating point. There is still a saddle point, but it lies just off the plot

at high n. Accessing the operating point is simple. We can increase n and Paux such that

the plasma simply moves directly to the operating point, which is marked with the red circle

at T = 12 keV, n = 1.4 × 1020/m3, and Paux = 260 MW.

This operating point is stable for the same reasons as the HYPERION operating point. If

the temperature were to decrease, the required auxiliary power would also decrease, causing

the plasma to heat up and regain its original temperature. If the temperature were to

increase, the required auxiliary power would also increase, causing the plasma to cool down

and regain its original temperature. Given that we can directly control density, the operating

point is quite secure.
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Figure 6.15: Auxiliary power Paux contours as a function of density n and temperature T for

the minimum scale reactor. The operating point (n = 1.4 × 1020 m−3, T = 12.2 keV, Paux = 260

MW), is marked with the red circle. The thick, conspicuous purple contour represents when Paux

is consistent with the operating point of 260 MW. The red arrows show the ignition path.
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6.5 Implications

Our minimum scale operating point has a fusion power of 1.6 GW. With a fission blanket

multiplication of 7.7, this yields a total hybrid power of 10.8 GW. If we employ a standard

Brayton cycle with a thermal efficiency of 41% (see Section 8.3), then the total electric power

would be 4.4 GW.

Unfortunately, this is too large for the U.S. electrical grid as it now stands. If the grid

is not substantially improved in the future, we could easily employ our model to constrain

the total electrical power output to 1 GW and generate a new set of parameters similar to

those in Tables 6.1 or 6.2. The only drawback would be that the minimum scale - and thus

the minimum capital cost - would not be substantially less than our results in this thesis. A

1 GW steady-state L-mode tokamak would certainly not be anywhere near as economically

viable as a similar 5 GW device, and it might not be economically viable at all. The main

conclusion of our 2009 bachelor’s thesis was that tokamaks are best suited for steady-state

L-mode operation only at large scales with large power outputs [28]. Thus, the grid is a

constraining factor, or perhaps even a crippling factor, in sustainable tokamak design.

An alternative option would be to split the power output between commercial electricity

generation and hydrogen production. We could send the maximum allowable electric power

to the grid and utilize the remainder for hydrogen production (or some other chemical process

that happens to be in demand).

However, this thesis is centered around how a fissionable blanket can augment the fusion

power and eliminate the high Q requirement such that steady-state L-mode operation be-

comes feasible at smaller scales. We have now shown that this is true - the blanket allows

for steady-state L-mode operation at R ≈ 5.2 m, which is about 5/6 the size of ITER. Our

novel coupled fission-fusion analysis demonstrates unequivocally that a fissionable blanket

eases the constraints on fusion.
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7 Burnup and Fuel Cycle

Now that we have reamed out the initial steady-state condition, we must analyze the evo-

lution of fuel composition - burnup. Although we do not include a quantitative burnup

calculation here, we propose a novel subcritical implementation of BGCore as well as a novel

technique to sustain a constant hybrid power level throughout burnup. Additionally, we

perform some simple fuel cycle analysis to show that our proposed hybrid could breed fissile

material or transmute fission product waste much more effectively than a pure fission fast

reactor. We also touch on non-proliferation as well as the potential for a thorium fuel cycle.

Since this hybrid will breed large quantities of plutonium (replacing 238U with 239Pu),

the blanket keff and power gain will both initially increase. Lawrence Livermore National

Laboratory (LLNL) has studied inertial confinement hybrids with depleted uranium blankets

(see Section 9.1.3) and concluded that keff will rise to a maximum of not more than 0.7 before

gradually decreasing indefinitely [31]. Although our device is substantially different, it is not

terribly unreasonable to assume that the similarities between natural and depleted uranium

will yield the same general trends. We will assume that there is no criticality safety problem

and proceed with our discussion.

7.1 Subcritical Burnup Implementation

In future work, we plan to implement the burnup package BGCore, recently developed at

Ben-Gurion University of the Negev [47]. We prefer BGCore for its accessible MATLAB

implementation. It accepts an MCNP input file with several additional burnup parameters.

At each time-step, BGCore runs MCNP to obtain the flux distribution and computes the

change in fuel composition during the time-step using that flux distribution. Then BGCore

runs MCNP using the new fuel composition, and the cycle repeats for as long as the user

specifies.

Unfortunately, BGCore, as it currently stands, will not work for subcritical systems.

BGCore requires the MCNP kcode command, which iterates a normalized flux distribution

through subsequent neutron generations (so that the total number of source neutrons in

each generation is constant, as in a critical system). When the k eigenvalue converges

after a set number of iterations, the final flux distribution that yields that converged k

eigenvalue is deemed the true flux distribution of the system. Essentially, the goal is to

determine the fission source distribution that yields a subsequent fission source distribution

(in the subsequent generation) identical to itself. Although this scheme works marvelously

for critical systems, it is folly for subcritical systems. In a subcritical system, a known (non-

fission) neutron source causes everything to happen. Since the source is already known, no

iteration is required to determine it. Of course, the kcode command will still function for

a subcritical fixed source system with k < 1, but it will determine the flux distribution
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after many successive neutron generations, where the flux is very small in magnitude. While

such a flux distribution might be physically interesting, it is useless for burnup calculations

because it comprises only a very small portion of the total flux. In our system, the fusion

source neutrons themselves (≈ 3 MW/m2 ≈ 1.3 ×1014 n/cm2/s) comprise a sizable portion

of the total flux. Refer back to Figure 3.13, which shows the relative number of neutrons in

each generation. We can reproduce that same data here in a pie chart with Figure 7.1. Over

one third of all neutrons in the system at any given time are generation 1 (fusion-born). Any

flux distribution produced by a kcode iteration would not include generation 1 (35%) and

would probably not even be very accurate for generation 2 (46%). Without the high-energy

fusion-born neutrons, no burnup calculation can be accurate.

Fortunately, BGCore could be applicable to subcritical systems with a few slight modifi-

cations. In a critical pure-fission system, both the (fission-born) neutron source and the fuel

composition evolve with each time step. In our subcritical system, the (fusion-born) neutron

source remains fixed while only the fuel composition evolves. Of course, the flux distribution

will evolve, but it will evolve as a consequence of fuel composition only. See Figure 7.2 to

compare causation flow charts for critical and subcritical systems. Interestingly, the interre-

lationships between quantities in subcritical systems are less complex than those in critical

systems. The only real barrier to subcritical burnup analysis is that there is little prior work

on which to base it - like BGCore, most burnup codes assume criticality. However, the task

of applying BGCore to a subcritical system would consist of simply modifying the parameter

relationships as in Figure 7.2. The source distribution file must be constant throughout the

burnup process, and the flux distribution must be obtained from MCNP without kcode.

Circumventing kcode would dramatically reduce the runtime of BGCore.

To our dismay, we must postpone a subcritical implementation of BGCore until future

work, as it would take us beyond the timeframe for this study. For now, we can look to

other studies, such as Vincent Tang’s 2002 thesis, to see other hybrid burnup calculations.

Although Tang’s design is quite different than ours (in ways we have already discussed), he

found that his device could operate for ≈ 30 years. Since we employ a higher fuel density

with natural uranium, it is plausible that our conceptual design could yield similar results.

We may perform a follow-up study with our proposed subcritical BGCore implementation.

7.2 Maintaining Constant Hybrid Power

One interesting property of this hybrid system is that the fusion power can be varied at will.

Operators can adjust the plasma density in the tokamak to alter the D-T reaction rate. This

fact happens to be extremely favorable for control of the fission component. In a pure fission

reactor, various complex mechanisms are implemented to achieve and maintain criticality at

a desired power level. These include control rods, chemical shim, fission product poisons,

and burnable poisons. Of course, none of these mechanisms is necessary in a subcritical
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system, the advantages of which we have already discussed at length. However, even though

criticality (keff = 1) is of no concern, we must still consider how to maintain a constant power

level during long periods of time in which significant burnup occurs and keff does in fact vary.

Referring to Figure 3.13, we will express the ratio of neutrons in generation 2 to generation

1 as k0 and the ratio of neutrons in generation n to generation n − 1 for n > 2 as k. Thus

the ratio of neutrons in generation n to generation 1 is k0k
n−2 for n > 1. Here k0 ≈ 1.3 and

k ≈ 0.3. The number of fissions per neutron in generation 1 is k0/ν0, where ν0 is simply ν

averaged over the fissions spurred by generation 1 neutrons. Similarly, the number of fissions

spurred by generation n neutrons per generation 1 neutron is k0k
n−2/ν, where ν is ν averaged

over the fissions spurred by generation n > 1 neutrons. Here we are assuming that k and ν

have essentially converged and change very little after generation 2.

With definitions out of the way, we can easily express the fission power multiplication

Qfis and the total hybrid power Phyb as a sum of the fissions spurred by each generation of

neutrons. Here we assume that the energy released in a fission event is always 193.9 MeV

and that all fusion neutrons, which constitute 4/5 of the fusion power Pfus, are born at 14.1

MeV.

Phyb =
4

5
PfusQfis =

4

5
Pfus

[
193.9

14.1

] [
k0

ν0

+
k0k

ν
+
k0k

2

ν
+
k0k

3

ν
+ . . .

]
(7.1)

We can convert this infinite sum to an algebraic function of k.

Phyb =
4

5
Pfus

[
193.9

14.1

]
k0

[
1

ν0

+
1

ν

(
1

1− k
− 1

)]
(7.2)

Now, as burnup occurs in the fission blanket, k and ν will evolve in time. This will cause

Phyb to evolve in time, which is not preferable.

Phyb(t) =
4

5
Pfus

[
193.9

14.1

]
k0(t)

[
1

ν0(t)
+

1

ν(t)

(
1

1− k(t)
− 1

)]
(7.3)

However, since we have control over Pfus, we can stipulate that Pfus evolve in time as Pfus(t)

to compensate for burnup such that Phyb remains constant. It is simple to see how this

evolution would work:

Pfus(t) = Pfus(0)

[
k0(0)

k0(t)

] 1
ν0(0)

+ 1
ν(0)

(
1

1−k(0)
− 1
)

1
ν0(t)

+ 1
ν(t)

(
1

1−k(t)
− 1
)
 (7.4)

So while this hybrid configuration obviates criticality, it also greatly simplifies power stability.

There is no need for specialized control mechanisms, as we can manipulate the fission power

indirectly through the fusion power. We recognize that this function would be extremely
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difficult to know beforehand, but burnup occurs gradually enough that Pfus(t) could be

adjusted in real-time.

Of course, it is important to note that k(t) in Equation 7.4 is not the same k(t) in the case

of constant Pfus. Although we can keep the total blanket power Phyb constant throughout

burnup by varying Pfus(t), we cannot keep the spatial and energetic distribution of the flux

constant as the fuel composition evolves. Let us suppose that k(t) initially increases. We

lower Pfus(t) so that Phyb remains constant. Now the rate of increase of k(t) slows, because

the flux has decreased. However, if k(t) initially decreases, raising Pfus(t) will accelerate

the decrease of k(t). Thus, we can say with confidence that this technique moderates k(t)

increases and exacerbates k(t) decreases.

Since this hybrid will breed large quantities of plutonium, k(t) will initially increase as a

function of time. k0(t) will also increase, although not as substantially, as 238U and 239Pu have

similar fission cross-section magnitudes at 14 MeV (within a factor of 2). Inertial confinement

hybrid studies by Lawrence Livermore National Laboratory (LLNL) have shown that keff will

rise to a maximum of not more than 0.7 before gradually decreasing indefinitely [31]. Thus,

there would be ample opportunity to apply this method to both k(t) increases and decreases.

Finally, we should clarify a potential ambiguity. In the previous subsection and in Figure

7.2, we defined the fusion neutron source as a fixed source. When we consider varying

Pfus(t), the fusion source is still “fixed” in the sense that it is independent of all other fission

properties - Figure 7.2 is still valid. However, it is obviously not “fixed” in the sense of being

constant. A more precise way to characterize Pfus(t) would be “variable but independent”.

This is one of many potentially-confusing subtleties in fission-fusion hybrid dynamics. We

will call this kind of source a variable fixed source, a fitting oxymoron.

We could test this variable fixed source idea with our proposed subcritical implementation

of BGCore. Instead of using the same fixed source for each iteration i, BGCore could modify

the source Si based on the initial system power P0 and the system power for the prior

generation Pi−1.

Si = S0
P0

Pi−1

(7.5)

Our convention here is that the source Si generates the power Pi in the ith iteration. Here

we must stipulate that S1 = S0 to initiate the recursion.
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Figure 7.1: Fractional share of neutrons from each generation in the entire hybrid system. The

initial fusion-born neutrons comprise 35% of all neutrons, while the first generation of fission-born

neutrons comprise 46%. Beginning with generation 3, each successive generation contains only

k ≈ 0.3 as many neutrons as the previous generation.
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Figure 7.2: Causation relationships between basic core quantities in critical and subcritical sys-

tems. In a critical system, the fission-born source depends on both fuel composition and the flux

distribution generated by previous sources. In a subcritical system, the non-fission source is inde-

pendent of all other quantities. In the hybrid context, this shows that while fusion drives fission,

fission has no effect on fusion.



A Fission-Fusion Hybrid Reactor 161

7.3 Breeding

This natural uranium fission-fusion hybrid will breed copious fissile material. Figure 7.3

shows the portion of the 238U transmutation-decay chain that is of interest to us. Any

uranium-fueled reactor will breed both 239Pu and 237Np from the 238U(n,γ) and 238U(n,2n)

reactions, respectively. It will also breed many other fissile nuclides (such as 241Pu and
241Am), although those will have orders of magnitude smaller concentrations due to the

additional (n,γ) reactions required.

Figure 7.3: The 238U transmutation-decay chain with relatively stable fissile isotopes in red. Here

we show only the dominant interaction between each isotope.

When most people talk about breeding and conversion ratios in the uranium cycle,

they primarily mean converting 238U into 239Pu and other plutonium isotopes through the
238U(n,γ) reaction. We can define a conversion ratio C for each fissile isotope produced in the

reactor as the ratio of the production rate of that isotope to the removal rate of the original

fissile isotope(s) present in the fuel. In the case of converting 238U into 239Pu, C is roughly

proportional to the ratio of the 238U neutron one-group capture cross-section σc to the 235U

one-group absorption cross-section σa. Here the absorption cross-section σa includes fission,

capture, and all other reactions that absorb a neutron except inelastic scattering. Thus,

the absorption cross-section is equivalent to the total removal cross-section. We define ε as

enrichment by atomic fraction.

C ≈ ΣU238
c

ΣU235
a

=

(
1− ε
ε

)
σU238
c

σU235
a

(7.6)
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For illustrative purposes, it is convenient to define an energy-dependent conversion ratio

C(E), which is C evaluated with cross-sections at one specific energy instead of with one-

group cross-sections averaged over a spectrum. C(E) would be the conversion ratio for a

hypothetical reactor in which all the neutrons are monoenergetic with energy E. Although

not particularly physical, C(E) provides an instructive spectrum-independent overview of

how the conversion ratio changes with energy.

C(E) ≈
(

1− ε
ε

)
σU238
c (E)

σU235
a (E)

(7.7)

Although these approximations for C are simple and useful, the conversion ratio is ac-

tually a time-dependent quantity that evolves as burnup proceeds. We can calculate C

precisely as a function of time by numerically integrating transmutation-decay differential

equations - one for each nuclide. We set these up in a standard form with Figure 7.3 as a

guide. The change in the concentration N i of a given nuclide i is the difference between the

one-group cumulative loss N iσiaφ and the sum of all one-group gains N jσj→iφ from other

nuclides of index j. Of course, nuclide i can decay at the rate λiN i and be produced from

another nuclide j at the rate λj→iN j. The one-group cross-sections are joyfully simple to

compute in MATLAB with unionized cross-sections and flux spectra, which we will explain

near the end of this subsection.

dN i

dt
= −N i

[
λi +

∫ ∞
0

σia(E)φ(E) dE

]
+
∑
j 6=i

N j

[
λj→i +

∫ ∞
0

σj→i(E)φ(E) dE

]
(7.8)

We can numerically integrate these differential equations for the system shown in Figure 7.3

to obtain the instantaneous time-dependent 239Pu conversion ratio C(t).

C(t) =
dNPu239/dt

−dNU235/dt
(7.9)

We can also set up a very similar set of differential equations to determine the time-

dependent monoenergetic nuclide concentrations Nm at energy Em.

dN i
m

dt
= −N i

m

[
λi + σia(Em)φ(Em)

]
+
∑
j≤i

N j
m

[
λj→i + σj→i(Em)φ(Em)

]
(7.10)

Then the time-dependent monoenergetic conversion ratio C(Em, t) is

C(Em, t) =
dNPu239

m /dt

−dNU235
m /dt

(7.11)

Figure 7.4 shows C(Em, t) during the first 23 days of operation for Em = 0.1 MeV and 1.0

MeV. Here we arbitrary assume an enrichment of 5%. Obviously, C(Em, 0) = 0, because the
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finite half-lives of 239U and 239Np prevent immediate production of 239Pu. However, after a

time much longer than the longest half-life has elapsed, C(Em, t) approaches an equilibrium

value very close to Equation 7.7. As burnup proceeds over much longer time scales, this

equilibrium will evolve. However, we will henceforth refer to this initial equilibrium value as

the “monoenergetic conversion ratio”.

Figure 7.4: Monoenergetic 239Pu conversion ratio as a function of time for 5% uranium enrichment.

Here we show 1 MeV and 100 keV. The conversion ratios asymptotically approach equilibrium after

time becomes much longer than the longest half-life in the decay chain (2.4 days for 239Np).

Figure 7.5 shows the monoenergetic conversation ratio as a function of energy for 5%

enrichment. This can be somewhat closely approximated by Equation 7.7, although the

transmutation-decay chains contain some additional losses. Figure 7.7 encapsulates why

fast reactors can breed more fissile material than they consume much more readily than

thermal reactors. The monoenergetic conversation ratio C(E) exceeds 1.0 in the range

0.01 < E < 1.0 MeV, which is approximately the range in which a typical fast reactor

spectrum resides. Thermal reactors have a fast peak in the C(E) > 1 region and a thermal

peak in the C(E) ≈ 0.1 region, and the spectrum-averaged C tends to be greater than 0.5
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but less than 1.0.

Beyond 1 MeV, C(E) drops by two orders of magnitude. Consequently, the 14 MeV

neutron source in our fission-fusion hybrid will breed only trace quantities of 239Pu. However,

the portion of our hybrid spectrum below the 238U fissionable threshold is nearly congruent

with that of a typical fast reactor spectrum and will breed ample 239Pu. Furthermore, the

low abundance of 235U in natural uranium (0.7%) will mean that the conversion ratio for our

hybrid will be approximately 7.5 times higher than that shown in Figure 7.5. So although the

14 MeV neutron source does not contribute directly to conversion, it contributes indirectly

a great deal by obviating criticality such that the initial concentration of fissile material can

be very low.

Figure 7.5: Monoenergetic 239Pu conversion ratio as a function of energy at 5% enrichment. The

red line denotes C = 1. This illustrates why fast reactors can breed 239Pu while thermal reactors

cannot. Although conversion ratio is very low at 14 MeV, our fission-fusion hybrid will still breed

considerable 239Pu due to its large flux magnitude in the typical fast reactor range.

Figure 7.6 shows the monoenergetic conversion ratio in the fast energy range for three

fissile isotopes: 239Pu, 237Np, and 233U. 237Np is bred primarily from the 238U(n,2n) reaction

(see Figure 7.3), but it is also produced in much smaller amounts from successive (n,γ)

on 235U and the α-decay of 241Am. 233U is bred from the 235U(n,3n) reaction. Here the
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“enrichment” is 0.7%, consistent with our natural uranium hybrid. As we saw in Figure 7.5,

the 239Pu conversion ratio is high below a few MeV.

We are especially interested in 237Np, as it is both fissile and a highly mobile waste

product. In 1992, the U.S. government declassified the fact that 237Np can be used make

nuclear weapons [34]. In 2002, researchers at Los Alamos National Laboratory performed

a criticality experiment with a 237Np sphere to show that its critical mass is approximately

60 kg, less than 20% larger than that of 235U [35]. The k∞ value of pure 237Np metal is

approximately 1.7 compared to 2.28 for 235U [36]. That 237Np is moderately fissile and a

proliferation concern is somewhat surprising, as it is an exception to the general rule that

fissile nuclides obey 2Z − N = 43 ± 2. Proliferation concerns aside, 237Np is also known as

the most mobile of the actinide waste products, and so it is highly undesirable [37].

While pure fission reactors (thermal or fast) breed relatively little 237Np (because the

(n,2n) threshold is nearly 7 MeV), the fusion-born neutrons in our hybrid will breed 237Np

at an expeditious rate. As shown in Figure 7.6, the monoenergetic 237Np conversion ratio

at 14 MeV exceeds 100. The fusion-born neutrons will also breed a non-negligible amount

of 233U, something that usually only shows up in the thorium cycle. Although the 233U

conversion ratio never exceeds 0.2, it is roughly equal to the 239Pu conversion ratio at 14

MeV.

Now that we have spent some time with monoenergetic conversion ratios to gain insight,

let us turn to spectrum-averaged conversion ratios. We calculate these with a system of

differential equations with one-group cross-sections as shown in Equations 7.8 and 7.9. For

simplicity, we will assume a constant flux shape throughout the fuel, and we will use the

hybrid spectrum from Figure 3.16. For perspective, we will also calculate conversion ratios

for typical thermal and fast pure fission spectra. We will borrow a thermal spectrum from the

MIT Reactor, and we will obtain an approximate fast spectrum from a simple MCNP input

file with UO2 fuel rods surrounded by sodium coolant (see Appendix I.4). We plot these

three spectra in Figure 7.7, where each has been normalized to the same total magnitude

of 1.0. The flux magnitude is not especially important, as the equilibrium conversion ratio

(refer back to Figure 7.4) depends only on the flux shape. The flux magnitude will determine

how quickly the conversion ratio approaches its equilibrium value, but it will not affect that

equilibrium value.

Table 7.1 shows conversion ratios for 239Pu, 237Np, and 233U in the thermal, fast, and

hybrid flux spectra. As expected, the fast spectrum achieves a 239Pu conversion ratio of

greater than 1.0 while the thermal spectrum does not. The hybrid spectrum achieves a

prodigious 239Pu conversion ratio of 22, because it is not critical and contains very little
235U. As for 237Np, the thermal and fast spectra produce very little. However, the hybrid

spectrum actually achieves a 237Np conversion ratio of greater than 1.0! Our fission-fusion

hybrid “converts” 235U into 237Np just as well as a typical fast reactor converts 235U into
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Figure 7.6: Monoenergetic conversion ratios for 239Pu, 237Np, and 233U. This is for natural

uranium fuel with 0.7% 235U. At 14 MeV, just as much 233U as 239Pu is produced per 235U fissioned.

239Pu. None of the spectra produce a substantial amount of 233U, although the hybrid does

produce about 1000 times as much as a fast reactor.

The consequence of this is that our fission-fusion hybrid is a prolific breeder. Depending

on the cycle length, this hybrid could breed enormous quantities of 239Pu for use in pure

fission reactors. The 237Np it produces could also be used as fuel in theory, although it has

not yet been proven to be a viable fuel. Fast reactors have been touted as sufficient to breed

fissile fuel for future generations of nuclear power, but our hybrid reactor is clearly superior

in this respect.

We should pause here to elucidate exactly how we perform these breeding calculations

in MATLAB. We construct a unionized set of all cross-sections on a 248-group energy grid

of constant lethargy width corresponding to our Monte Carlo flux, which is tallied per unit

lethargy. Although this unionized set does not fully delineate the resonance region and

would not suffice for a full-scale design, it is adequate for this rudimentary calculation.

The conversion ratios we cite for thermal and fast spectra in Table 7.1 are consistent with
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Figure 7.7: Our fission-fusion hybrid spectrum overlaid on typical spectra for fast and thermal

reactors. All three spectra are normalized so that they have the same magnitude.

widely-known values. Once we have constructed this unionized set, we can simply sum the

element-wise multiplication of the flux and each cross-section to obtain a value proportional

to each reaction rate. For example, we can approximate the equilibrium conversion ratios

for the three isotopes in Table 7.1 as

C_Pu239 = sum(flux.*xs_c_U238*(1-e))/sum(flux.*xs_a_U235*e);

C_Np237 = sum(flux.*xs_n2n_U238*(1-e))/sum(flux.*xs_a_U235*e);

C_U233 = sum(flux.*xs_n3n_U235)/sum(flux.*xs_a_U235);

Here e is the enrichment by atomic fraction. This is a very convenient and efficient method

for computing conversion ratios from unionized cross-section data when the flux is computed

per unit lethargy with constant lethargy group width. The monoenergetic conversion ratios

are similar except that we multiply scalars instead of summing element-wise array products.

For the numerical integration necessary to obtain the time-dependent conversion ratios in

Figure 7.4, see Appendix H.
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Table 7.1: Fissile Nuclide Conversion Ratios

thermal fast hybrid
239Pu 0.67 1.3 22
237Np 0.0028 0.011 1.3
233U 5.9 × 10−8 7.7 × 10−7 7.6 × 10−4

We should qualify this analysis further by stating that conversion ratio might not be the

most suitable metric for evaluating the breeding capability of subcritical systems. Just as

neglecting criticality obviates a host of fuel cycle constraints, it might also render certain

fuel cycle metrics obsolete. Although conversion ratio still tracks the total fissile inventory,

perhaps a different quantity, such as fissile nuclei bred per fusion event, might be more useful

for comparing various subcritical systems. For example, using depleted uranium instead of

natural uranium in our subcritical system would increase the conversion ratio by a factor of

2 to 4, even though there would be little difference in reactor performance or the amount of

plutonium produced. However, the change in plutonium nuclei bred per fusion event would

be commensurately small. Future work on subcritical breeding should develop new metrics

for (1) comparison between critical and subcritical systems and (2) comparison between

different subcritical systems.
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7.4 Viability of a Thorium Fuel Cycle

Natural thorium is 100% 232Th, which is fissionable but not fissile. However, the 232Th(n,γ)

reaction breeds 233U, which is highly fissile. A thorium-fueled reactor would require an added

initial concentration of fissile material such as 239Pu to jump-start the fission chain reaction

and achieve criticality long enough for 233U to pick up the torch. Proponents of the thorium

fuel cycle tout its dearth of actinides, lack of enrichment requirements, and greater natural

abundance.

Thorium fuel in a fission-fusion hybrid is an intriguing idea. The fusion neutron source

would obviate the need for initial fissile material - the fuel could be nothing but natural

thorium. Hans Bethe mentioned this idea in 1979 [39], and it has been revisited in recent

years at the MIT Plasma Science and Fusion Center [38] as well as at the University of

Illinois [40].

Since fresh thorium fuel for our hybrid would contain no fissile material, we must employ

the “breeding ratio” rather than the conversion ratio to evaluate its effectiveness. The breed-

ing ratio is defined as the ratio of the production rate of fissile nuclides to the total rate of

fission. For the thorium cycle, it is approximately

BTh ≈ σTh232
c

σTh232
f

(7.12)

For the uranium cycle with atomic fraction enrichment ε, it is

BU ≈ (1− ε)σU238
c

εσU235
f + (1− ε)σU238

f

(7.13)

We can compare breeding ratios for each cycle using the same three spectra (thermal,

fast, and hybrid) as in our uranium cycle conversion ratio analysis (see Figure 7.7). Table

7.2 shows breeding ratios for 239Pu and 237Np in the uranium cycle and for 233U and 231Pa

in the thorium cycle. The breeding ratios for 237Np and 231Pa are defined in the same way

as in Equations 7.12 and 7.13 except with (n,2n) replacing (n,γ). 231Pa is a peculiar isotope.

Just barely non-fissile with k∞ = 0.95, it can still achieve criticality with a reflector or with

an added moderator [36]. We have computed its breeding ratio here only because it is the

thorium-cycle analog of uranium-cycle 237Np.

Table 7.2 shows that in the uranium cycle, the hybrid spectrum breeds more of each

fissile material than the fast or thermal spectra. However, in the thorium cycle, the hybrid

spectrum breeds more 231Pa but significantly less 233U, which is the whole point of the

thorium cycle.

Figure 7.8 shows the 232Th(n,γ) and 238U(n,γ) cross-sections as functions of energy. These

are roughly equivalent to effective 239Pu and 233U “breeding cross-sections” in the uranium
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and thorium cycles. The thorium cycle breeds substantially more 233U at thermal energies

than at fast energies.

The main conclusion here is that our fast-spectrum fission-fusion hybrid is not optimally

suited for the thorium cycle. The fixed neutron source is definitely highly favorable to

the thorium cycle, but the hybrid spectrum should be thermalized in order to maximize
233U production. Unlike our design, a fission-fusion hybrid thorium burner should have a

moderator. We will now close this thorium discussion and press onward.

Figure 7.8: Effective 239Pu and 233U breeding cross-sections for uranium and thorium fuel, re-

spectively. These are roughly equal to the 238U(n,γ) and 232Th(n,γ) cross-sections.
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Table 7.2: Comparison of Thorium and Uranium Breeding Ratios

thermal fast hybrid

thorium (233U) 36 32 19

thorium (231Pa) 0.26 0.23 1.4

uranium (239Pu) 0.67 1.2 3.5

uranium (237Np) 0.0028 0.0099 0.21
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7.5 Non-Proliferation

Non-proliferation is an intricate subject, bringing together aspects of fuel cycle analysis,

physical security of facilities, and political science, and even game theory. For the purposes

of this work, we will only discuss some rudimentary fuel cycle aspects of the subject.

As we have already discussed at length, our fission-fusion hybrid is subcritical and thus

requires no enrichment. Although pure fission reactors require levels of enrichment much

lower than those required to construct weapons, it is the same enrichment process. The

existence of this process (and people who have knowledge of it) is itself a proliferation risk,

one that we willingly take on because it is the only way to achieve criticality in pure fission

reactors (with the notable exception of the CANada Deuterium Uranium (CANDU) reactor,

which requires deuterium enrichment).

One could imagine a world in which a few large fission-fusion hybrids use natural uranium

to breed plutonium, which in turn fuels a fleet of fast and thermal fission reactors. This

hypothetical world would require no enrichment facilities whatsoever, although it would

introduce a different proliferation risk in terms of producing large quantities of plutonium

and neptunium.

In thermal reactors, 239Pu is the main proliferation risk due to its relatively high con-

centration and status as a highly fissile nuclide. However, plutonium in spent fuel always

contains certain fractions of 238Pu and 240Pu. 238Pu undergoes α-decay, which generates haz-

ardous heat within the material. Much worse, 240Pu undergoes spontaneous fission, which

could pre-detonate or fizzle a weapon. Thus, weapons-grade plutonium must have sufficiently

low concentrations of 238Pu and 240Pu [41].

As a crude measure of relative plutonium isotopic ratios, Table 7.3 shows one-group
239Pu(n,γ)240Pu and 239Pu(n,2n)238Pu cross-sections for the same thermal, fast, and hybrid

spectra utilized in the preceding sections. Clearly, thermal reactors produce far more 240Pu

per 239Pu atom than fast reactors or fission-fusion hybrids, although they produce rela-

tively little 238Pu. However, comparing fast reactors to hybrids shows that hybrids produce

marginally more 240Pu and substantially more 238Pu. Even though hybrids seem to best fast

reactors, the very large 239Pu(n,γ) cross-section of thermal reactors seems to outweigh the

advantage hybrids have with respect to 239Pu(n,2n). Of course, thermal reactors have 239Pu

breeding and conversion ratios of less than 1.0, and so they are not even breeders in the first

place.

However, there is one additional source of 238Pu we have neglected until now: 237Np(n,γ).

When 237Np captures a neutron, 238Np decays into 238Pu. As hybrids contain large portions

of 237Np, this will substantially add to the content of 238Pu in plutonium. We would need to

perform a detailed burnup analysis to determine the evolution of 238Pu content.
237Np itself is also concerning. Although it can be chemically separated as a nearly

pure nuclide (with only trace amounts of other neptunium isotopes), it does not match the
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proliferation potential of 239Pu, which is much more fissile (higher k∞ and lower critical

mass). A 2005 Institute for Science and International Security (ISIS) report stated that “the

proliferation risk currently posed by neptunium and americium remains relatively small”

[42].

The most salient point in this non-proliferation analysis should be that these fission-

fusion hybrids will breed plutonium that is plausibly more proliferation-resistant than that

bred by fast reactors. This fact coupled with a lack of enrichment requirements actually

makes hybrids seem fairly attractive in the context of non-proliferation. However, more

rigorous burnup and transmutation analysis would be necessary to confirm this.

Table 7.3: 239Pu One-Group Cross-Sections (barns)

thermal fast hybrid
239Pu(n,γ)240Pu 56 0.44 0.49

239Pu(n,2n)238Pu 0.0014 5.1×10−4 0.0049
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7.6 Waste

So far, we have discussed breeding and proliferation with respect to the actinides. Although

not a huge proliferation risk, 237Np is perhaps the most problematic actinide present in

waste. Although our fission-fusion hybrid produces far more 237Np than any pure fission

reactor, it will also fission 237Np far more effectively than any pure fission reactor. Although

moderately fissile, 237Np has a larger fission cross-section at 14 MeV than it does at thermal

energies. The hybrid will also fission (non-fissile) fissionable nuclides before they can produce

fissile nuclides through transmutation. Fissioning unwanted actinides is usually preferable

to transmuting them into other (potentially also unwanted) actinides. Various studies have

attempted to quantify this, and proponents of inertial confinement hybrids with natural or

depleted uranium claim that it is possible to burn 99% of all actinides [30]. This claim rests

on the viability of a decades-long cycle time, which we will discuss in the following section.

For the purposes of fair comparison between neutron spectra, we are currently discussing

burnup and transmutation on time scales concordant with current light water reactor cycle

times.

Beyond the actinides, our fission-fusion hybrid will also transmute problematic fission

product waste. In order to quantify this, we will invent a new dimensionless parameter

called the “fission product factor”. We can evaluate this parameter for each individual fis-

sion product, and it is the ratio of production through fission to removal through neutron

absorption. Here we define “neuron absorption” as (n,γ), (n,2n), (n,α), or any other neutron

reaction that transmutes the nuclide. Of course, sometimes one fission product will trans-

mute into another, but we are usually only interested in the long-lived and medium-lived

hazardous fission products, which are all separated by at least two units of mass number A.

If we assume that the uranium concentration NU is relatively constant and that the initial

fission product concentration NFP is zero, this “fission product factor” is actually equal to

the short-term equilibrium ratio NFP/NU.

NFP

NU

=
FP production rate per U atom

FP removal rate per FP atom
(7.14)

If we know the fission product yield YFP, then we can express NFP/NU in terms of cross-

sections, the flux, and the atomic fraction enrichment.

NFP

NU

=
YFP

∫∞
0

[
εσU235

f (E) + (1− ε)σU238
f (E)]φ(E) dE∫∞

0
σFP
a (E)φ(E) dE

(7.15)

This “fission product factor” is a simple, reasonable way to quantify how well a reactor

transmutes hazardous fission products. Lower values of NFP/NU mean that fission products

will generally have lower concentrations. Table 7.4 compares NFP/NU for nine hazardous

long-lived or medium-lived fission products with our usual three spectra. With the exception
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of 99Tc, every isotope exhibits its lowest NFP/NU value in the hybrid spectrum. In some

cases, the difference exceeds two orders of magnitude. Thus, it is reasonable to conclude

that our fission-fusion hybrid will be highly effective at transmuting the most harmful fission

product waste. We should note that this advantage is due almost entirely to (n,2n) reactions

on the fission products. These results are consistent with other recent studies [45].

This is crucial, because less long-lived fission product waste requires less storage space in

geologic waste repositories. Yucca Mountain is a perpetual political issue, and it is one of

the main reasons why scientists are taking a second look at hybrids. If Yucca Mountain and

other geologic repositories are forever stymied, reducing the amount of waste will become

exponentially more important.

Table 7.4: Fission Product Equilibrium Concentrations

Y (%) thermal NFP/NU fast NFP/NU hybrid NFP/NU

6.911 135Cs 0.13 0.089 0.027

6.337 137Cs 4.1 0.88 0.11

6.139 99Tc 0.0078 0.026 0.0093

5.458 93Zr 0.17 0.095 0.028

4.505 90Sr 14 0.93 0.11

1.250 107Pd 0.0068 0.0032 0.0011

0.841 129I 0.0057 0.0055 0.0019

0.108 126Sn 0.16 0.027 0.0024

0.045 79Se 1.7×10−4 3.2×10−4 1.0×10−4
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7.7 Cycle Time

The cycle time of pure fission reactors is limited by two factors: criticality and materials.

After a certain portion of the heavy metal has fissioned, the reactor can no longer remain

critical. After a certain amount of radiation damage, certain structural materials may fail.

In contrast, since fission-fusion hybrids need not achieve criticality, only materials limit their

cycle time.

We originally intended this hybrid to be a power-producing reactor, and it certainly is

that. However, we have also shown that it is a prolific plutonium breeder. If we use it to

breed fissile fuel for pure fission reactors in order to obviate enrichment as we described in

Section 7.5, then the cycle time will be on the order of a typical fast reactor cycle time.

However, if we decide that breeding fissile fuel is not a main goal of this hybrid, if we

merely desire to extract as much power from the fuel as possible, then the cycle time is

limitless. In theory, the fusion source could continue to bombard the blanket with 14 MeV

neutrons until every single actinide has fissioned and then pointlessly continue to bombard

the chaotic mass of fission products for all of eternity. Of course, there would come a point

in time when the fission blanket power gain would become low enough such that further

operation would not be worthwhile. This time scale would be decades. Many proponents

of fission-fusion hybrids have touted this ultra-long cycle time. In the context of inertial

confinement hybrids, 99% of all actinides would be fissioned in a cycle time of 50 years [30].

Tang’s 2002 master’s thesis proposes a 30-year cycle time [22]. Implementing such cycles

would largely negate concerns over proliferation and actinide waste, as most actinides would

be fissioned. Furthermore, as we have seen in Section 7.6, most harmful fission product waste

would be transmuted. We could extract a huge portion of the total potential nuclear energy

from the fuel. It would wring all the juice from the orange. Of course, as the density of

actinides would substantially decrease after decades of operation, keff would also decrease

along with the fission blanket power multiplication. We could counter this by implementing

the “variable fixed source” method we proposed in Section 7.2. The only obstacle to this

wonderful ultra-long cycle time is material irradiation, which we do not analyze in this

thesis.
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7.8 Two Options

In this burnup discussion, we have identified two main fuel cycle options:

• Burner: This would burn natural or depleted uranium. The cycle time would be

decades. It would fission a large portion of all actinides and transmute a large portion

of hazardous fission products. This would be a once-through burn-and-bury fuel cycle,

achieving extremely high burnup and eventually fissioning a large portion of all the

actinides. This is the primary mission we set forth in our introduction.

• Breeder: This would use natural or depleted uranium as fuel. It would breed ample

fissile material during a relatively short cycle time. This fissile material would then be

used as fuel for pure fission reactors. This would obviate the need for enrichment, and

it would extract energy from the world’s supply of depleted uranium. Though not our

primary objective, this could become an attractive option if uranium reserves begin to

run low in 50-100 years. As we have shown in Section 7.3, the breeding performance

would be vastly superior to that of a fast reactor.

Essentially, this fission-fusion hybrid can burn or transmute anything by brute force - without

the need for criticality, all it takes is a high-energy neutron source and plenty of time. It can

burn and extract energy from anything that is fissionable. Currently, the nuclear industry

goes to great lengths to obtain enriched uranium, put it in light water reactors that fission

less than 10% of fissionable nuclides, and then fret over how to handle the remaining 90%.

We are inured to the status quo, but when we take a step back and think about the whole

picture, it seems pretty asinine. With fission-fusion hybrids, we could simply burn natural

uranium until nearly all actinides have fissioned. It would be a like a car - you put the gas

in, and you burn all of it. What a novel concept!
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8 Pebble Structure, Thermal Hydraulics, and Safety

Thus far, we have assumed that the spherical fuel pebbles are composed of nothing more

than pure UO2. This fission model is appropriate - its simplicity is commensurate with

the simplicity of our fusion model. It generates approximate results to shape our intuition.

However, intuition for an unworkable system is pointless. For this work to be valuable,

we must demonstrate that this system would be physically realizable given an appropriate

design effort. The intention of this thesis is not any sort of intricate build-ready design,

but we must perform just enough thermal hydraulic analysis to show that cooling would be

practical and that the important materials would remain in their intended phases.

8.1 Pebble Structure

As far as the fuel pebbles are concerned, the main engineering issue is brittleness. Pure

UO2 pebbles would crack under significant mechanical and thermal stresses. Existing light

water reactors encase fuel elements within metal cladding to maintain structural integrity

and to capture fission product gases (primarily Xenon and Krypton) in the fuel-cladding gap.

However, a fuel-cladding gap would be severely problematic in spherical pebble geometry,

because the fuel would always contact the cladding at only one point. In order to capture

and store gaseous fission products within a cladded pebble, the pebble would need to contain

a large central void.

Ryu and Sekimoto have studied uranium mononitride (UN) pebbles with a central void

and stainless steel cladding [16]. The void comprises 1/4 the volume of the pebble (excluding

cladding), which reduces the homogenized uranium atom density by 25%. However, UN is

also more dense than UO2 (12.88 vs. 10.97 g/cm3) and contains more uranium atoms per

unit mass (one per 252 u vs. one per 270 u). Neglecting porosity differences, the cumulative

effect of these two facts is that UN has a uranium atom density 25% higher than that of UO2.

So even though the central void reduces the fuel volume by 25%, UN pebbles with central

voids have a homogenized uranium atom density that is only about 6% lower than that of

solid UO2 pebbles. The homogenized uranium atom density is tremendously important to

us, as the total fission power gain is directly proportional to k0, the neutron multiplication

induced by the first generation of fusion-born neutrons (see Equations 7.1 and 7.2). This is

a remarkable solution to our dilemma - ensure structural integrity of the fuel and confine

gaseous fission products while sacrificing only 6% uranium density. UN also has the added

advantage of less moderation than UO2, given that N has a smaller scattering cross-section

than O and would have a smaller atom density in UN than O in UO2.

The other concerning issue is whether the cladding material can withstand helium tem-

peratures approaching 1000◦C, which we will understand the need for in Section 7.2. Most

stainless steels retain their stainless (oxidation resistant) quality up to only several hundred



A Fission-Fusion Hybrid Reactor 179

◦C under fast neutron irradiation. There have been many studies devoted to investigat-

ing various structural materials for high temperatures and/or fast neutron spectrums [26].

Potential cladding materials include ferritic or martensitic steels, austenitic stainless steels,

nickel superalloys, or a multitude of ceramics. Of course, we should never rule out silicon

carbide, which has nearly achieved panacea status these days. Unfortunately, SiC would be

onerous to manufacture as a spherical shell. Tristructural-isotropic (TRISO) fuel particles

in conventional pebble bed reactors do contain a spherical SiC coating, but coating a parti-

cle that is a couple of millimeters in diameter is orders of magnitude simpler than actually

manufacturing a spherical shell that is a couple of centimeters in diameter. However, since

this is not a materials thesis, we will not perform any detailed materials analysis. We will

assume that if the much-lauded Very High Temperature Gas Reactor (VHTGR) can find

suitable materials at near 1000◦C, so can we.

If we truly abhor a central void but accept that cladding is absolutely necessary for

structural reasons, we must consider perforated cladding as the only potentially viable option

to deal with the gaseous fission products. Quirkily enough, wiffle balls are the inspiration

for this. See Figure 8.1 for an illustration. This general concept has actually been around

for quite a while and is known as “vented fuel”, although it has not been studied in depth for

pebble fuel. In the context of sodium-cooled reactors, vented fuel is vaunted fuel, because

the most problematic gaseous fission products react with sodium. Iodine, the most lethal

gaseous fission product, is rendered innocuous as NaI. In the context of reactors cooled by

inert gas, however, vented fuel would be significantly more challenging. There would need to

be some sort of mechanism to remove the insidious fission products from the coolant. Even

if such a mechanism could work, there would still be significant safety issues concerning loss-

of-coolant accident (LOCA) scenarios. However, this idea has been studied quantitatively

and shown to be robust, most recently in Stephanie Kempf’s 2008 MIT master’s thesis [28].

Despite these challenges, perforated pebble cladding is probably the only way to achieve high

fission power gain with UO2 fuel.

Since we have discussed vented fuel, we should at least quickly address the manufacturing

of perforated cladding. First, the ratio of perforation diameter to pebble diameter should be

small, much smaller than in the case of wiffle balls. This would prevent shards of fuel from

passing through the perforations. Second, an important question is whether to manufacture

the cladding with its perforations simultaneously or to drill the perforations at a later time,

possibly even after the fuel has been secured within the cladding. We have mentioned the

technical difficulty of manufacturing SiC as a stand-alone spherical shell. However, if we can

coat TRISO particles with SiC, it should not be completely unreasonable to coat our much

larger fuel pebbles with SiC. Once the SiC coating has cooled, it might be possible to drill

many very small perforations into it so that its surface resembles the finest of cheese graters.

Thus, UO2 pebble fuel encased in perforated SiC cladding without a central void could be
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viable, albeit cumbersome to manufacture.

In this section, we have discussed the pros and cons of various potential pebble struc-

tures. Beyond ensuring a feasible conceptual design, our parmount goal is to maximize the

homogenized uranium atom density, which ultimately determines the hybrid power gain.

Although we have performed our neutronics analysis assuming solid UO2 pebbles, which

would require perforated cladding, many other possibilities warrant future work. The UN

fuel with a central void proposed by Ryu and Sekimoto is an especially intriguing option [16].

While alternative fuel composition and cladding options will certainly alter our quantitative

results, they would not significantly change the fundamental advantages of an L-mode toka-

mak fission-fusion hybrid with natural uranium. Also, the fast neutron spectrum tends to

mitigate structural variation. For example, adding a fairly thick (10% of pebble radius) SiC

cladding to our UO2 pebbles decreases k0 (the fusion-born neutron multiplication) by about

10%. That will in turn reduce the fission power gain by about 10%. It makes a difference,

but it does not fundamentally alter the concept. The purpose of this study is exploration

of an idea, not an elaborate design. At this point in the hybrid debate, viable conceptual

designs are persuasive while intricate build-ready designs are superfluous.

Figure 8.1: Pink wiffle balls. These will suffice as an illustration of perforated pebble cladding.

The spherical cladding encases the fuel to ensure structural integrity but is perforated in order

to vent the fuel of gaseous fission products. In practice, the perforations would be much smaller

relative to the pebble diameter than the case of wiffle balls.
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8.2 Thermal Hydraulic Analysis

As should be evident, this thesis is primarily about fusion and reactor physics. However, we

must perform enough basic thermal hydraulic analysis to ensure that it would be possible.

We have developed a model based on pebble bed correlations to ensure reasonable coolant

velocity, coolant pressure drop, and temperature extrema.

Figure 8.2 shows a conceptual hybrid schematic with the helium inboard and outboard

flow paths. This is a poloidal cross-section of the tokamak. The entire device can be obtained

by rotating this cross-section 360◦ about a vertical axis to the right or left of the figure. Note

that the dimensions (especially the blanket thickness) are not to scale. In gas reactors, the

coolant usually flows downward to prevent positive acceleration due to heating.
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Figure 8.2: A basic schematic of the hybrid concept showing helium coolant flow paths. The

helium, denoted with arrows, flows downward through the pebbles to reduce acceleration. The

dotted X’s mark the X-points in the magnetic topology where we must allow ample space for

diverters. Exterior to the fuel pebble layer are the Li-Pb breeding and shielding layers, respectively.

Although the cross-section here is elliptic, we can approximate it as circular for the purposes of our

thermal analysis.
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8.2.1 Coolant Flow Rate and Pressure Drop

Let us begin the analysis. We can approximate the total power deposited in each half of the

fuel region as Pfuel, which is the fusion power Pfus multiplied by half the fission gain Qfis.

Of course, some of the power is deposited in the first wall, Li-Pb layer, and shielding layer,

but we accept this overestimate as added assurance that the flow rate will not be overly

optimistic. Also, as we have seen with toroidal neutron flux distributions, Pfuel is not evenly

divided between the inboard and outboard fuel regions - the outboard fuel generates more

power.

Pfuel =
4

5
PfusQfis/2 (8.1)

Now, if we know the desired temperature drop, we can perform a simple energy balance to

obtain the mass flow rate ṁ.

Pfuel = ṁcp(Tout − Tin) (8.2)

The helium velocity is a bit more subtle. We can easily compute vempty, the velocity the

helium would have (given the same ṁ) without the pebbles obstructing its path. We can also

define ε, the pebble bed“void fraction”, the fraction of the total fuel region volume that is not

filled with fuel pebbles. Mathematical studies show that when spheres are stacked randomly

in a volume, they will occupy about 64% of that volume [23]. Thus, ε is about 0.36. Studies

of various packed beds show that we can express the true fluid velocity as vempty/ε [17].

v =
vempty

ε
=
ṁ/ρAflow

ε
(8.3)

However, we must first define the flow area Aflow. Referring back to Figure 8.2, we can

approximate the elliptic annular regions as circular annular regions. There are four regions

surrounding the plasma: the first-wall, the pebble fuel and helium coolant, the Li-Pb breeder,

and the shield. Let the radii defining these poloidal annuli be a1, a2, a3, a4, and a5. Clearly,

the pebbles and coolant comprise the annulus between a2 and a3. Now the flow area is the

product of the poloidal annular thickness and the toroidal circumference. Of course, the

toroidal circumference varies as the coolant flows poloidally through the annulus, but we can

approximate its average value as 2π(R + a1), where R is the tokamak major radius.

Aflow = 2π(R + a1)(a3 − a2) (8.4)

The hydraulic diameter for a packed bed is directly related to the pebble diameter [17].

Dh =
ε

1− ε
Dpebble (8.5)

Now the Reynolds number is simple to compute.
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Re =
vρDh

µ
(8.6)

Before proceeding further, we should note how we compute properties of helium. We

determine helium density ρ with the ideal gas law using average system temperature and

pressure. It is true that ρ will vary quite a bit if the helium temperature gain is large,

but averaged parameters are necessary for the forthcoming pressure drop calculation. We

determine the helium thermal conductivity as a function of temperature and pressure using

a well-established correlation [25]. Here the pressure p0 is in Pa, temperature is in K, and

kHe is in W/m/K.

kHe = (2.682× 10−3)
[
1 + (1.123× 10−3)

( p0

100000

)]
T 0.71[1−(2×10−4)( p0

100000)]; (8.7)

The viscosity is simpler, as it depends mainly on temperature [25]. Here T is in K, and µHe

is in Pa*s.

µHe = (3.674× 10−7)T 0.7; (8.8)

Now we draw our pressure drop correlation from a computational fluid dynamics (CFD)

pebble bed study [19]. Here ∆P is the total pressure drop accumulating over a flow length

∆H. No integration of helium properties over temperature (which varies linearly with flow

length, assuming uniform power density) is required.

∆P

∆x
= Ψ

(
1− ε
ε3

)(
1

2ρDpebble

)(
ṁ

Aflow

)2

(8.9)

The pressure drop coefficient Ψ is a sum of turbulent and laminar components.

Ψ =
505

Re/(1− ε)
+

0.1

(Re/(1− ε))0.1
(8.10)

With this relatively simple model, we can determine the useful properties ∆P , v, and

Re as functions of average pressure, temperature, and pebble size. We will not display all of

these permutations, but just the few that are most instructive. Figure 8.3 shows the ratio

of the helium pressure drop ∆P to the ambient pressure P0 as a function of P0. All other

parameters, including the temperature increase, are fixed. We desire this ratio to be low,

probably not more than a few percent, in order to achieve a high Brayton cycle efficiency.

Clearly, the ambient helium pressure would need to exceed 5 MPa for a ratio below 1%.

Figure 8.4 shows this same pressure ratio as a function of fuel pebble diameter. As the fuel

pebbles become larger, the flow area remains constant, but the hydraulic diameter increases.

It is “easier” for gas to flow between larger pebbles than between smaller pebbles. The gas
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Figure 8.3: The ratio of the helium pressure drop ∆P to the ambient pressure P0 as a function

of P0. Here ∆T is fixed at 500◦C, and the pebble diameter is 3 cm. Note that at very low P0, the

ratio exceeds 1, because the pressure drop correlation is not valid at such low pressures.

does not need to be forced through tinier gaps between the pebbles, and so less pressure is

lost.

Figure 8.5 shows the Reynolds number Re as a function of fuel pebble diameter. The

relationship is linear, which results from the simple definition of Re. The important thing to

note here is that at the necessary ambient pressure and temperature drop, the flow is always

turbulent. Laminar flow is not a realistic possibility.

Figure 8.6 shows the helium coolant velocity as a function of its total temperature in-

crease. For larger temperature increases, smaller mass flow rates are necessary. At low

temperature increases of less than 200◦C, the required helium velocity is impossibly large.

Thus, a large temperature increase is not only favorable for the Brayton cycle efficiency, but

it is absolutely necessary to ensure a low coolant flow rate.

Figure 8.7 shows the helium velocity as a function of ambient pressure. Higher pressure

condenses the helium, which allows it to absorb more heat at a lower mass flow rate. In
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Figure 8.4: The ratio of the helium pressure drop ∆P to the ambient pressure P0 as a function

of fuel pebble diameter. Here ∆T is fixed at 500◦C, and the ambient pressure is 15 MPa.

order to keep the velocity below 10 m/s, the core must be pressurized to at least 25 MPa.

Note that the flow velocity is independent of pebble size, because it is proportional to vempty.

Obviously, ε is independent of pebble size.
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Figure 8.5: The Reynolds number as a function of pebble size. Here ∆T is fixed at 500◦C, and

the ambient pressure is 15 MPa. The flow is clearly turbulent for all reasonable pebble sizes.
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Figure 8.6: The helium coolant velocity as a function of its temperature increase through the

core. Here P0 is fixed at 15 MPa, and the pebble size is 3 cm.
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Figure 8.7: The helium coolant velocity as a function of ambient pressure. Here ∆T is fixed at

500◦C, and the pebble diameter is 3 cm.
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8.2.2 Heat Transfer and Temperature

Now that we have examined flow rates and pressure drops, we must estimate the temperature

extrema in the UO2 fuel and liquid Li-Pb breeder. UO2 must not exceed a certain margin

below its 2865◦C melting point, and Li-Pb must remain between its melting and boiling

points. Figure 8.8 shows a phase diagram for Pb content in Li. The eutectic point is at

Pb84Li16. However, we have shown with neutronics that such a eutectic contains far too

much lead to achieve breeding ratio of 1.0 while still allowing for substantial fission power

gain. In a pure fusion reactor, there is no problem with Pb84Li16, but the fission component

usurps enough neutrons to ruin its efficacy. We could use pure lithium, which exhibits a lower

melting point than the eutectic, but that would introduce an additional chemical hazard.

Pure lithium is exorbitantly corrosive to the point that it is harmful to skin contact. In

our neutronics analysis, we concluded that the lead content must be quite low at 10-15%

to breed sufficient tritium with a reasonable volume of Li-Pb. The natural question to ask

now is, “How much lead content is necessary to negate the chemical hazard?” We have no

answer, but we will assume that 10-15% Pb is sufficient. The rationale for Pb84Li16 was a

low melting point, not that 84% Pb is necessary to fix the chemical problem. The melting

point of Pb10Li90 is about 500◦C. We do not know its boiling point, but for this analysis we

will assume it is equal to that of pure lithium (1342◦C). The true boiling point is probably

substantially higher, so designing to 1342◦C will ensure a large error margin. So, in summary,

we wish to keep UO2 below 2865◦C and Li-Pb between 500◦C and 1342◦C

We begin the heat transfer analysis by obtaining an expression for the Nusselt number

Nu between the pebbles and helium coolant. In a pebble bed, the angle between the bulk

coolant velocity and the pebble surface varies quite a bit. Thus, if we apply equations

representing flow over flat planes, there are small “pockets” of space in which the helium is

actually laminar. We can express the laminar and turbulent contributions to Nu as Nul and

Nut [17].

Nul = 0.664(Re/ε)1/2Pr1/3 (8.11)

Nut =
0.037(Re/ε)0.8Pr

1 + 2.443(Re/ε)−0.1(Pr2/3 − 1)
(8.12)

Then the total “spherical” Nu is Nusp. This makes intuitive sense if one thinks of Nul and

Nut as sin θ and cos θ. The constant value of 2 is the solution for quiescent fluid (zero flow

rate).

Nusp = 2 + (Nu2
l + Nu2

t )
1/2 (8.13)

Now we can apply a correlation for the effective pebble bed Nu [17].
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Figure 8.8: A phase diagram for Pb content in Li. The eutectic point is at Pb84Li16 [20].

Nu = (1 + 1.5(1− ε)) Nusp (8.14)

Of course, we define the dimensionless constants Nu and Pr as usual. Nu defines the heat

transfer coefficient h between the pebbles and coolant.

Nu =
hDh

k
(8.15)

Pr =
cpµ

k
(8.16)

Now let us analyze the fuel pebble temperature. We can approximate the volumetric

heat generation simply by dividing the total power by the cumulative volume of all the UO2

pebbles.

q′′′fuel = Pfuel/Vfuel (8.17)
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That cumulative volume is the volume of the entire toroidal shell fuel region reduced by the

factor 1 - ε.

Vfuel =
π(a2

3 − a2
2)(2πR)

1− ε
(8.18)

Now we can solve the heat conduction equation in spherical geometry.

k∇2T = q′′′ (8.19)

The result, in terms of the maximum UO2 temperature Tmax, is

Tfuel(r) = Tmax −
q′′′fuelr

2

6kfuel

(8.20)

Defining the heat flux q′′ at the pebble surface, we can relate Tfuel(r0) to the heat transfer

coefficient h. Here r0 is the pebble radius, and we have introduced a temperature jump

∆Tclad for whatever sort of cladding is used. When we must compute temperature values,

we will assume the cladding is SiC with a thickness 5% of the pebble radius.

q′′fuel =
q′′′fuelr0

3
= h [Tfuel(r0)−∆Tclad − Tcoolant] (8.21)

Now let us turn to the Li-Pb heat transfer, which is significantly more complex and

arbitrary. We will model the liquid Li-Pb as sitting in a cylindrical annulus between radii a3

and a4. In our neutronics analysis, we computed the total power deposited direction in the

Li-Pb, which is about 40% of the fusion neutron power.

PLi =
4

5
Pfus(0.4) (8.22)

q′′′Li = PLi/VLi (8.23)

We solve the heat conduction equation again, this time in cylindrical coordinates.

TLi(r) = −q
′′′
Lir

2

4kLi

+ C1 ln(r) + C2 (8.24)

Now things become arbitrary. The helium flowing through the pebbles adjacent to this

region cools the Li-Pb. However, much heat is also conducted outward into the shield, which

is often cooled with water. Many tokamak designs even cool the lithium directly with a

separate coolant cycle. As an initial test, let us assume that the helium cools all the Li-Pb

heat generation. This is equivalent to putting a perfect insulator between the Li-Pb and the

shield at r = a4. Setting dTLi/dr = 0 at that points yields
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TLi(r) =
q′′′Li

2kLi

[
a2

3 − r2

2
+ a2

4 ln(r/a3)

]
+ ∆Twall + Tcoolant (8.25)

We again define an arbitrary temperature drop across the wall between the Li-Pb and fuel

pebbles. When we must compute temperature values, we will assume this wall is SiC (like the

plasma first-wall). Naturally, this temperature distribution will yield the largest physically

possible Li-Pb temperature at r = a4. This is a high ceiling estimate of the maximum Li-Pb

temperature.

Now let us consider a second scenario in which the heat flux at r = a3 is equal to the

heat flux at r = a4. This means that just as much heat is conducted into the shield as into

the helium coolant. It is a rather arbitrary choice, but it is a feasible scenario that could be

engineered. We will not perform any analysis for the shield cooling, which is well-established

in existing tokamak technology.

−kLi

[
dT

dr

]
a3

= kLi

[
dT

dr

]
a4

(8.26)

These boundary conditions yield

TLi(r) =
q′′′Li

2kLi

[
a2

3 − r2

2
+ a3a4 ln(r/a3)

]
+ ∆Twall + Tcoolant (8.27)

The location of maximum temperature is

rmax =
√
a3a4 (8.28)

This is a common elegant result in cylindrical heat conduction. The value of the maximum

temperature at rmax, however, is not so elegant.

TLi(rmax) =
q′′′Lia3

2kLi

[
a3 − a4

2
+ a4 ln

(√
a4/a3

)]
+ ∆Twall + Tcoolant (8.29)

Figure 8.9 shows TLi(r) for both scenarios examined here near the helium coolant outlet,

where the helium temperature is 900◦C. Clearly, the Li-Pb exceeds the boiling point of

pure Li by several hundred ◦C when no heat is conducted into the shield. Even when the

shield cools the Li-Pb just as much as the helium, the Li-Pb remains only 100◦C below the

boiling point. Of course, this is near the helium outlet. Near the helium inlet, TLi(r) will

be significantly lower. Our model does not consider transverse (parallel to helium flow) heat

conduction, which would reduce the maximum Pb-Li temperature. Also, q′′′Li is not evenly

distributed throughout the Li-Pb volume in the same way q′′′fuel is distributed throughout the

pebble bed volume. In reality, q′′′Li will be higher near the fuel pebbles, where the neutron flux

is higher. Indeed, the helium coolant could in fact cool most of the Li-Pb heat generation.
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Regardless, we will take our “half-and-half” heat transfer model as an overestimate of the

maximum Li-Pb temperature.

Figure 8.9: TLi(r) near the coolant outlet for zero heat conduction at r = a4 and for equal heat

conduction at r = a3 and a4. The boiling point of pure Li is shown. Here the helium outlet

temperature is 900◦C.

With our model settled, we can display the pertinent temperature extrema as functions

of temperature drop and pebble size. To ensure that the lithium remains above its melting

point, we set the inlet helium temperature equal to the Pb10Li90 melting temperature of

500◦C. Figure 8.10 shows the three temperature extrema of interest as a function of fuel

pebble diameter. Pebble size does not affect Li-Pb temperature, but the UO2 melting points

clearly limits the pebble diameter to approximately 8 cm.

Figure 8.11 shows the same temperature extrema as functions of helium temperature

gain. If the helium begins at 500◦C, it cannot exceed 1000◦C due to the lithium boiling

point.
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Figure 8.10: Temperature extrema as functions of fuel pebble diameter. Here the ambient pressure

is 15 MPa, and the helium temperature gain is 500◦C. In this model, pebble size has no effect on

the Li-Pb temperatures.
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Figure 8.11: Temperature extrema as functions of helium temperature gain. Here the ambient

pressure is 15 MPa, and the fuel pebble diameter is 3 cm.
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8.2.3 Summary

The coolant is hot. This is a direct result of the high Li-Pb melting temperature. Pure

lithium would solve the problem, but that is a safety question that we cannot address in the

scope of this thesis. Ideally, the lithium would be in some solid ceramic with a very high

melting temperature. However, that would pose neutronics problems, as the lithium atom

density must remain quite high in order to breed

Despite these difficulties, we have succeeded in demonstrating that the thermal hydraulics

for this device are indeed feasible. The ambient pressure would need to be quite high (≈
20 MPa), and the helium temperature range would need to be 500 - 950◦C. Under these

conditions, the helium velocity could be as low as 10 m/s. A pebble diameter in vicinity of

2 or 3 cm would be suitable. Larger is preferable, but it is prudent to keep the pebble size

small relative to the entire pebble bed thickness (≈ 20 cm).

Table 8.1: Pebble Bed Blanket Thermal Hydraulic Parameters

Ptot = 1.7 GW q′′′fuel = 25.6 MW/m3

Tin = 375◦C Tout = 825◦C

p0 = 25 MPa ∆p/p0 = 9× 10−4

ṁ = 730 kg/s V̇ = 36 m3/s

Re = 66600 v = 9.7 m/s

Dpebble = 2.5 cm (1 inch) Tmax,UO2 = 1040◦C

Tmin,Li−Pb = 550◦C Tmax,Li−Pb = 1250◦C
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8.3 Brayton Power Cycle and Electric Power

Now that we have expounded on the helium coolant flow through the fission core, it would

be prudent to perform some rudimentary analysis on the power conversion cycle. Since the

coolant is a gas, so a Brayton cycle is the natural choice. Figure 8.12 shows a schematic and T-

S diagram for a typical Brayton cycle with real components and duct pressure losses. We will

assume that the reader is familiar with this and not bother to review basic thermodynamic

cycles.

For the sake of simplicity commensurate with the rest of our thermal hydraulic analysis,

we will assume an ideal Brayton cycle. This differs from Figure 8.12 in that (1) the transi-

tions 1 → 2 and 3 → 4 are isentropic and (2) the transitions 2 → 3 and 4 → 1 are isobaric.

In practice, the cycle might also include complications such as regeneration, reheating, or

intercooling, but we will keep things simple. With only two pressures p1 and p2, the com-

pression ratio rp is p2/p1. A standard textbook result is that the efficiency η of an ideal

Brayon cycle is

η = 1− r
1−γ
γ

p (8.30)

Here γ = cp/cv = 1.658 for helium. Another standard result is the optimal compression

ratio, the value of rp that yields the maximum η for a fixed temperature difference.

(rp)optimal =

(
T3

T1

) γ
2(γ−1)

=

(
T3

T2

) γ
γ−1

(8.31)

In this case, T1 = 375◦C and T2 = 815◦C so that (rp)optimal = 3.8. Since our reactor core

operates at p2 = 25 MPa, the heat exchanger pressure p1 must be 6.6 MPa. This yields an

efficiency of 41%. Consequently, our minimum-scale steady-state L-mode hybrid will have an

electrical power output of about 5 GW. This is too large for the current U.S. electrical grid,

but, as we discussed in Section 6.5, this unfortunate conclusion is emblematic the conundrum

of stable tokamak power production.
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Table 8.2: Ideal Brayton Cycle Parameters

T2= 375◦C T3 = 825◦C

T1 = 110◦C T4 = 375◦C

p1 = 6.6 MPa p2 = 25 MPa

rp = 3.8 γ = 1.658

Q̇R = 1.7 GW Q̇HX = 1.0 GW

ẆT = 1.7 GW ẆCP = 1.0 GW

η = 0.41
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Figure 8.12: A generic Brayton power cycle with real components and duct pressure losses[29].
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8.4 Safety

Here we will briefly discuss safety and address generic accident scenarios.

This fission-fusion hybrid is invulnerable to criticality accidents, as keff is initially around

0.3 and never nears 1.0 despite prodigious 239Pu breeding. No reactivity excursion could

likely cause the fission blanket to go critical. There are no control rods, because the fusion

reaction directly and entirely controls the fission reaction. This is the main safety advantage

of subcritical hybrids over any critical fission reactor. In the event of a loss of coolant accident

(LOCA) or loss of flow accident (LOFA), we should immediately quench the fusion reaction.

This will completely shut down the fission chain reaction with virtually no chance of any

lingering reactivity.

Nevertheless, the fuel will still generate decay heat following an emergency shutdown. In

conventional pebble beds, the graphite matrix is virtually impervious to melting (carbon has

the highest melting point of any pure element), and LOCA temperature transients have been

analyzed in detail [44]. However, our pebbles are spheres of UO2. These spheres will cool

more rapidly than traditional cylindrical UO2 fuel elements by virtue of geometry, but it is

plausible that they could still melt if the helium coolant were to stagnate or depressurize.

As we explained in Section 8.2 and will elaborate on in Section 9.1.1, UO2 spheres are

strongly preferable over graphite matrix spheres due to their higher homogenized uranium

atom density, to which the fission power multiplication is directly proportional. Thus, we

are presented with a trade off. With a graphite matrix, we achieve passive safety but must

settle for relatively low power gain. With UO2, we achieve superior power gain but must

implement active safety systems. In this thesis, we choose the UO2 option, because we are

primarily concerned with maximizing power gain.
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9 Ramifications

Our analysis is complete, and we have thoroughly discussed the advantages and disadvantages

of various aspects of our conceptual design. Now we will compare it to other hybrid designs

and put it into the context of the current hybrid debate.

9.1 Comparison to Other Studies

As we discussed in our introduction, there has been a renewed interest in fission-fusion

hybrids within the past decade and more intensely within the past few years. Here we will

discuss a few other of these design proposals in more detail and compare them to ours.

9.1.1 Tokamak Pebble Bed Hybrids (ITER-PBR)

We will begin with hybrid configurations most similar to ours - tokamaks with pebble bed

blankets. Vincent Tang wrote a master’s thesis in 2002 at MIT entitled “Preliminary Design

of a Fusion-Fission Tokamak Pebble Bed Reactor” [22]. His proposed design, though also a

tokamak with a pebble bed blanket, differs from ours in many ways. First, he uses lithium

titanate (Li2TiO3) pebbles for tritium breeding such that the device has two pebble bed

zones. Second, he places these breeder pebbles between the plasma and the fissionable fuel

pebbles. We have shown that this is not optimal (see Section 3.1.4), but he makes it work by

adding beryllium to the breeder pebbles as a neutron multiplier. Third, he stipulates that

the fissionable pebbles be comprised of spent fuel from the Pebble Bed Modular Reactor

(PMBR). This spent fuel contains 96.3% 238U and 1.3% 235U by mass, so it is not too much

unlike our choice of natural uranium. The remainder is 1.1% 236U and traces of a few

plutonium isotopes. Tang’s goal is for the hybrid to perform a deep burn of this spent fuel

to extract more energy from it and dramatically reduce waste storage area. Fourth, he has

his fuel in tristructural-isotropic (TRISO) particles embedded in a larger graphite matrix

pebble, just as in the PBMR. Fifth, he does not perform any fusion scaling analysis - he

assumes all the properties of ITER.

Tang achieves a fission blanket multiplication of no greater than 3.9, which differs signifi-

cantly from our value of 7.7 (or 6.1, including the fusion α-particle power). We can determine

the reason for this disparity by comparing the fusion neutron multiplication k0 and the fission

neutron multiplication k. Tang’s thesis has a k value of 0.26, virtually the same as our value

of 0.27. Thus, there is no substantial difference in fission neutron multiplication. However,

Tang’s k0 value is a mere 0.63 compared to our 1.19. Now let us look at Qfis as a function of

k and k0 in Equation 9.1. This is similar to Equation 7.2 and arises from the discussion in

Section 7.2. Essentially, this describes Figure 3.13.
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Qfis =

[
193.9

14.1

]
k0

[
1

ν0

+
1

ν

(
1

1− k
− 1

)]
(9.1)

Here ν0 and ν are the average ν values for the fusion and fission neutrons, respectively. The

main thing to take away from this is that the fission multiplication (and the total hybrid

power) is proportional to k0. We can easily show this, because the ratio of Tang’s k0 to our

k0 is nearly equal to the ratio of our Qfis to Tang’s Qfis (0.63/1.19 ≈ 3.9/7.7). The reason

for Tang’s much lower k0 is that he uses graphite matrix pebbles, while we use UO2 pebbles.

Since the fusion neutrons mostly bombard the uranium layer from one side, k0 is highly

dependent on the macroscopic fission cross-section at high energies. We have a much higher

uranium atom density than Tang, and so our k0 is much higher. This is the reason why we

devoted so much discussion to the pebble structure - a high fissionable atom density is crucial

for hybrids to achieve high power gain. TRISO particles embedded in graphite pebbles serve

the purposes of critical reactors, but this is not a critical reactor - it is a bombardment.

This serves to show that subcritical hybrid reactors will usually require different fuel than

critical fission reactors. In hybrid reactors, all neutron generations are not created equal as

they are in fission reactors. The fusion-born neutrons are all-important to achieving a high

power gain, and the fissionable atom density must be high along their path.

Table 9.1 summarizes the main advantages and disadvantages of graphite matrix and

UO2 pebbles. Favorable properties are blue, while unfavorable properties are red. Beyond

power gain, a number of other factors come into play. Even with helium coolant, the graphite

matrix pebbles will moderate the neutrons to some extent. Tang classifies his spectrum as

epithermal, while our spectrum is unequivocally fast. Graphite pebbles are passively safe,

while UO2 pebbles might require active safety systems (such as emergency core cooling).

TRISO particles have SiC coating, which contains fission products. As we discussed in Sec-

tion 8.1, UO2 pebbles might require fission product release into the coolant, which would

require removal systems. The other option is UN pebbles, which would have the same ho-

mogenized uranium atom density as UO2 pebbles but could contain fission products within

a hollow center. In terms of manufacturing, both choices come with disadvantages. TRISO

particles and graphite matrix pebbles require a complex manufacturing process, while per-

forated SiC cladding (or any other kind of pebble cladding) would have its own technical

challenges.
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Table 9.1: Comparison of Graphite Matrix Pebbles to UO2 Pebbles

graphite matrix UO2

low power gain high power gain

soft spectrum hard spectrum

passive safety active safety

fission products fission product

contained within fuel removal necessary

complex fuel complex cladding

manufacturing process manufacturing process
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9.1.2 Other Tokamak Hybrids (SABR)

At the Georgia Institute of Technology, Professor Weston Stacey has led a number of in-

teresting tokamak hybrid projects over the past decade. This most recent design is the

Subcritical Advanced Burner Reactor (SABR), which differs substantially from the pebble

blanket concept [32]. The SABR is essentially a slightly subcritical (k = 0.9 to 0.95) fast

reactor arranged within an annulus around the outside of a tokamak core. The fuel is in

standard rod configuration with sodium coolant so that the fission technology is not sub-

stantially different than what has already been studied in depth. Figure 9.1 shows a simple

schematic of this.

The fission gain of SABR is given as a range anywhere from 6 to 30. They did not analyze

their neutronics in terms of k0 and k, but we can do it for them. Supposing that k is set at

an optimistic 0.95, the gain from all fission-born neutrons is 1/(1-k) - 1 = 19. Then, given

the total gain range of 6 to 30, the corresponding k0 range is approximately 0.07 to 0.35.

The relatively low k0 is reasonable, given that the geometry of SABR is less favorable (in

terms of capturing the fusion-born neutrons) than the pebble blanket designs. They state

that only 39% of the fusion-born neutrons even reach the fission core, and so the fraction

that actually spur fission must be substantially lower than that. Of the fusion-born neutrons

that reach the uranium layer in our design, less than half spur fission.

The main drawback of SABR relative to our design is that the fission component is very

similar to a pure fission reactor. In order to achieve k = 0.95, substantial uranium enrichment

is required. Even if SABR is intended primarily for waste transmutation, then it is part of a

fuel cycle that requires enrichment. However, as we discussed in Section 7.8, our design could

actually comprise an entire fuel cycle without enrichment. It begins with natural or depleted

uranium as fresh fuel, produces a huge amount of commercial power, transmutes most of the

hazardous waste as it is created, and could even breed fissile fuel for other purposes. Though

it is difficult to compare two devices that are intended for different purposes, we feel that k

= 0.95 does not take full advantage of the flexibility that subcritical operation allows for.
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Figure 9.1: A schematic of the Subcritical Advanced Burner Reactor (SABR) conceived at the

Georgia Institute of Technology [31].
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9.1.3 Inertial Confinement Hybrids (LIFE)

The Lawrence Livermore National Laboratory (LLNL) in association with the University of

California at Berkeley has conceived and designed the Laser Inertial Confinement Fusion-

Fission Energy (LIFE) Reactor [31]. See Figure 9.2, which happens to be glorious. Lasers

induce fusion through inertial confinement in the hollow center, while the spherical shell

contains natural uranium. The primary coolant is 2LiF-BeF2 (FLiBe) molten salt, which

doubles as a tritium breeder (and as a neutron poison in the case of 6Li). They also employ

Li17Pb83 as a first-wall coolant and additional tritium breeder.

As inertial confinement is fundamentally different than magnetic confinement, we will

not compare the fusion component of this design to ours.

LIFE touts a 500 MW fusion source with a depleted uranium blanket power multiplication

of 4 to 8. It can operate at a total power of 2 GW for 50 years and burn 99% of all actinides.

They bolster these lofty claims with some impressive neutronics burnup analysis. Initially,

the fission blanket contains almost entirely depleted uranium. The spectrum is thermal. As

burnup proceeds, the blanket breeds large quantities of 239Pu, and the power increases until

it reaches a peak at around 10 years. Subsequently, the power slowly declines for the rest of

the lifetime. In order to maintain constant power, they propose varying the concentration

of 6Li, which is a neutron poison at thermal energies.

The interesting point here is that LIFE has a maximum depleted uranium power gain of

8, which is consistent with our natural uranium power gain of 7.7. Of course, the geometry

is spherical as opposed to toroidal, and there are different material selections. However, the

same basic concept of a primarily 238U blanket nearly completely enclosing a 14 MeV neutron

source is the same. Thus, we cite this as a corroborating data point.
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Figure 9.2: A schematic of the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Reactor

conceived at Lawrence Livermore National Laboratory (LLNL).
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9.2 The Hybrid Debate

In the fall of 2009, the U.S. Department of Energy’s Office of Fusion Energy Sciences spon-

sored the “Research Needs for Fusion-Fission Hybrids” conference in Gaithersburg, Mary-

land [21]. This generated a report that was a part of the much larger Report of the Research

Needs Workshop (ReNeW). This conference assessed the current state of hybrid research,

the pros and cons of hybrids, and future research needs.

This conference included a panel of skeptics who highlighted the major challenges and

drawbacks of fission-fusion hybrids. One of their main conclusions was that hybrids would

complicate many current challenges of both fission and fusion. We have already discussed

this issue at some length in Section 1, and the primary motivation for this entire thesis was

to show that fission and fusion can be mutually beneficial in a hybrid relationship.

They also suggest that fast reactors can accomplish everything that hybrids can in terms

of fissile fuel breeding and waste transmutation. This is true, but fast reactors accomplish

these two missions far less effectively than hybrids. For example, we determined (in Section

7.3) that a typical fast reactor can breed 239Pu with a conversion ratio of 1.2. In sharp

contrast, our hybrid can do so with a conversion ratio of 22! We also determined (in Section

7.6) that our hybrid can also transmute long-lived fission product waste more effectively than

a typical fast reactor.

The third and final point we wish to contest is that of non-proliferation. The hybrid

skeptics express concern that hybrids would pose a significant proliferation risk beyond that

of pure fission reactors. While it is certainly true that proliferation would be more of a concern

for hybrids than for light water reactors, we have shown (in Section 7.5) that hybrids would

breed plutonium that contains larger portions of 238Pu and 240Pu than that bred by a typical

fast reactor. Also, the absence of enrichment is favorable for non-proliferation. Although we

would need to perform much more detailed fuel cycle analysis to state with confidence that

hybrids are more favorable than fast reactors in this respect, it is premature to assume that

hybrids will pose an elevated proliferation risk.

The ReNew hybrid report closes with a set of high-level research needs, which includes

a fuel cycle comparison of hybrid systems to pure fission systems. We took the first step

in this direction by comparing hybrids to thermal and fast reactors in the areas of fissile

fuel breeding, waste transmutation, and non-proliferation. Although our analysis was quite

basic, our findings suggest that hybrids could facilitate a more favorable fuel cycle than fast

reactors. This should be the primary focus of future hybrid research.

9.3 Overarching Conclusions

Fission-fusion hybrids have the potential to ease the challenges of both fission and fusion

by actualizing steady-state L-mode operation on the fusion side and subcritical natural or
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depleted uranium burning on the fission side. We have identified a maximum natural uranium

tokamak blanket multiplication of 7.7, and we have also identified a corresponding steady-

state L-mode tokamak minimum scale of 5.2 meters (5/6 the size of ITER). We are not so

presumptuous as to declare this the long-hoped-for panacea of nuclear energy, but we do

contend that it could be superior to pure fission systems while mitigating some of the most

challenging aspects of fusion.

Furthermore, we have demonstrated that pressurized helium could cool the fission blanket

with a flow rate of less than 10 meters per second. We have also performed basic fuel cycle

analysis to show that this hybrid could be superior to pure fission reactors for the alternative

missions of fissile fuel breeding and waste transmutation. Surprisingly, there could even

be some non-proliferation advantages. Any future work we conduct on this subject will

undoubtedly focus on its fuel cycle implications.

We dub this device the Steady-State L-Mode Non-Enriched Uranium Tokamak Hybrid

(SLEUTH). Although no subterfuge was involved in the production of this work, we hope

this serves as both a sobriquet and a mnemonic. We hope this work spurs interest in and

further research on fission-fusion hybrids. Perhaps, incidentally, it will even spur a profusion

of pro-fusion sentiment!
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A Fusion Model

A.1 0-D Core Model

This is a 0-D tokamak fusion core model, which relates various parameters such as R, a,

PF/AS, Q, and B. We use this to generate our “plasma phase diagrams” in Section 6.

function result = core(R, q_star)

% constants

Bmax = 16; % T

aspect = 2.6;

Pf_SA_ratio = 5; % MW/m^2

fgreen = 0.9;

Q = 30;

blanket_width = 1; % m

M = 2.5; % amu

E_alpha = 3.5*(1e6)*(1.6e-19) ; % J

% calculations

kappa = 5.276/(aspect^0.985);

a = R/aspect; % m

B = (R-a-blanket_width)*Bmax/R; % T

area_surf = (2*pi*a)*(2*pi*R)*((1 + kappa^2)/2)^(1/2); % m^2

area_perp = pi*kappa*(a^2); % m^2

V = 2*pi*R*area_perp; % m^3

Ip = 5*(1 + kappa^2)*(B/R)*(a^2)/(2*q_star); % MA

n20 = fgreen*Ip/(pi*(a^2)); % (1e20)m^(-3)

n = n20*(1e20); % m^(-3)

Pfusion= Pf_SA_ratio*area_surf; % MW

P_aux_max = Pfusion/Q; % MW

Palpha = Pfusion/5; % MW
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Pinput = P_aux_max + Palpha; % MW

sigma_v = (Palpha*(1e6)/V)*4/((n^2)*E_alpha); % (m^3)/s

% calculate T by minimizing sigma_v(T) - sigma_v

T = fminsearch(@(T) sigma_v_diff(T, sigma_v), 1); % keV

if(sigma_v_diff(T, sigma_v)/sigma_v > .01)

T = 0; % set T = 0 if no solution for T exists

end

tau_e = 3*n*T*(1e3)*(1.6e-19)/(Pinput*(1e6)/V); % s

H = tau_e/(0.048*((n20)^0.1)*(M^0.5)*(Ip^0.85)*(R^1.2)

*(a^0.3)*(kappa^0.5)*(B^0.2)/(Pinput^0.5));

W_th = Pinput*tau_e; % MJ

volume_avg_p = W_th*(10*(2/3))/V; % bar

beta_t = 100*volume_avg_p/(3.93*(B^2));

beta_n = beta_t/(Ip/(a*B));

% ------------ CURRENT ------------

e = 1.6e-19; % C

m_e = 9.109e-31; % kg

e0 = 8.854e-12; % (C^2)/(N*m^2)

u0 = 4*pi*(1e-7); % N/A^2

c_bs = 0.8;

efficiency_cd = 0.3*(1e20); % A/(W*m^2)

w_ce = e*B/m_e;

w_pe = e*(n/(m_e*e0))^(1/2);

freq_ratio = w_ce/w_pe;

f_boot = (beta_n/100)*(12.5*c_bs*(a^2)*B*(1+kappa^2))/(R*Ip*sqrt(a/R));

Icd = efficiency_cd*P_aux_max/(n*R); % MA

f_cd = Icd/Ip;

f_ni = f_cd + f_boot;



A Fission-Fusion Hybrid Reactor 217

r_sol = R - a - blanket_width - (0.5/6.2)*R; % m

B_sol = Bmax; % T

flux_sol = B_sol*2*pi*(r_sol^2); % Wb

ell_i_norm = 1; % for L-mode

beta_p = 0; % after start-up

L_p = u0*R*(log(R/sqrt(kappa*a)) + ell_i_norm/2 + beta_p); % J/A^2

flux_p = L_p*Ip*(1e6); % Wb = J/A

flux_ratio = flux_sol/flux_p;

result = [Ip,n20,Pfusion,P_aux_max,T,tau_e,H,beta_n

,freq_ratio,f_boot,f_cd,f_ni,flux_ratio];

end

function result = sigma_v_diff(T, sigma_v)

diff = 10^(-.0602*log10(T)^5 + .5611*log10(T)^4 - 1.5515*log10(T)^3

+ 5.1979*log10(T) - 26.1059) - sigma_v;

result = abs(diff);

end
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A.2 1-D Density, Temperature, and Power Profiles

This is a method for computing the density, temperature, and power profiles in a 1-D spher-

ical tokamak core model. This assumes a fixed set of 0-D parameters.

function [Rr,nr,Tr,sigmavr,Pfr] = profiles(a,n20,T)

E_alpha = 3.5*(1e6)*(1.6e-19); % J

alpha_n = 0.5;

alpha_T = 1.25;

f_n_offset = 0.25;

T_offset = 0.15; % keV

r_step = .0001;

% ASSUME INITIAL n(r) and T(r)

i = 1;

n0 = 1; % assume for now - normalize later

T0 = 10; % assume for now - normalize later

for r = r_step:r_step:a

nr(i) = n0*(1-(r/a)^2)^alpha_n + n20*f_n_offset; % keV

Tr(i) = T0*(1-(r/a)^2)^alpha_T + T_offset; % 1/m^3

Rr(i) = r; % m

i = i + 1;

end

% NORMALIZE n(r) and T(r)

n_tot = 0;

T_tot = 0;

for i = 1:length(Rr)

part_n = nr(i)*2*pi*Rr(i)*r_step;

part_T = Tr(i)*2*pi*Rr(i)*r_step;

n_tot = n_tot + part_n;

T_tot = T_tot + part_T;

end

n_avg = n_tot/(pi*(a^2)) - n20*f_n_offset;
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T_avg = T_tot/(pi*(a^2)) - T_offset;

norm_const_n0 = (n20 - n20*f_n_offset)/n_avg;

norm_const_T0 = (T - T_offset)/T_avg;

nr = (nr - n20*f_n_offset)*norm_const_n0 + n20*f_n_offset;

Tr = (Tr - T_offset)*norm_const_T0 + T_offset;

% CALCULATE OTHER DISTRIBUTIONS

for i = 1:length(Rr)

sigmavr(i) = sigma_v(Tr(i)); % (m^3)/s

end

for i = 1:length(Rr)

Pfr(i) = 0.25*((nr(i)*(1e20))^2)*sigmavr(i)*E_alpha*5/(1e6); % MW/m^3

end

end

function result = sigma_v(T)

result = 10^(-.0602*log10(T)^5 + .5611*log10(T)^4 - 1.5515*log10(T)^3

+ 5.1979*log10(T) - 26.1059);

end
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A.3 1-D Current Profiles

This is a method for computing the various current profiles in a 1-D spherical tokamak core

model. This assumes a fixed set of 0-D parameters.

function result = jboot(n,T,Rr,a,R,kappa)

u0 = 4*pi*(1e-7); % m*kg/(s*A)^2

J0 = 384314.3*(17.4/26.5); % A % calculated given total Ip

dr = Rr(2) - Rr(1);

dndr_1less = diff(n)/dr;

dTdr_1less = diff(T)/dr;

for i = 2:length(Rr)

dndr(i) = dndr_1less(i-1); % 1/m^4

dTdr(i) = dTdr_1less(i-1); % keV/m

end

dndr(1) = 0;

dTdr(1) = 0;

p = n.*T*(1000)*(1.6e-19)/2; % Pa

total = 0;

for i = 1:length(Rr)

r = Rr(i);

circumf = 2*pi*r*((1+kappa^2)/2)^(1/2); % m

I = J0*2*pi*kappa*((r^2)/2 - (r^4)/(4*(a^2))); % A

B_theta = u0*I/circumf; % T

boot(i) = ((r/R)^(1/2))*(p(i)/B_theta)*(-4.88*dndr(i)/n(i)

- 0.27*dTdr(i)/T(i)); % A/m^2

total = total + boot(i)*(2*pi*kappa*Rr(i))*dr;

end

result = boot*(17.4*0.46)/total;
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end
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A.4 1-D q Profile

This is a method for computing the safety factor q(r) profile in a 1-D spherical tokamak core

model. This assumes a fixed set of 0-D parameters.

function result = qprofile(r,jboot,w)

u0 = 4*pi*(1e-7);

Ip = 17.4*(1e6); % A

fcd = 0.60;

a = 5.2/2.8; % m

B = 6.8; % T

R = 5.2; % m

kappa = 1.91;

Icd = fcd*Ip;

AA = Icd/interf(1,w);

for i = 1:length(r)

Jcd(i) = AA*erfc(w*(r(i)-a/2));

jtot(i) = jboot(i) + Jcd(i);

end

dr = r(2) - r(1);

Ienc = 0;

for i = 1:length(r)

Ienc = Ienc + 2*pi*kappa*r(i)*jtot(i)*dr;

circumf = 2*pi*r(i)*sqrt((1+kappa^2)/2);

q(i) = (circumf/(2*pi*R))*B/(u0*Ienc/circumf);

end

result = q;

end

function result = interf(c,w)
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a = 5.2/2.8; % m

kappa = 1.91;

total = 0;

dr = .001;

for r = dr:dr:a

total = total + 2*pi*r*kappa*c*erfc(w*(r-a/2))*dr;

end

result = total;

end
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A.5 Auxiliary Power for Operating Point Access

This is a method for computing the 0-D auxiliary power as a function of density and tem-

perature, which maps startup and shutdown processes.

function ntplots

R = 5.2; % m

ratio = 2.8;

q_star = 3.0;

Pf_SA_ratio = 3; % MW/m^2

Q = 6.7;

blanket_width = 1; % m

Bmax = 15; % T

fgreen = 0.9;

E_alpha = 3.5*(1e6)*(1.6e-19) ; % J

M = 2.5;

kappa = 5.276/(ratio^0.985);

a = R/ratio; % m

B = (R-a-blanket_width)*Bmax/R; % T

area_surf = (2*pi*a)*(2*pi*R)*((1 + kappa^2)/2)^(1/2); % m^2

area_perp = pi*kappa*(a^2); % m^2

V = 2*pi*R*area_perp; % m^3

Ip = 5*(1 + kappa^2)*(B/R)*(a^2)/(2*q_star); % MA

n_small = fgreen*Ip/(pi*(a^2)); % m^(-3)

n_big = n_small*(1e20); % (1e20) m^(-3)

Pfusion= Pf_SA_ratio*area_surf; % MW

P_aux = Pfusion/Q; % MW

Palpha = Pfusion/5; % MW

Pinput = P_aux + Palpha; % MW

sigma_v = (Palpha*(1e6)/V)*4/((n_big^2)*E_alpha); % (m^3)/s

% calculate T by minimizing sigma_v(T) - sigma_v
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T = fminsearch(@(T) sigma_v_diff(T, sigma_v), 1); % keV

if(sigma_v_diff(T, sigma_v)/sigma_v > .01)

T = 0; % set T = 0 if no solution for T exists

end

tau_e = 3*n_big*T*(1e3)*(1.6e-19)/(Pinput*(1e6)/V); % s

H = tau_e/(0.048*((n_small)^0.1)*(M^0.5)*(Ip^0.85)*(R^1.2)*(a^0.3)

*(kappa^0.5)*(B^0.2)/(Pinput^0.5));

W_th = Pinput*tau_e; % MJ

volume_avg_p = W_th*(10*(2/3))/V; % bar

beta_t = 100*volume_avg_p/(3.93*(B^2));

beta_n = beta_t/(Ip/(a*B));

T_min = 1;

T_step = 1;

T_max = 20;

n_min = 0.02;

n_step = .02;

n_max = 1.8;

n_ = 1;

t_ = 1;

for n = n_min:n_step:n_max

den(n_) = n;

for t = T_min:T_step:T_max

temp(t_) = t;

P(n_,t_) = P_aux_max(n,t,R,ratio,q_star,H);

t_ = t_ + 1;

end

t_ = 1;

n_ = n_ + 1

end

% P_alpha = 0 analysis

T_no_alpha_heating = (P_aux*(1e6)*tau_e/(3*n_big*V))/((1.6e-19)*1000);
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% plotting

contourlevels = [0:.01:.9];

contourf(temp,den,P,contourlevels);

colorbar;

hold on;

contour(temp,den,P,[0,P_aux*.97/1000],’r’,’LineWidth’,4);

scatter([T+.6],[n_small],200,’r’,’LineWidth’,4);

ylabel(’n (10^{20}/m^3)’,’FontSize’,12);

xlabel(’T (keV)’,’FontSize’,12);

title(’P_{\mathrm{\mathrm{aux}}}(n,T) (GW)’,’FontSize’,12);

end

function result = P_aux_max(n_small, T, R, ratio, q_star, H)

% constants

Bmax = 16; % T

blanket_width = 1; % m

M = 2.5;

E_alpha = 3.5*(1e6)*(1.6e-19) ; % J

% calculations

kappa = 5.276/(ratio^0.985);

a = R/ratio; % m

B = (R-a-blanket_width)*Bmax/R; % T

%area_surf = (2*pi*a)*(2*pi*R)*((1 + kappa^2)/2)^(1/2); % m^2

area_perp = pi*kappa*(a^2); % m^2

V = 2*pi*R*area_perp; % m^3

sigma_v = 10^(-.0602*log10(T)^5 + .5611*log10(T)^4

- 1.5515*log10(T)^3 + 5.1979*log10(T) - 26.1059);

Ip = 5*(1 + kappa^2)*(B/R)*(a^2)/(2*q_star); % MA

%n_small = fgreen*Ip/(pi*(a^2)); % m^(-3)
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n_big = n_small*(1e20); % m^(-3)

Palpha = sigma_v*(n_big^2)*E_alpha*V/(4e6);

P_aux_max = fminsearch(@(x) powerbalance(x, Palpha, n_small

, E_alpha, T, V, H, kappa, R, a, B, Ip, M), 100000000);

result = P_aux_max/1000;

end

function result = powerbalance(P_aux_max, Palpha, n_small

, E_alpha, T, V, H, kappa, R, a, B, Ip, M)

n_big = n_small*(1e20);

Pinput = P_aux_max + Palpha;

tau_e = H*(0.048*((n_small)^0.1)*(M^0.5)*(Ip^0.85)*(R^1.2)

*(a^0.3)*(kappa^0.5)*(B^0.2)/(Pinput^0.5));

result = abs(P_aux_max/V + Palpha/V

- (1e-6)*(1.7e-38)*((T*1000)^(1/2))*(n_big)^2

- (1e-6)*3*n_big*T*(1e3)*(1.6e-19)/tau_e);

end

function result = sigma_v_diff(T, sigma_v)

diff = 10^(-.0602*log10(T)^5 + .5611*log10(T)^4 - 1.5515*log10(T)^3

+ 5.1979*log10(T) - 26.1059) - sigma_v;

result = abs(diff);

end
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B Toroidal Monte Carlo Code

This is the complete fission-fusion hybrid Monte Carlo code in toroidal geometry, which

we developed from scratch. It samples a fixed neutron source within the toroidal plasma

and tallies subcritical fission and tritium breeding within the blanket. We utilize ENDF

cross-sections and analog Monte Carlo (except in particle splitting during fission).

function result = hybrid(N,cs_energy_array,tH1,nH1,aH1,tHe4,tLi6,triLi6

,n2nLi6,nLi6,aLi6,tLi7,triLi7,n2nLi7,nLi7,aLi7,tC12,nC12,aC12,tO16,n2nO16

,nO16,aO16,tSi28,nSi28,aSi28,tFe56,n2nFe56,nFe56,aFe56,tPb206,n2nPb206

,nPb206,aPb206,tPb207,n2nPb207,nPb207,aPb207,tPb208,n2nPb208,nPb208

,aPb208,tU235,fU235,n3nU235,n2nU235,nU235,aU235,tU238,fU238,n3nU238

,n2nU238,nU238,aU238)

global R a1 a2 a3 a4 a5 kappa;

split = 5; % fission splitting parameter

inelastic = 0.35; % inelastic energy loss parameter

enrichmentU = 0.007;

enrichmentLi = 0.9;

% 0.007 U-235 in natural U

% 0.075 Li-6 in natural Li

% pivotal layer thicknesses

thicknessU = 0.2; % m

thicknessLi = 0.3; % m

% hybrid geometry

R = 6.2*100; % cm

a1 = 2.0*100; % cm

a2 = 2.02*100; % cm

a3 = (2.02 + thicknessU)*100; % cm

a4 = (2.02 + thicknessU + thicknessLi)*100; % cm

a5 = 3.0*100; % cm

kappa = 1.75;

% constants
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N_av = 6.022e23; % #/mol

barn_to_cm2 = 1e-24; % cm^2/barn

% Li-Pb properties

fracLi = 0.9;

density_LiPb_mass = (fracLi*6.1 + (1-fracLi)*207.2)/(fracLi*6.1/0.512

+ (1-fracLi)*207.2/10.66); % g/cm3

density_Li = density_LiPb_mass*(N_av/(fracLi*6.1

+ (1-fracLi)*207.2))*fracLi;

density_Pb = density_LiPb_mass*(N_av/(fracLi*6.1

+ (1-fracLi)*207.2))*(1-fracLi);

% UO2 properties

f_pack = 0.64;

density_UO2_mass = 10.97; % g/cm^3

density_UO2 = density_UO2_mass*(N_av/270.03); % UO2/cm^3

% He properties

density_He_mass = 0.005; % g/cm^3

density_He = density_He_mass*(N_av/8.0);

% steel properties

density_steel_mass = 8.0; % g/cm^3

density_steel = density_steel_mass*(N_av/56); % Fe/cm^3

% H2O properties

density_H2O_mass = 1.0; % g/cm^3

density_H2O = density_H2O_mass*(N_av/18);

% SiC properties

density_SiC_mass = 3.21; % g/cm^3

density_SiC = density_SiC_mass*(N_av/40.085); % Si/cm^3

% fission and tritium tallies initialization

fission_count = 0;

fission_count2 = 0;

tritium_count = 0;

tritium_count2 = 0;
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% count particle kills from rounding error

roundOffErrorCount = 0;

% neutron generation initialization

generations = zeros(1,N*2);

generations(1) = N;

generationsNum = generations;

countGen = 1;

energies = zeros(1,N*2) + 14.1;

weights = zeros(1,N*2) + 1.0;

position = zeros(3,N*2);

% sample fusion reaction sites

for i = 1:N

x = R*10;

y = 0;

z = a1*kappa*10;

% toroidal rejection sampling loop

while(withintoroid(x,y,z,a1) == 0)

x = (rand*2-1)*a1 + R;

z = (rand*2-1)*kappa*a1;

end

position(1,i) = x;

position(2,i) = y;

position(3,i) = z;

end

energiesNext = energies;

weightsNext = weights;

positionNext = position;

% neutron generation loop

while(generationsNum(countGen) > 0)

countGen = countGen + 1;

% transfer stored energies, weights, and positions
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energies = energiesNext;

weights = weightsNext;

position = positionNext;

countGenNum = 0;

% neutron history loop (for one generation)

for i = 1:generationsNum(countGen-1)

% print status progress at 10% intervals

if(mod(i,generationsNum(countGen-1)/10) == 0)

i/generationsNum(countGen-1)

end

% define neutron birth region

% (either fission or fusion, depending on generation)

region = 1;

if(countGen > 2)

region = 3;

end

% initialize neutron properties

energy = energies(i); % MeV

weight = weights(i);

x = position(1,i);

y = position(2,i);

z = position(3,i);

% sample isotropic direction

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

% alive/dead variable

exists = 1;

% neutron collision loop
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while(exists == 1)

sigma_t = zeros(1,5);

% perform binary search of nearest energy index

% (only once per collision)

index = bsearch(cs_energy_array,energy);

% compute sigma_t for region 4

sigma_t_Li6 = tLi6(index)*barn_to_cm2*density_Li*enrichmentLi;

sigma_t_Li7 = tLi7(index)*barn_to_cm2*density_Li

*(1 - enrichmentLi);

sigma_t_Pb206 = tPb206(index)*barn_to_cm2*density_Pb*0.25;

sigma_t_Pb207 = tPb207(index)*barn_to_cm2*density_Pb*0.23;

sigma_t_Pb208 = tPb208(index)*barn_to_cm2*density_Pb*0.52;

sigma_t(4) = sigma_t_Li6 + sigma_t_Li7 + sigma_t_Pb206

+ sigma_t_Pb207 + sigma_t_Pb208;

% compute sigma_t for region 3

sigma_t_U235 = tU235(index)*barn_to_cm2*density_UO2

*enrichmentU*f_pack;

sigma_t_U238 = tU238(index)*barn_to_cm2*density_UO2

*(1 - enrichmentU)*f_pack;

sigma_t_O16_U = tO16(index)*barn_to_cm2*density_UO2*2*f_pack;

sigma_t_He4_U = tHe4(index)*barn_to_cm2*density_He*2

*(1 - f_pack);

sigma_t(3) = sigma_t_U235 + sigma_t_U238 + sigma_t_O16_U

+ sigma_t_He4_U;

% compute sigma_t for region 5

sigma_t_H1 = tH1(index)*barn_to_cm2*density_H2O*0.5*2;

sigma_t_O16_Fe = tO16(index)*barn_to_cm2*density_H2O*0.5;

sigma_t_Fe56 = tFe56(index)*barn_to_cm2*density_steel*0.5;

sigma_t(5) = sigma_t_H1 + sigma_t_O16_Fe + sigma_t_Fe56;

% compute sigma_t for region 2

sigma_t_Si28 = tSi28(index)*barn_to_cm2*density_SiC*0.7;

sigma_t_C12 = tC12(index)*barn_to_cm2*density_SiC*0.7;
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sigma_t_He4_SiC = tHe4(index)*barn_to_cm2*density_He*2*0.3;

sigma_t(2) = sigma_t_Si28 + sigma_t_C12 + sigma_t_He4_SiC;

pathlength = 0;

try

% determine path length and region of next collision

[pathlength,region]

= sample_path(x,y,z,mu_x,mu_y,mu_z,region,sigma_t);

catch

% kill particle if (rare) round-off error occurs

exists = 0;

region = 6;

roundOffErrorCount = roundOffErrorCount + 1;

’ROUND-OFF ERROR’

end

% advance neutron to next collision position

x = x + pathlength*mu_x;

y = y + pathlength*mu_y;

z = z + pathlength*mu_z;

%if((withintoroid(x,y,z,a5) == 0) || (region == 6))

if(region == 6)

%leaked out of system

exists = 0;

else

% region 1 is plasma, in which particles never collide

if(region == 4)

% Li-6 and Li-7

collisiontype = rand;

if(collisiontype <= sigma_t_Li7/sigma_t(4))

% Li-7

sigma_a_Li7 = aLi7(index)*barn_to_cm2*density_Li
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*(1 - enrichmentLi);

sigma_n_Li7 = nLi7(index)*barn_to_cm2*density_Li

*(1 - enrichmentLi);

sigma_n2n_Li7 = n2nLi7(index)*barn_to_cm2*density_Li

*(1 - enrichmentLi);

sigma_tri_Li7 = triLi7(index)*barn_to_cm2*density_Li

*(1 - enrichmentLi);

collisiontype = rand;

if(collisiontype <= sigma_tri_Li7/sigma_t_Li7)

% tritium breeding

tritium_count = tritium_count + weight;

tritium_count2 = tritium_count2 + weight^2;

energy = (energy - 2.466)*(12/19);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_tri_Li7

+ sigma_n2n_Li7)/sigma_t_Li7)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_tri_Li7

+ sigma_n2n_Li7 + sigma_n_Li7)/sigma_t_Li7)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;
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phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_tri_Li7

+ sigma_n2n_Li7 + sigma_n_Li7

+ sigma_a_Li7)/sigma_t_Li7)

% (n,g)

exists = 0;

else

% elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,7);

end

elseif(collisiontype <= (sigma_t_Li7

+ sigma_t_Li6)/sigma_t(4))

% Li-6

sigma_a_Li6 = aLi6(index)*barn_to_cm2

*density_Li*enrichmentLi;

sigma_n_Li6 = nLi6(index)*barn_to_cm2

*density_Li*enrichmentLi;

sigma_n2n_Li6 = n2nLi6(index)*barn_to_cm2

*density_Li*enrichmentLi;

sigma_tri_Li6 = triLi6(index)*barn_to_cm2

*density_Li*enrichmentLi;

collisiontype = rand;

if(collisiontype <= sigma_tri_Li6/sigma_t_Li6)

% tritium breeding

tritium_count = tritium_count + weight;

tritium_count2 = tritium_count2 + weight^2;

exists = 0;
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elseif(collisiontype <= (sigma_tri_Li6

+ sigma_n2n_Li6)/sigma_t_Li6)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_tri_Li6

+ sigma_n2n_Li6 + sigma_n_Li6)/sigma_t_Li6)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_tri_Li6

+ sigma_n2n_Li6 + sigma_n_Li6

+ sigma_a_Li6)/sigma_t_Li6)

% (n,g)

exists = 0;

else

% elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,6);

end

elseif(collisiontype <= (sigma_t_Li7 + sigma_t_Li6

+ sigma_t_Pb206)/sigma_t(4))

% Pb-206

sigma_a_Pb206 = aPb206(index)*barn_to_cm2

*density_Pb*0.25;

sigma_n_Pb206 = nPb206(index)*barn_to_cm2

*density_Pb*0.25;

sigma_n2n_Pb206 = n2nPb206(index)*barn_to_cm2
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*density_Pb*0.25;

collisiontype = rand;

if(collisiontype <= sigma_n2n_Pb206/sigma_t_Pb206)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n2n_Pb206

+ sigma_n_Pb206)/sigma_t_Pb206)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n2n_Pb206

+ sigma_n_Pb206 + sigma_a_Pb206)/sigma_t_Pb206)

% (n,g)

exists = 0;

else

% elastic scatter

energy = sample_elastic_isotropic(energy,206);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

end

elseif(collisiontype <= (sigma_t_Li7 + sigma_t_Li6

+ sigma_t_Pb206 + sigma_t_Pb207)/sigma_t(4))

% Pb-207
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sigma_a_Pb207 = aPb207(index)*barn_to_cm2

*density_Pb*0.23;

sigma_n_Pb207 = nPb207(index)*barn_to_cm2

*density_Pb*0.23;

sigma_n2n_Pb207 = n2nPb207(index)*barn_to_cm2

*density_Pb*0.23;

collisiontype = rand;

if(collisiontype <= sigma_n2n_Pb207/sigma_t_Pb207)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n2n_Pb207

+ sigma_n_Pb207)/sigma_t_Pb207)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n2n_Pb207

+ sigma_n_Pb207 + sigma_a_Pb207)/sigma_t_Pb207)

% (n,g)

exists = 0;

else

% elastic scatter

energy = sample_elastic_isotropic(energy,207);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);



A Fission-Fusion Hybrid Reactor 239

mu_y = sqrt(1-mu_z^2)*sin(phi);

end

else

% Pb-208

sigma_a_Pb208 = aPb208(index)*barn_to_cm2

*density_Pb*0.52;

sigma_n_Pb208 = nPb208(index)*barn_to_cm2

*density_Pb*0.52;

sigma_n2n_Pb208 = n2nPb208(index)*barn_to_cm2

*density_Pb*0.52;

collisiontype = rand;

if(collisiontype <= sigma_n2n_Pb208/sigma_t_Pb208)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n2n_Pb208

+ sigma_n_Pb208)/sigma_t_Pb208)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n2n_Pb208

+ sigma_n_Pb208 + sigma_a_Pb208)/sigma_t_Pb208)

% (n,g)

exists = 0;

else
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% elastic scatter

energy = sample_elastic_isotropic(energy,208);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

end

end

elseif(region == 3)

% U-235, U-238, and O-16

% He-4 is neutron-transparent

collisiontype = rand;

if(collisiontype <= sigma_t_U238/sigma_t(3))

% U-238

sigma_a_U238 = aU238(index)*barn_to_cm2

*density_UO2*(1 - enrichmentU)*f_pack;

sigma_n_U238 = nU238(index)*barn_to_cm2

*density_UO2*(1 - enrichmentU)*f_pack;

sigma_n2n_U238 = n2nU238(index)*barn_to_cm2

*density_UO2*(1 - enrichmentU)*f_pack;

sigma_n3n_U238 = n3nU238(index)*barn_to_cm2

*density_UO2*(1 - enrichmentU)*f_pack;

sigma_f_U238 = fU238(index)*barn_to_cm2

*density_UO2*(1 - enrichmentU)*f_pack;

collisiontype = rand;

if(collisiontype < sigma_f_U238/sigma_t_U238)

% fission

fission_count = fission_count + weight;

fission_count2 = fission_count2 + weight^2;

weight = weight*nu(energy);
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generations(countGen) =

generations(countGen) + weight;

generationsNum(countGen) =

generationsNum(countGen) + split;

for j = 1:split

energiesNext(countGenNum+j)

= sample_fission238(energy);

positionNext(1,countGenNum+j) = x;

positionNext(2,countGenNum+j) = y;

positionNext(3,countGenNum+j) = z;

weightsNext(countGenNum+j) = weight/split;

end

countGenNum = countGenNum + split;

exists = 0;

elseif(collisiontype < (sigma_f_U238

+ sigma_n2n_U238)/sigma_t_U238)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_f_U238

+ sigma_n2n_U238 + sigma_n3n_U238)/sigma_t_U238)

% (n,3n)

weight = weight*3;

energy = maxwellian(energy/30,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_f_U238

+ sigma_n2n_U238 + sigma_n3n_U238

+ sigma_n_U238)/sigma_t_U238)

% (n,n’)

energy = energy*inelastic;
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mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_f_U238

+ sigma_n2n_U238 + sigma_n3n_U238 + sigma_n_U238

+ sigma_a_U238)/sigma_t_U238)

% (n,g)

exists = 0;

else

% elastic scatter

energy = sample_elastic_isotropic(energy,238);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

end

elseif(collisiontype <= (sigma_t_U238

+ sigma_t_U235)/sigma_t(3))

% U-235

sigma_a_U235 = aU235(index)*barn_to_cm2

*density_UO2*enrichmentU*f_pack;

sigma_n_U235 = nU235(index)*barn_to_cm2

*density_UO2*enrichmentU*f_pack;

sigma_n2n_U235 = n2nU235(index)*barn_to_cm2

*density_UO2*enrichmentU*f_pack;

sigma_n3n_U235 = n3nU235(index)*barn_to_cm2

*density_UO2*enrichmentU*f_pack;

sigma_f_U235 = fU235(index)*barn_to_cm2

*density_UO2*enrichmentU*f_pack;

collisiontype = rand;

if(collisiontype < sigma_f_U235/sigma_t_U235)

% fission

fission_count = fission_count + weight;

fission_count2 = fission_count2 + weight^2;
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weight = weight*nu(energy);

generations(countGen) = generations(countGen)

+ weight;

generationsNum(countGen) =

generationsNum(countGen) + split;

for j = 1:split

energiesNext(countGenNum+j)

= sample_fission235(energy);

positionNext(1,countGenNum+j) = x;

positionNext(2,countGenNum+j) = y;

positionNext(3,countGenNum+j) = z;

weightsNext(countGenNum+j) = weight/split;

end

countGenNum = countGenNum + split;

exists = 0;

elseif(collisiontype < (sigma_f_U235

+ sigma_n2n_U235)/sigma_t_U235)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_f_U235

+ sigma_n2n_U235 + sigma_n3n_U235)/sigma_t_U235)

% (n,3n)

weight = weight*3;

energy = maxwellian(energy/30,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_f_U235

+ sigma_n2n_U235 + sigma_n3n_U235
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+ sigma_n_U235)/sigma_t_U235)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_f_U235

+ sigma_n2n_U235 + sigma_n3n_U235

+ sigma_n_U235 + sigma_a_U235)/sigma_t_U235)

% (n,g)

exists = 0;

else

% elastic scatter

energy = sample_elastic_isotropic(energy,235);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

end

elseif(collisiontype <= (sigma_t_U238 + sigma_t_U235

+ sigma_t_O16_U)/sigma_t(3))

% O-16

sigma_a_O16_U = aO16(index)*barn_to_cm2

*density_UO2*2.0*f_pack;

sigma_n_O16_U = nO16(index)*barn_to_cm2

*density_UO2*2.0*f_pack;

sigma_n2n_O16_U = n2nO16(index)*barn_to_cm2

*density_UO2*2.0*f_pack;

collisiontype = rand;

if(collisiontype < sigma_n2n_O16_U/sigma_t_O16_U)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;
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phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_n2n_O16_U

+ sigma_n_O16_U)/sigma_t_O16_U)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_n2n_O16_U

+ sigma_n_O16_U + sigma_a_O16_U)/sigma_t_O16_U)

% (n,g)

exists = 0;

else

% elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,16);

end

else

% He-4

% cross-section is entirely elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,4);

end

elseif(region == 5)

% steal and H2O

collisiontype = rand;

if(collisiontype <= sigma_t_H1/sigma_t(5))

% H-1

sigma_a_H1 = aH1(index)*barn_to_cm2

*density_H2O*0.5*2;

sigma_n_H1 = nH1(index)*barn_to_cm2

*density_H2O*0.5*2;
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collisiontype = rand;

if(collisiontype < sigma_n_H1/sigma_t_H1)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_n_H1

+ sigma_a_H1)/sigma_t_H1)

% (n,g)

exists = 0;

else

% elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,1);

end

elseif(collisiontype <= (sigma_t_H1

+ sigma_t_O16_Fe)/sigma_t(5))

% O-16

sigma_a_O16_Fe = aO16(index)*barn_to_cm2

*density_UO2*2.0;

sigma_n_O16_Fe = nO16(index)*barn_to_cm2

*density_UO2*2.0;

sigma_n2n_O16_Fe = n2nO16(index)*barn_to_cm2

*density_UO2*2.0;

collisiontype = rand;

if(collisiontype < sigma_n2n_O16_Fe/sigma_t_O16_Fe)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;
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mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_n2n_O16_Fe

+ sigma_n_O16_Fe)/sigma_t_O16_Fe)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype < (sigma_n2n_O16_Fe

+ sigma_n_O16_Fe + sigma_a_O16_Fe)/sigma_t_O16_Fe)

% (n,g)

exists = 0;

else

% elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,16);

end

else

% Fe-56

sigma_a_Fe56 = aFe56(index)*barn_to_cm2

*density_steel*0.5;

sigma_n_Fe56 = nFe56(index)*barn_to_cm2

*density_steel*0.5;

sigma_n2n_Fe56 = n2nFe56(index)*barn_to_cm2

*density_steel*0.5;

collisiontype = rand;

if(collisiontype <= sigma_n2n_Fe56/sigma_t_Fe56)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);
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mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n2n_Fe56

+ sigma_n_Fe56)/sigma_t_Fe56)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n2n_Fe56

+ sigma_n_Fe56 + sigma_a_Fe56)/sigma_t_Fe56)

% (n,g)

exists = 0;

else

% elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,56);

end

end

elseif(region == 2)

% first wall - SiC with He coolant

collisiontype = rand;

if(collisiontype <= sigma_t_Si28/sigma_t(2))

% Si-28

sigma_a_Si28 = aSi28(index)*barn_to_cm2

*density_SiC*0.7;

sigma_n_Si28 = nSi28(index)*barn_to_cm2

*density_SiC*0.7;

collisiontype = rand;

if(collisiontype <= sigma_n_Si28/sigma_t_Si28)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;
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phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n_Si28

+ sigma_a_Si28)/sigma_t_Si28)

% (n,g)

exists = 0;

else

% elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,56);

end

elseif(collisiontype <= (sigma_t_Si28

+ sigma_t_C12)/sigma_t(2))

% C-12

sigma_a_C12 = aC12(index)*barn_to_cm2

*density_SiC*0.7;

sigma_n_C12 = nC12(index)*barn_to_cm2

*density_SiC*0.7;

collisiontype = rand;

if(collisiontype <= sigma_n_C12/sigma_t_C12)

% (n,n’)

energy = energy*inelastic;

mu_z = 2*rand - 1;

phi = 2*pi*rand;

mu_x = sqrt(1-mu_z^2)*cos(phi);

mu_y = sqrt(1-mu_z^2)*sin(phi);

elseif(collisiontype <= (sigma_n_C12

+ sigma_a_C12)/sigma_t_C12)

% (n,g)

exists = 0;

else

% elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,56);



250 Mark Reed

end

else

% He-4

% cross-section is entirely elastic scatter

[energy,mu_x,mu_y,mu_z]

= sample_elastic(energy,mu_x,mu_y,mu_z,4);

end

end

end

end

end

end

’TALLIES AND ERRORS’

% print fission and tritium tallies

fission_fraction = fission_count/N

error = sqrt((fission_count2/N - (fission_count/N)^2)/(N-1))

tritium_fraction = tritium_count/N

error = sqrt((tritium_count2/N - (tritium_count/N)^2)/(N-1))

% condense generation and k data

num = 0;

while(generations(j) > 0)

num = num + 1;

end

generations2 = zeros(1,num);

generationsNum2 = zeros(1,num);

for j = 1:num

generations2(j) = generations(j);

generationsNum2(j) = generationsNum(j);

end

k = zeros(1,num);

k(1) = 0;

for j = 2:length(k)

k(j) = generations2(j)/generations2(j-1);

end
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% output generation and k data

result = [k;generations2;generationsNum2];

end

% sample anisotropic elastic scattering

function [E2,mu_x2,mu_y2,mu_z2] = sample_elastic(E1,mu_x1,mu_y1,mu_z1,A)

% sample angular shifts

alpha = ((A-1)/(A+1))^2;

E2 = (1-alpha)*E1*rand + alpha*E1;

dmu_cm = (2*(E2/E1) - (1 + alpha))/(1 - alpha);

dmu = cos(atan2(sqrt(1-dmu_cm^2),1/A + dmu_cm));

dphi = 2*pi*rand;

% compute new unit vectors

mu_x2 = mu_x1*dmu + (sqrt(1-dmu^2)/sqrt(1-mu_z1^2))

*(mu_x1*mu_z1*cos(dphi) - mu_y1*sin(dphi));

mu_y2 = mu_y1*dmu + (sqrt(1-dmu^2)/sqrt(1-mu_z1^2))

*(mu_y1*mu_z1*cos(dphi) + mu_x1*sin(dphi));

mu_z2 = mu_z1*dmu - sqrt(1-dmu^2)*sqrt(1-mu_z1^2)*cos(dphi);

end

% sample isotropic elastic scattering

function E2 = sample_elastic_isotropic(E1,A)

alpha = ((A-1)/(A+1))^2;

E2 = (1-alpha)*E1*rand + alpha*E1;

end

% sample path length in toroidal geometry

function [pathlength_tot,region]

= sample_path(x,y,z,mu_x,mu_y,mu_z,region,sigma_t)

global a1 a2 a3 a4 a5;

% obtain positive real quartic solutions for each torus

points1 = solvequartic(a1,x,y,z,mu_x,mu_y,mu_z);
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points2 = solvequartic(a2,x,y,z,mu_x,mu_y,mu_z);

points3 = solvequartic(a3,x,y,z,mu_x,mu_y,mu_z);

points4 = solvequartic(a4,x,y,z,mu_x,mu_y,mu_z);

points5 = solvequartic(a5,x,y,z,mu_x,mu_y,mu_z);

% organize quartic solutions (points) and enumerte tori (shells)

totalPoints = length(points1) + length(points2)

+ length(points3) + length(points4) + length(points5);

points = zeros(1,totalPoints-5);

shell = zeros(1,totalPoints-5);

reg = zeros(1,totalPoints-5);

path = zeros(1,totalPoints-5);

points(1) = -1;

for m = 1:(length(points1)-1)

points(m) = points1(m);

shell(m) = 1;

end

for m = 1:(length(points2)-1)

points(m+length(points1)-1) = points2(m);

shell(m+length(points1)-1) = 2;

end

for m = 1:(length(points3)-1)

points(m+length(points1)+length(points2)-2) = points3(m);

shell(m+length(points1)+length(points2)-2) = 3;

end

for m = 1:(length(points4)-1)

points(m+length(points1)+length(points2)+length(points3)-3)

= points4(m);

shell(m+length(points1)+length(points2)+length(points3)-3) = 4;

end

for m = 1:(length(points5)-1)

points(m+length(points1)+length(points2)+length(points3)

+length(points4)-4) = points5(m);

shell(m+length(points1)+length(points2)+length(points3)

+length(points4)-4) = 5;

end

% sort quartic solutions
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[points,indices] = sort(points);

shell = shell(indices);

% enumerate regions between each quartic solution

% define path lengths between each quartic solution

reg(1) = region;

path(1) = points(1);

for m = 2:length(points);

if(shell(m-1) - reg(m-1) == 0)

reg(m) = reg(m-1) + 1;

elseif(shell(m-1) - reg(m-1) == -1)

reg(m) = reg(m-1) - 1;

else

error(’round-off error’);

end

path(m) = points(m) - points(m-1);

end

% perform path length sampling algorithm

pathlength_tot = 0;

for m = 1:length(points)

if(reg(m) == 1)

% within plasma - no collisions

pathlength_tot = pathlength_tot + path(m);

else

pathlength = -log(1-rand)/sigma_t(reg(m));

if(pathlength < path(m))

region = reg(m);

pathlength_tot = pathlength_tot + pathlength;

break;

else

pathlength_tot = pathlength_tot + path(m);

if(shell(m) == 5)

% leaked out of system - kill it

region = 6;

break;

end

end
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end

end

end

% determine positive real quartic solutions for one torus

function radiiuseful2 = solvequartic(ra,x0,y0,z0,x1,y1,z1)

global R kappa;

L = R^2 - ra^2 + x0^2 + y0^2 + (z0/kappa)^2; % cm^2

M = 2*x0*x1 + 2*y0*y1 + 2*z0*z1/(kappa^2); % cm

N = x1^2 + y1^2 + (z1/kappa)^2; % unitless

% define standard quartic coefficients

A = N^2; % unitless

B = 2*N*M; % 1/cm

C = 2*N*L + M^2 - 4*(R^2)*(x1^2 + y1^2); % 1/cm^2

D = 2*M*L - 8*(R^2)*(x0*x1 + y0*y1); % 1/cm^3

E = L^2 - 4*(R^2)*(x0^2 + y0^2); % 1/cm^4

% call Ferrari’s method for solutions

radii = quarticzeros(A,B,C,D,E); % m

%radii = roots([A,B,C,D,E]); % cm

% select only positive real zeros

radiiuseful = zeros(1,4);

m = 1;

for j = 1:4

r = radii(j);

if((real(r) > 0) && (abs(imag(r)/real(r)) < 1e-3))

radiiuseful(m) = real(r);

m = m + 1;

end

end

radiiuseful(m) = -1;

% convert solution into convenient output format

radiiuseful2 = zeros(1,m);
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for j = 1:m

radiiuseful2(j) = radiiuseful(j);

end

end

% Ferrari’s quartic solution

function result = quarticzeros(A,B,C,D,E)

alpha = -(3*B^2)/(8*A^2) + C/A;

beta = (B^3)/(8*A^3) - (B*C)/(2*A^2) + D/A;

gamma = -(3*B^4)/(256*A^4) + (C*B^2)/(16*A^3) - (B*D)/(4*A^2) + E/A;

P = -(alpha^2)/12 - gamma;

Q = -(alpha^3)/108 + alpha*gamma/3 - (beta^2)/8;

R = -Q/2 + sqrt((Q^2)/4 + (P^3)/27); % +/i on sqrt term

U = R^(1/3); % any cubic root

if(U == 0)

y = -5*alpha/6 + U - Q^(1/3);

else

y = -5*alpha/6 + U - P/(3*U);

end

W = sqrt(alpha + 2*y);

x = zeros(1,4);

x(1) = -B/(4*A) + (W + sqrt(-(3*alpha + 2*y + 2*beta/W)))/2;

x(2) = -B/(4*A) + (W - sqrt(-(3*alpha + 2*y + 2*beta/W)))/2;

x(3) = -B/(4*A) + (-W + sqrt(-(3*alpha + 2*y - 2*beta/W)))/2;

x(4) = -B/(4*A) + (-W - sqrt(-(3*alpha + 2*y - 2*beta/W)))/2;

result = x;

end

% check whether a point is within a torus (minor radius a)

function boolean = withintoroid(x,y,z,a)
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global R kappa;

r = sqrt(x^2 + y^2);

if((r^2 > (R-a)^2) && (r^2 < (R+a)^2) && (abs(z)

< kappa*sqrt(a^2-(r-R)^2)))

boolean = 1;

else

boolean = 0;

end

end

% evaluate fission nu

function value = nu(E)

if(E <= 1)

value = 2.432 + 0.066*E;

else

value = 2.349 + 0.15*E;

end

end

% sample truncated U-238 fission spectrum

% with rejection sampling

function x = sample_fission238(Ei)

x = 10;

y = 100;

while(y > chi238(x,Ei))

x = rand*14;

y = rand;

end

end

% sample truncated U-235 fission spectrum

% with rejection sampling
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function x = sample_fission235(Ei)

x = 10;

y = 100;

while(y > chi235(x,Ei))

x = rand*14;

y = rand*0.8;

end

end

% evaluate fission chi for U-238

function value = chi238(E,Ei)

if(Ei <= 1)

a = Ei*(0.89506-0.88111) + 0.88111;

b = 3.4005 - Ei*(3.4005-3.2953);

elseif(Ei <= 14)

a = (Ei-1)*(0.96534-0.89506)/13 + 0.89506;

b = 3.2953 - (Ei-1)*(3.2953-2.833)/13;

else

a = 0.96534;

b = 2.833;

end

value = exp(-E/a)*sinh(sqrt(b*E));

end

% evaluate fission chi for U-235

function value = chi235(E,Ei)

if(Ei <= 1)

a = 0.988;

b = 2.249;

elseif(Ei <= 14)

a = (Ei-1)*(1.028-0.988)/13 + 0.988;

b = 2.249 - (Ei-1)*(2.249-2.084)/13;

else
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a = 1.028;

b = 2.084;

end

value = exp(-E/a)*sinh(sqrt(b*E));

end

% sample maxwellian distribution for (n,xn)

function x = maxwellian(a,E0)

x = 9999;

y = 10;

while(y > x*exp(-x/a))

x = rand*E0*0.9;

y = rand*(a/exp(1));

end

end

% open source binary search code (slightly modified)

% bsearch(x,var)

% Written by Aroh Barjatya

% Binary search for values specified in vector ’var’ within data vector ’x’

% The data has to be pre-sorted in ascending or decending order

% There is no way to predict how the function will behave if there

% are multiple numbers with same value.

% returns the index values of the searched numbers

function index = bsearch(x,var)

xLen = length(x);

[xRow xCol] = size(x);

if x(1) > x(xLen) % means x is in descending order

if xRow==1

x = fliplr(x);

else

x = flipud(x);



A Fission-Fusion Hybrid Reactor 259

end

flipped = 1;

elseif x(1) < x(xLen) % means x is in ascending order

flipped = 0;

else

’badly formatted data. Type ’’help bsearch\’’)’;

return;

end

index = zeros(1,length(var));

for i = 1:length(var)

low = 1;

high = xLen;

if var(i) <= x(low)

index(i) = low;

continue;

elseif var(i) >= x(high)

index(i) = high;

continue;

end

flag = 0;

while (low <= high)

mid = round((low + high)/2);

if (var(i) < x(mid))

high = mid;

elseif (var(i) > x(mid))

low = mid;

else

index(i) = mid;

flag = 1;

break;

end

if (low == high - 1)

break

end

end

if (flag == 1)

continue;
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end

if (low == high)

index(i) = low;

elseif ((x(low) - var(i))^2 > (x(high) - var(i))^2)

index(i) = high;

else

index(i) = low;

end

end

if flipped

index = xLen - index + 1;

end
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C Cylindrical Monte Carlo Code

This is the path length sampling method for a fission-fusion hybrid Monte Carlo code in

cylindrical geometry. This could replace the corresponding sample path method in the

toroidal code in Appendix B.

% sample path length in cylindrical geometry

function [pathlength_tot,region]

= sample_path(x,y,z,mu_x,mu_y,mu_z,region,sigma_t)

global a1 a2 a3 a4 a5;

% determine the positive real quadratic solutions

% for each elliptic cylinder

% no z coordinates necessary

points1 = solvequadratic(a1,x,y,mu_x,mu_y);

points2 = solvequadratic(a2,x,y,mu_x,mu_y);

points3 = solvequadratic(a3,x,y,mu_x,mu_y);

points4 = solvequadratic(a4,x,y,mu_x,mu_y);

points5 = solvequadratic(a5,x,y,mu_x,mu_y);

% organize solutions and enumerte shells

totalPoints = length(points1) + length(points2)

+ length(points3) + length(points4) + length(points5);

points = zeros(1,totalPoints-5);

shell = zeros(1,totalPoints-5);

reg = zeros(1,totalPoints-5);

path = zeros(1,totalPoints-5);

points(1) = -1;

for m = 1:(length(points1)-1)

points(m) = points1(m);

shell(m) = 1;

end

for m = 1:(length(points2)-1)

points(m+length(points1)-1) = points2(m);

shell(m+length(points1)-1) = 2;

end

for m = 1:(length(points3)-1)
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points(m+length(points1)+length(points2)-2) = points3(m);

shell(m+length(points1)+length(points2)-2) = 3;

end

for m = 1:(length(points4)-1)

points(m+length(points1)+length(points2)+length(points3)-3)

= points4(m);

shell(m+length(points1)+length(points2)+length(points3)-3) = 4;

end

for m = 1:(length(points5)-1)

points(m+length(points1)+length(points2)+length(points3)

+length(points4)-4) = points5(m);

shell(m+length(points1)+length(points2)+length(points3)

+length(points4)-4) = 5;

end

% sort solutions

[points,indices] = sort(points);

shell = shell(indices);

% enumerate regions along flight path

% define path lengths between shells

reg(1) = region;

path(1) = points(1);

for m = 2:length(points);

if(shell(m-1) - reg(m-1) == 0)

reg(m) = reg(m-1) + 1;

elseif(shell(m-1) - reg(m-1) == -1)

reg(m) = reg(m-1) - 1;

else

error(’round-off error’);

end

path(m) = points(m) - points(m-1);

end

% perform sampling algorithm

pathlength_tot = 0;

for m = 1:length(points)

if(reg(m) == 1)
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% within plasma - no collisions

pathlength_tot = pathlength_tot + path(m);

else

pathlength = -log(1-rand)/sigma_t(reg(m));

if(pathlength < path(m))

region = reg(m);

pathlength_tot = pathlength_tot + pathlength;

break;

else

pathlength_tot = pathlength_tot + path(m);

if(shell(m) == 5)

% neutron leak - kill it

region = 6;

break;

end

end

end

end

end

% solve quadratic equation for elliptic cylinder

function radiiuseful2 = solvequadratic(ra,x0,y0,x1,y1)

global kappa;

% define standard quadradic coefficients

A = x1^2 + (y1/kappa)^2;

B = 2*(x0*x1 + y0*y1/kappa^2);

C = x0^2 + (y0/kappa)^2 - ra^2;

% the famed quadratic equation!

radii(1) = (-B + sqrt(B^2 - 4*A*C))/(2*A);

radii(2) = (-B - sqrt(B^2 - 4*A*C))/(2*A);

% determine the positive real solution

radiiuseful = zeros(1,2);

m = 1;

for j = 1:2
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r = radii(j);

if((real(r) > 0) && (abs(imag(r)/real(r)) < 1e-3))

radiiuseful(m) = real(r);

m = m + 1;

end

end

radiiuseful(m) = -1;

% put solutions into convenient format

radiiuseful2 = zeros(1,m);

for j = 1:m

radiiuseful2(j) = radiiuseful(j);

end

end
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D Plasma Surface Neutron Flux Code

D.1 Toroidal Flux Monte Carlo

A Monte Carlo code for toroidal fusion source sampling. Although only a part of the full-

scale fission-fusion hybrid code, this stand-alone module can compute the scalar and angular

neutron flux distributions at any point on the plasma surface.

function result = toroidalFlux(bigN)

ra = 2.0;

R = 6.2;

kappa = 1.75;

k = 1;

% loop through neutrons

for i = 1:bigN

% print progress

if(mod(i,bigN/10) == 0)

i/bigN

end

x0 = R*10;

y0 = 0;

z0 = ra*kappa*10;

% rejection sampling with toroidal source

while(inplasma(x0,y0,z0,R,ra,kappa) == 0)

x0 = (rand*2-1)*ra + R;

z0 = (rand*2-1)*kappa*ra;

end

% fusion neutrons produced isotropically

theta = acos(rand*2 - 1);

phi = rand*2*pi;

% define unit vectors
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x1 = sin(theta)*cos(phi);

y1 = sin(theta)*sin(phi);

z1 = cos(theta);

% define quartic coefficients

L = R^2 - ra^2 + x0^2 + y0^2 + (z0/kappa)^2;

M = 2*x0*x1 + 2*y0*y1 + 2*z0*z1/(kappa^2);

N = x1^2 + y1^2 + (z1/kappa)^2;

A1 = N^2;

B1 = 2*N*M;

C1 = 2*N*L + M^2 - 4*(R^2)*(x1^2 + y1^2);

D1 = 2*M*L - 8*(R^2)*(x0*x1 + y0*y1);

E1 = L^2 - 4*(R^2)*(x0^2 + y0^2);

% solve quartic equation

radii = quarticAlgebraic(A1,B1,C1,D1,E1);

% select smallest positive real solution

rmin = 10000;

for j = 1:4

r = radii(j);

if((abs(imag(r)/real(r)) < 1e-10) && (real(r) > 0))

r = real(r);

if(r < rmin)

rmin = r;

end

end

end

radius = rmin;

% track neutron to position on toroidal wall

x = x0 + radius*sin(theta)*cos(phi);

y = y0 + radius*sin(theta)*sin(phi);

z = z0 + radius*cos(theta);

% scalar flux (comment out others)

r = sqrt(x^2 + y^2);

angle(i) = atan2(abs(z),r-R);
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% angular flux at outermost point (comment out others)

ds = ra*kappa/10;

r = sqrt(x^2 + y^2);

poloidal = atan2(y,x);

if(poloidal < 0)

poloidal = 2*pi + poloidal;

end

if((r > R) && (abs(z) < ds))

if(theta > pi/2)

theta = pi-theta;

end

angle(k,1) = theta;

angle(k,2) = phi - poloidal;

k = k + 1;

end

% angular flux at topmost point (comment out others)

ds = ra/10;

r = sqrt(x^2 + y^2);

poloidal = atan2(y,x);

if(poloidal < 0)

poloidal = 2*pi + poloidal;

end

if((abs(r-R) < ds) && (z > 0))

angle(k,1) = theta;

angle(k,2) = phi - poloidal;

k = k + 1;

end

end

% plot histograms

hist(angle(:,1),200);

[bar,xbar] = hist(angle,100);

%result = [xbar;bar];

result = angle;
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end

% test whether a point is within a toroid

function result = inplasma(x,y,z,R,a,kappa)

r = sqrt(x^2 + y^2);

if((r^2 > (R-a)^2) && (r^2 < (R+a)^2) && (abs(z) < kappa*sqrt(a^2-(r-R)^2)))

result = 1;

else

result = 0;

end

end

% Ferrari’s quartic equation solution

function result = quarticAlgebraic(A,B,C,D,E)

alpha = -(3*B^2)/(8*A^2) + C/A;

beta = (B^3)/(8*A^3) - (B*C)/(2*A^2) + D/A;

gamma = -(3*B^4)/(256*A^4) + (C*B^2)/(16*A^3) - (B*D)/(4*A^2) + E/A;

P = -(alpha^2)/12 - gamma;

Q = -(alpha^3)/108 + alpha*gamma/3 - (beta^2)/8;

R = -Q/2 + sqrt((Q^2)/4 + (P^3)/27);

U = R^(1/3);

if(U == 0)

y = -5*alpha/6 + U - Q^(1/3);

else

y = -5*alpha/6 + U - P/(3*U);

end

W = sqrt(alpha + 2*y);

x(1) = -B/(4*A) + (W + sqrt(-(3*alpha + 2*y + 2*beta/W)))/2;
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x(2) = -B/(4*A) + (W - sqrt(-(3*alpha + 2*y + 2*beta/W)))/2;

x(3) = -B/(4*A) + (-W + sqrt(-(3*alpha + 2*y - 2*beta/W)))/2;

x(4) = -B/(4*A) + (-W - sqrt(-(3*alpha + 2*y - 2*beta/W)))/2;

result = x;

end
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D.2 Toroidal Volume - Spiric Sections

This function calculates the volume of toroid by integrating spiric sections from x = R − a
to R + a.

function result = spiric(R,a)

dx = .001;

Vin = 0;

for x = (R-a):dx:(R+a)

Vin = Vin + oval(R,a,x)*dx;

end

Varc = (pi*a^2)*(2*R)*acos((R-a)/(R+a));

Vout = Varc + Vin;

Vout/Vin

result = [Vin,Vout];

end

% cross-sectional area of toroid in plane x

function result = oval(R,a,x)

d = 2*(a^2 + R^2 - x^2);

e = 2*(a^2 - R^2 - x^2);

f = -(a + R + x)*(a + R - x)*(a - R + x)*(a - R - x);

r2 = @(theta) real((d*cos(theta)^2 + e*sin(theta)^2

+ sqrt((d*cos(theta)^2 + e*sin(theta)^2)^2 + 4*f))/4);

result = quadv(r2,0,2*pi);

end
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E k∞ Monte Carlo Code

This is a geometry-independent Monte Carlo neutron transport code for calculating k∞.

Here we apply it to UO2 for arbitrary enrichment.

function result = kinf_UO2(N,enrichment,e,tU238,sU238,aU238,fU238,n2nU238

,n3nU238,tU235,sU235,aU235,fU235,n2nU235,n3nU235,tO16,sO16,aO16,n2nO16)

% neutron splitting during fission

% should be (nu < split < nu/k) for subcritical

split = 5;

% fixed constants

N_av = 6.022e23; % #/mol

barn_to_cm2 = 1e-24; % cm2/barn

density_UO2 = 1.0; % g/cm3

% limit on number of generations

totalGen = 10;

% initialize various tallies

generations = zeros(1,totalGen);

generations(1) = N;

generations2 = zeros(1,totalGen);

fission_count = 0;

fission_count2 = 0;

energiesNext = zeros(1,N);

for j = 1:N

energiesNext(j) = sample_fission238(1.0);

end

weightsNext = zeros(1,N) + 1.0;

nextGenCount= N;

genCounts = zeros(1,totalGen);

% loop through neutron generations

for g = 1:totalGen-1

energies = energiesNext;
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weights = weightsNext;

genCounts(g) = nextGenCount;

thisGenCount = nextGenCount;

nextGenCount = 0;

generations(g)

thisGenCount

% loop through neutrons in each generation

for i = 1:thisGenCount

% print 20% progress in each generation

if(mod(i,thisGenCount/5) == 0)

(g-1) + i/thisGenCount

end

energy = energies(i);

weight = weights(i);

exists = 1;

% loop through collisions for each neutron

while(exists == 1)

index = bsearch(e,energy);

sigma_t_U235 = tU235(index)*barn_to_cm2*density_UO2

*enrichment*(N_av/270.03);

sigma_t_U238 = tU238(index)*barn_to_cm2*density_UO2

*(1 - enrichment)*(N_av/270.03);

sigma_t_O16 = tO16(index)*barn_to_cm2*density_UO2*2

*(N_av/270.03);

collisiontype = rand;

if(collisiontype <= sigma_t_U238/(sigma_t_U238 + sigma_t_U235

+ sigma_t_O16))

% U-238
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sigma_a_U238 = aU238(index)*barn_to_cm2*density_UO2

*(1 - enrichment)*(N_av/270.03);

sigma_f_U238 = fU238(index)*barn_to_cm2*density_UO2

*(1 - enrichment)*(N_av/270.03);

sigma_s_U238 = sU238(index)*barn_to_cm2*density_UO2

*(1 - enrichment)*(N_av/270.03);

sigma_n2n_U238 = n2nU238(index)*barn_to_cm2*density_UO2

*(1 - enrichment)*(N_av/270.03);

sigma_n3n_U238 = n3nU238(index)*barn_to_cm2*density_UO2

*(1 - enrichment)*(N_av/270.03);

collisiontype = rand;

if(collisiontype < sigma_a_U238/sigma_t_U238)

% (n,gamma)

exists = 0;

elseif(collisiontype < (sigma_a_U238

+ sigma_f_U238)/sigma_t_U238)

% fission

fission_count = fission_count + weight;

fission_count2 = fission_count2 + weight^2;

% initialize next-generation particles

weight = weight*nu(energy);

generations(g+1) = generations(g+1) + weight;

generations2(g+1) = generations2(g+1) + weight^2;

for j = 1:split

energiesNext(nextGenCount + j) =

sample_fission238(energy);

weightsNext(nextGenCount + j) = weight/split;

end

nextGenCount = nextGenCount + split;

exists = 0;

elseif(collisiontype < (sigma_a_U238 + sigma_f_U238

+ sigma_s_U238)/sigma_t_U238)

% elastic scatter

energy = sample_energy(energy,238);
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elseif(collisiontype < (sigma_a_U238 + sigma_f_U238

+ sigma_s_U238 + sigma_n2n_U238)/sigma_t_U238)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

elseif(collisiontype < (sigma_a_U238 + sigma_f_U238

+ sigma_s_U238 + sigma_n2n_U238

+ sigma_n3n_U238)/sigma_t_U238)

% (n,3n)

weight = weight*3;

energy = maxwellian(energy/30,energy);

else

if(energy > 0.04)

% inelastic scatter

energy = energy*0.5;

end

end

elseif(collisiontype <= (sigma_t_U238 + sigma_t_U235)

/(sigma_t_U238 + sigma_t_U235 + sigma_t_O16))

% U-235

sigma_a_U235 = aU235(index)*barn_to_cm2*density_UO2

*enrichment*(N_av/270.03);

sigma_f_U235 = fU235(index)*barn_to_cm2*density_UO2

*enrichment*(N_av/270.03);

sigma_s_U235 = sU235(index)*barn_to_cm2*density_UO2

*enrichment*(N_av/270.03);

sigma_n2n_U235 = n2nU235(index)*barn_to_cm2*density_UO2

*enrichment*(N_av/270.03);

sigma_n3n_U235 = n3nU235(index)*barn_to_cm2*density_UO2

*enrichment*(N_av/270.03);

collisiontype = rand;

if(collisiontype < sigma_a_U235/sigma_t_U235)

% (n,gamma)

exists = 0;

elseif(collisiontype < (sigma_a_U235
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+ sigma_f_U235)/sigma_t_U235)

% fission

fission_count = fission_count + weight;

fission_count2 = fission_count2 + weight^2;

% initialize next-generation particles

weight = weight*nu(energy);

generations(g+1) = generations(g+1) + weight;

generations2(g+1) = generations2(g+1) + weight^2;

for j = 1:split

energiesNext(nextGenCount + j) =

sample_fission235(energy);

weightsNext(nextGenCount + j) = weight/split;

end

nextGenCount = nextGenCount + split;

exists = 0;

elseif(collisiontype < (sigma_a_U235 + sigma_f_U235

+ sigma_s_U235)/sigma_t_U235)

% elastic scattering

energy = sample_energy(energy,235);

elseif(collisiontype < (sigma_a_U235 + sigma_f_U235

+ sigma_s_U235 + sigma_n2n_U235)/sigma_t_U235)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

elseif(collisiontype < (sigma_a_U235 + sigma_f_U235

+ sigma_s_U235 + sigma_n2n_U235

+ sigma_n3n_U235)/sigma_t_U235)

% (n,3n)

weight = weight*3;

energy = maxwellian(energy/30,energy);

else

if(energy > 0.04)

% inelastic scatter

energy = energy*0.5;

end

end
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else

% O-16

sigma_a_O16 = aO16(index)*barn_to_cm2*density_UO2*2

*(N_av/270.03);

sigma_s_O16 = sO16(index)*barn_to_cm2*density_UO2*2

*(N_av/270.03);

sigma_n2n_O16 = n2nO16(index)*barn_to_cm2*density_UO2*2

*(N_av/270.03);

collisiontype = rand;

if(collisiontype < sigma_a_O16/sigma_t_O16)

% (n,gamma)

exists = 0;

elseif(collisiontype < (sigma_a_O16

+ sigma_s_O16)/sigma_t_O16)

% elastic scattering

energy = sample_energy(energy,16);

elseif(collisiontype < (sigma_a_O16 + sigma_s_O16

+ sigma_n2n_O16)/sigma_t_O16)

% (n,2n)

weight = weight*2;

energy = maxwellian(energy/20,energy);

else

if(energy > 0.04)

% inelastic scatter

energy = energy*0.5;

end

end

end

end

end

end

genCounts(totalGen) = nextGenCount;

’TALLIES AND ERRORS’
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fission_fraction = fission_count/N

error = sqrt((fission_count2/N - (fission_count/N)^2)/(N-1))

% print data

generations2

genCounts

generationsError = sqrt((generations2./genCounts

- (generations./genCounts).^2)./(genCounts-1));

generationsError(1) = 0;

generationsError

% computer errors

k(1) = -1;

kerror(1) = 0;

for j = 2:length(generations)

k(j) = generations(j)/generations(j-1);

%kerror(j) = sqrt((generationsError(j)/generations(j-1))^2

+ ((generations(j)*generationsError(j-1))^2)/generations(j-1)^4);

end

kerror = k.*generationsError./generations;

%print data

generations

k

kerror

result = [k(2),kerror(2)];

end

% sample elastic scattering energy loss

function result = sample_energy(E1,A)

alpha = ((A-1)/(A+1))^2;

E2 = (1-alpha)*E1*rand + alpha*E1;

result = E2;

end

function result = nu(E)
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if(E <= 1)

result = 2.432 + 0.066*E;

else

result = 2.349 + 0.15*E;

end

end

function result = sample_fission238(Ei)

x = 10;

y = 100;

while(y > chi238(x,Ei))

x = rand*14;

y = rand;

end

result = x;

end

function result = sample_fission235(Ei)

x = 10;

y = 100;

while(y > chi235(x,Ei))

x = rand*14;

y = rand*0.8;

end

result = x;

end

function result = chi238(E,Ei)

if(Ei <= 1)

a = Ei*(0.89506-0.88111) + 0.88111;

b = 3.4005 - Ei*(3.4005-3.2953);
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elseif(Ei <= 14)

a = (Ei-1)*(0.96534-0.89506)/13 + 0.89506;

b = 3.2953 - (Ei-1)*(3.2953-2.833)/13;

else

a = 0.96534;

b = 2.833;

end

result = exp(-E/a)*sinh(sqrt(b*E));

end

function result = chi235(E,Ei)

if(Ei <= 1)

a = 0.988;

b = 2.249;

elseif(Ei <= 14)

a = (Ei-1)*(1.028-0.988)/13 + 0.988;

b = 2.249 - (Ei-1)*(2.249-2.084)/13;

else

a = 1.028;

b = 2.084;

end

result = exp(-E/a)*sinh(sqrt(b*E));

end

% sample Maxwellian distribution

function result = maxwellian(a,E0)

x = 9999;

y = 10;

while(y > x*exp(-x/a))

x = rand*E0*0.9;

y = rand*(a/exp(1));

end

result = x;
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end
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F Elastic Scattering

Here is a simple Monte Carlo code for calculating elastic scattering angular probability

distributions P (µL) for arbitrary nuclide mass A.

function anisotropic(A)

N = 7000000;

alpha = ((A-1)/(A+1))^2;

mu = zeros(1,N);

for i = 1:N

E = rand*(1-alpha) + alpha;

mu(i) = (2*E - (1 + alpha))/(1 - alpha);

end

mu = cos(atan2(sqrt(1-mu.^2),1/A + mu));

x = hist(mu,1000);

end
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G Thermal Hydraulics Model

This is a gas-cooled pebble bed thermal hydraulics model in toroidal geometry.

function [vs,Re,pRatio] = thermal(p0,dT,d)

% temperature specification

Tin = 400; % C

Tout = Tin + dT; % C

Tavg = (Tout+Tin)/2; % C

% geometry specification

R = 6.2; % m

a = 2; % m

a2 = 2.02; % m

a3 = 2.22; % m

a4 = 2.52; % m

kappa = 1.75;

e = 0.36; % "empty" fraction in packed bed

% fission power specification

Pfus = 500*(1e6); % W

Qfis = 8.5; % W

Pfis = Pfus*(4/5)*Qfis/2; % W

% COOLANT FLOW ANALYSIS

% mass/power balance

cp = 5195; % J/kg/K

m = Pfis/(cp*dT); % kg/s

% He properties

rho = 0.1786*(p0/101000)*(273/Tavg); % kg/m^3

mu = (3.674e-7)*(Tavg + 273)^0.7; % Pa*s

k_He = (2.682e-3)*(1 + (1.123e-3)*(p0/100000))

*(Tavg + 273)^(0.71*(1 - (2e-4)*(p0/100000))); % W/m/K

% flow rate
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d_h = d*e/(1-e); % m

Af = (a3-a2)*(2*pi*(R+a)); % m^2

v_empty = m/(rho*Af); % m/s

vs = v_empty/e; % m/s

Re = d_h*vs*rho/mu;

% pressure drop

psi = 505/(Re/(1-e)) + 0.1/(Re/(1-e))^0.1;

dPdx = psi*((1-e)/e^3)*(1/d)*(1/(2*rho))*(m/Af)^2; % Pa/m

dP = dPdx*(pi*a*sqrt((1+kappa^2)/2)); % Pa

pRatio = dP/p0;

% FUEL PEBBLE ANALYSIS

% UO2 properties

k_U = 5.0; % W/m/K

Tmelt_U = 2865; % C

% UO2 power density

V_U = pi*(a3^2 - a2^2)*(2*pi*R)*(1-e); % m^3

q3_U = Pfis/V_U; % W/m^3

% heat transfer coefficient

Pr = cp*mu/k_He;

Nul = 0.664*(Pr^(1/3))*((Re/e)^(1/2));

Nut = (0.037*Pr*(Re/e)^0.8)/(1+2.443*((Re/e)^(-0.1))*(Pr^(2/3)-1));

Nusp = 2 + (Nul^2 + Nut^2)^(1/2);

Nu = (1+1.5*(1-e))*Nusp;

h = Nu*k_He/d_h; % W/m^2/K

% SiC cladding temperature drop

k_SiC = 4.0; % W/m/K

q2_U = q3_U*d/6; % W/m^2

dTclad = q2_U*(d/10)/k_SiC; % C

% max UO2 temperature

T_Umax = q3_U*(d/2)/(3*h) + Tout + dTclad + q3_U*((d/2)^2)/(6*k_U); % C

Tmelt_U - T_Umax
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% LITHIUM ANALYSIS

% Li-Pb properties (approximate)

k_Li = 50.0; % W/m/K

Tmelt_Li = 500; % C

Tboil_Li = 1342; % C

% Li-Pb power density

V_Li = pi*(a4^2 - a3^2)*(2*pi*R); % m^3

q3_Li = Pfus*0.41/V_Li; % W/m^3

% Zr separation wall temperature drop

k_Zr = 23.0; % W/m/K

q2_Li = q3_Li*V_Li/(2*pi*a3*2*pi*R)/2; % W/m^2

dTwall = q2_Li*.02/k_Zr + q2_Li/h; % C

% max Li-Pb temperature

T_Limax = ((q3_Li*a3)/(2*k_Li))*((a3-a4)/2 + a4*log(sqrt(a4/a3)))

+ Tout + dTwall; % C

T_Limin = Tin + dTwall; % C

% print temperature results

Tboil_Li - T_Limax

T_Limin - Tmelt_Li

Tmelt_U - T_Umax

end
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H Conversion Ratio Model

This is a MATLAB code that numerically integrates the uranium transmutation-decay chain

to compute conversion ratio as a function of time.

function result = conversion(energy,u238a,u238f,u239a,u239f,np239a

,np239f,pu239a,pu239f,u235a,u235f,u240a,u240f

,np240a,np240f,pu240a,pu240f,pu241a,pu241f)

u238a = u238a(bsearch(u238a(:,1),energy),2); % barn

u238f = u238f(bsearch(u238f(:,1),energy),2);

u239a = u239a(bsearch(u239a(:,1),energy),2);

u239f = u239f(bsearch(u239f(:,1),energy),2);

np239a = np239a(bsearch(np239a(:,1),energy),2);

np239f = np239f(bsearch(np239f(:,1),energy),2);

pu239a = pu239a(bsearch(pu239a(:,1),energy),2);

pu239f = pu239f(bsearch(pu239f(:,1),energy),2);

u235f = u235f(bsearch(u235f(:,1),energy),2);

u235a = u235a(bsearch(u235a(:,1),energy),2);

u240a = u240a(bsearch(u240a(:,1),energy),2);

u240f = u240f(bsearch(u240f(:,1),energy),2);

np240a = np240a(bsearch(np240a(:,1),energy),2);

np240f = np240f(bsearch(np240f(:,1),energy),2);

pu240a = pu240a(bsearch(pu240a(:,1),energy),2);

pu240f = pu240f(bsearch(pu240f(:,1),energy),2);

pu241a = pu241a(bsearch(pu241a(:,1),energy),2);

pu241f = pu241f(bsearch(pu241f(:,1),energy),2);

cm2barn = 1e-24; % barn/cm^2

lambda_u239 = 5.18e-4; % #/s

lambda_np239 = 3.41e-6;

lambda_u240 = 1.37e-5;

lambda_np240 = 0.0016;

lambda_pu241 = 1.57e-9;

tmax = 3e6; % s

dt = 2; % s
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% number of time steps

num = tmax/dt;

% preallocate number densities

Nu238 = zeros(1,num);

Nu239 = zeros(1,num);

Nnp239 = zeros(1,num);

Npu239 = zeros(1,num);

Nu235 = zeros(1,num);

Nu240 = zeros(1,num);

Nnp240 = zeros(1,num);

Npu240 = zeros(1,num);

Npu241 = zeros(1,num);

% preallocate gains/losses

Nu235loss = zeros(1,num);

Npu239gain = zeros(1,num);

Npu241gain = zeros(1,num);

% chose arbitrary flux magnitude

flux = 1e12; % #/s/cm^2

% initialize number densities

Nu238(1) = .95; % #/cm^3

Nu239(1) = 0;

Nnp239(1) = 0;

Npu239(1) = 0;

Nu235(1) = .05;

Nu240(1) = 0;

Nnp240(1) = 0;

Npu240(1) = 0;

Npu241(1) = 0;

Nu235loss(1) = 0;

Npu239gain(1) = 0;

i = 2;

for t = dt:dt:tmax
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% numerically integrate

Nu238(i) = Nu238(i-1) - u238a*cm2barn*Nu238(i-1)*flux*dt

- u238f*cm2barn*Nu238(i-1)*flux*dt;

Nu239(i) = Nu239(i-1) - u239a*cm2barn*Nu239(i-1)*flux*dt

- u239f*cm2barn*Nu239(i-1)*flux*dt

- lambda_u239*Nu239(i-1)*dt

+ u238a*cm2barn*Nu238(i-1)*flux*dt;

Nnp239(i) = Nnp239(i-1) - np239a*cm2barn*Nnp239(i-1)*flux*dt

- np239f*cm2barn*Nnp239(i-1)*flux*dt

- lambda_np239*Nnp239(i-1)*dt

+ lambda_u239*Nu239(i-1)*dt;

Npu239(i) = Npu239(i-1) - pu239a*cm2barn*Npu239(i-1)*flux*dt

- pu239f*cm2barn*Npu239(i-1)*flux*dt

+ lambda_np239*Nnp239(i-1)*dt;

Nu240(i) = Nu240(i-1) + u239a*cm2barn*Nu239(i-1)*flux*dt

- u240f*cm2barn*Nu240(i-1)*flux*dt

- lambda_u240*Nu240(i-1)*dt

- u240a*cm2barn*Nu240(i-1)*flux*dt;

Nnp240(i) = Nnp240(i-1) + np239a*cm2barn*Nnp239(i-1)*flux*dt

- np240f*cm2barn*Nnp240(i-1)*flux*dt

- lambda_np240*Nnp240(i-1)*dt

- np240a*cm2barn*Nnp240(i-1)*flux*dt

+ lambda_u240*Nu240(i-1)*dt;

Npu240(i) = Npu240(i-1) + pu239a*cm2barn*Npu239(i-1)*flux*dt

- pu240f*cm2barn*Npu240(i-1)*flux*dt

- pu240a*cm2barn*Npu240(i-1)*flux*dt

+ lambda_np240*Nnp240(i-1)*dt;

Npu241(i) = Npu241(i-1) + pu240a*cm2barn*Npu240(i-1)*flux*dt

- pu241f*cm2barn*Npu241(i-1)*flux*dt

- pu241a*cm2barn*Npu241(i-1)*flux*dt

- lambda_pu241*Npu241(i-1)*dt;

Npu239gain(i) = -pu239a*cm2barn*Npu239(i-1)*flux

- pu239f*cm2barn*Npu239(i-1)*flux

+ lambda_np239*Nnp239(i-1);

Npu241gain(i) = pu240a*cm2barn*Npu240(i-1)*flux
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- pu241f*cm2barn*Npu241(i-1)*flux

- pu241a*cm2barn*Npu241(i-1)*flux

- lambda_pu241*Npu241(i-1);

Nu235loss(i) = Nu235(i-1)*u235f*cm2barn*flux

+ Nu235(i-1)*u235a*cm2barn*flux;

Nu235(i) = Nu235(i-1) - Nu235(i-1)*u235f*cm2barn*flux*dt

- Nu235(i-1)*u235a*cm2barn*flux*dt;

i = i + 1;

end

% process and output data

conversion = (Npu239gain + Npu241gain)./Nu235loss;

ratio = Npu239gain./Npu241gain;

t = 0:dt:tmax;

plot(t,conversion,’LineWidth’,2);

result = conversion(num);

end
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I MCNP Input Files

I.1 Full Toroidal Hybrid Blanket

This is an MCNP input file for a fission-fusion hybrid in toroidal geometry. This produces

results consistent with the MATLAB Monte Carlo code in Appendix B.

Fission-Fusion Hybrid

1 0 -1 IMP:N=1

2 1 -2.247 1 -2 IMP:N=1

3 2 -7.0208 2 -3 IMP:N=1

4 3 -1.9067 3 -4 IMP:N=1

5 4 -4.437 4 -5 IMP:N=1

6 0 5 IMP:N=0

1 TZ 0 0 0 620 350 200

2 TZ 0 0 0 620 353.5 202

3 TZ 0 0 0 620 388.5 222

4 TZ 0 0 0 620 441 252

5 TZ 0 0 0 620 525 300

M1 6000.73c -0.29905 14028.73c -0.70028 2004.73c -0.00067

M2 92235.73c -0.00619 92238.73c -0.87508 8016.73c -0.11847

2004.73c -0.00026

M3 3006.73c -0.18542 3007.73c -0.02404 82000 -0.79054

M4 26056.73c -0.8873 1001.73c -0.0125 8016.73c -0.1002

SDEF X=d1 Y=d2 Z=d3 ERG=14.1 PAR=1 CEL=1

SI1 -820. 820

SP1 0 1

SI2 -820. 820

SP2 0 1

SI3 -350. 350

SP3 0 1

MODE N

NPS 100000

F1:N 1 5

F2:N 1 5

F6:N 3
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F7:N 3

F4:N 3

KCODE 20000 1.0 0 10

prdmp 0 -0 1
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I.2 k∞ for U and UO2

This is an MCNP input file for computing k∞ for UO2. This produces results consistent

with the MATLAB Monte Carlo code in Appendix E.

k-infinity

1 1 -1.0 -1 2 -3 4 -5 6 IMP:N=1 IMP:P=0

*1 PX 10

*2 PX -10

*3 PY 10

*4 PY -10

*5 PZ 10

*6 PZ -10

M1 092235 -0.0061705 092238 -0.8753295 008016 -0.1185

c M1 092238 -0.05 092235 -0.95

c M1 092235 -1

c M1 092238 -0.8815 008016 -0.1185

c SDEF X=d1 Y=d2 Z=d3 ERG=1.0 PAR=1 CEL=1

c SI1 -100. 100.

c SP1 0 1

c SI2 -100. 100.

c SP2 0 1

c SI3 -100. 100.

c SP3 0 1

MODE N

KCODE 20000 1.0 0 20

KSRC 0 0 0
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I.3 Infinite Array of UO2 Pebbles in H2O Pool (Simple Cubic)

This is a MCNP input file for computing k∞ for an infinite array of UO2 pebbles in a pool

of H2O. We can vary the pebble radius to determine k∞ as a function of it.

pebbles

1 1 -10.97 -1 IMP:N=1

2 2 -0.005 1 -2 3 -4 5 -6 7 IMP:N=1

1 SO 10

*2 PX 10

*3 PX -10

*4 PY 10

*5 PY -10

*6 PZ 10

*7 PZ -10

M1 92235 -0.0063 92238 -0.8752 8016 -0.1185

c M2 1001 -0.125 8016 -0.875

M2 2004 -1.0

c SDEF X=d1 Y=d2 Z=d3 ERG=1.0 PAR=1 CEL=1

c SI1 -300. 300

c SP1 0 1

c SI2 -300. 300

c SP2 0 1

c SI3 -300. 300

c SP3 0 1

MODE N

KCODE 15000 1.0 0 20

KSRC 0 0 0
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I.4 Typical Fast Reactor Spectrum

This is a MCNP input file for obtaining an approximate 248-group flux shape for a typical

fast reactor. We construct a 3 x 3 array of UO2 pin cells immersed in Na coolant and adjust

the physical dimensions such that k = 1.0. We borrow 248 energy bins of equal lethargy

width from the MIT Reactor research group.

fast

1 2 -10.97 -1 14 -15 IMP:N=1

2 2 -10.97 -2 14 -15 IMP:N=1

3 2 -10.97 -3 14 -15 IMP:N=1

4 2 -10.97 -4 14 -15 IMP:N=1

5 2 -10.97 -5 14 -15 IMP:N=1

6 2 -10.97 -6 14 -15 IMP:N=1

7 2 -10.97 -7 14 -15 IMP:N=1

8 2 -10.97 -8 14 -15 IMP:N=1

9 2 -10.97 -9 14 -15 IMP:N=1

10 1 -0.927 1 2 3 4 5 6 7 8 9 10 -11 12 -13 14 -15 IMP:N=1

11 0 -10:11:-12:13:-14:15 IMP:N=0

1 C/Z -2 -2 0.9

2 C/Z -2 0 0.9

3 C/Z -2 2 0.9

4 C/Z 0 -2 0.9

5 C/Z 0 0 0.9

6 C/Z 0 2 0.9

7 C/Z 2 -2 0.9

8 C/Z 2 0 0.9

9 C/Z 2 2 0.9

*10 PX -3

*11 PX 3

*12 PY -3

*13 PY 3

*14 PZ -10

*15 PZ 10

c M1 1001.73c -0.1111 8016.73c -0.8889

c M2 92235.73c -0.0441 92238.73c -0.8373 8016.73c -0.1186
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M1 11023.73c -1.0

M2 92235.73c -0.0781 92238.73c -0.8033 8016.73c -0.1186

MODE N

KCODE 10000 1.0 20 120

KSRC 0 0 0

fc14 Flux Profile - 2PH1

e14 3e-6 0.1 20

f14:n 5

c

fc64 Flux spectrum - constant lethargy (u=0.1) - ICSA

e64 1.00E-11 2.00E-11 5.00E-11 1.00E-10 2.00E-10 5.00E-10

6.87E-10 7.60E-10 8.40E-10 9.28E-10

1.03E-09 1.13E-09 1.25E-09 1.38E-09 1.53E-09 1.69E-09

1.87E-09 2.07E-09 2.28E-09 2.52E-09 2.79E-09 3.08E-09

3.41E-09 3.76E-09 4.16E-09 4.60E-09 5.08E-09 5.61E-09

6.20E-09 6.86E-09 7.58E-09 8.37E-09 9.26E-09 1.02E-08

1.13E-08 1.25E-08 1.38E-08 1.53E-08 1.69E-08 1.86E-08

2.06E-08 2.28E-08 2.52E-08 2.78E-08 3.07E-08 3.40E-08

3.75E-08 4.15E-08 4.58E-08 5.07E-08 5.60E-08 6.19E-08

6.84E-08 7.56E-08 8.35E-08 9.23E-08 1.02E-07 1.13E-07

1.25E-07 1.38E-07 1.52E-07 1.68E-07 1.86E-07 2.05E-07

2.27E-07 2.51E-07 2.77E-07 3.07E-07 3.39E-07 3.74E-07

4.14E-07 4.57E-07 5.05E-07 5.59E-07 6.17E-07 6.82E-07

7.54E-07 8.33E-07 9.21E-07 1.02E-06 1.13E-06 1.24E-06

1.37E-06 1.52E-06 1.68E-06 1.85E-06 2.05E-06 2.27E-06

2.50E-06 2.77E-06 3.06E-06 3.38E-06 3.73E-06 4.13E-06

4.56E-06 5.04E-06 5.57E-06 6.16E-06 6.80E-06 7.52E-06

8.31E-06 9.18E-06 1.02E-05 1.12E-05 1.24E-05 1.37E-05

1.51E-05 1.67E-05 1.85E-05 2.04E-05 2.26E-05 2.50E-05

2.76E-05 3.05E-05 3.37E-05 3.72E-05 4.12E-05 4.55E-05

5.03E-05 5.56E-05 6.14E-05 6.79E-05 7.50E-05 8.29E-05

9.16E-05 1.01E-04 1.12E-04 1.24E-04 1.37E-04 1.51E-04

1.67E-04 1.85E-04 2.04E-04 2.25E-04 2.49E-04 2.75E-04

3.04E-04 3.36E-04 3.72E-04 4.11E-04 4.54E-04 5.01E-04

5.54E-04 6.12E-04 6.77E-04 7.48E-04 8.27E-04 9.14E-04

1.01E-03 1.12E-03 1.23E-03 1.36E-03 1.51E-03 1.67E-03

1.84E-03 2.03E-03 2.25E-03 2.48E-03 2.75E-03 3.03E-03

3.35E-03 3.71E-03 4.10E-03 4.53E-03 5.00E-03 5.53E-03
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6.11E-03 6.75E-03 7.46E-03 8.25E-03 9.11E-03 1.01E-02

1.11E-02 1.23E-02 1.36E-02 1.50E-02 1.66E-02 1.84E-02

2.03E-02 2.24E-02 2.48E-02 2.74E-02 3.03E-02 3.34E-02

3.70E-02 4.08E-02 4.51E-02 4.99E-02 5.51E-02 6.09E-02

6.73E-02 7.44E-02 8.22E-02 9.09E-02 1.01E-01 1.11E-01

1.23E-01 1.36E-01 1.50E-01 1.66E-01 1.83E-01 2.02E-01

2.24E-01 2.47E-01 2.73E-01 3.02E-01 3.34E-01 3.69E-01

4.07E-01 4.50E-01 4.98E-01 5.50E-01 6.08E-01 6.72E-01

7.42E-01 8.20E-01 9.07E-01 1.00E+00 1.11E+00 1.22E+00

1.35E+00 1.50E+00 1.65E+00 1.83E+00 2.02E+00 2.23E+00

2.46E+00 2.72E+00 3.01E+00 3.33E+00 3.68E+00 4.06E+00

4.49E+00 4.96E+00 5.48E+00 6.06E+00 6.70E+00 7.40E+00

8.18E+00 9.04E+00 1.00E+01 1.11E+01 1.22E+01 1.35E+01

1.49E+01 1.65E+01 1.82E+01 2.00E+01 T

f64:n 5

c THE END
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