28 research outputs found

    Inspecting Species and Freshness of Fish Fillets Using Multimode Hyperspectral Imaging Techniques

    Get PDF
    This study developed multimode hyperspectral imaging techniques to detect substitution and mislabeling of fish fillets. Line-scan hyperspectral images were collected from fish fillets in four modes, including reflectance in visible and nearinfrared (VNIR) region, fluorescence by 365 nm UV excitation, reflectance in short-wave infrared (SWIR) region, and Raman by 785 nm laser excitation. Fish fillets of six species (i.e., red snapper, vermilion snapper, Malabar snapper, summer flounder, white bass, and tilapia) were used for species differentiation and frozen-thawed red snapper fillets were used for freshness evaluation. A total of 24 machine learning classifiers were used for fish species and freshness classifications using four types of spectral data in three different subsets (i.e., full spectra, first ten components of principal component analysis, and bands selected by a sequential feature selection method). The highest accuracies were achieved at 100% using full VNIR reflectance spectra for the species classification and 99.9% using full SWIR reflectance spectra for the freshness classification. The VNIR reflectance mode gave an overall best performance for both species and freshness inspection

    Detection of Fish Fillet Substitution and Mislabeling Using Multimode Hyperspectral Imaging Techniques

    Get PDF
    Substitution of high-priced fish species with inexpensive alternatives and mislabeling frozen-thawed fish fillets as fresh are two important fraudulent practices of concern in the seafood industry. This study aimed to develop multimode hyperspectral imaging techniques to detect substitution and mislabeling of fish fillets. Line-scan hyperspectral images were acquired from fish fillets in four modes, including reflectance in visible and near-infrared (VNIR) region, fluorescence by 365 nm UV excitation, reflectance in short-wave infrared (SWIR) region, and Raman by 785 nm laser excitation. Fish fillets of six species (i.e., red snapper, vermilion snapper, Malabar snapper, summer flounder, white bass, and tilapia) were used for species differentiation and frozen-thawed red snapper fillets were used for freshness evaluation. All fillet samples were DNA tested to authenticate the species. A total of 24 machine learning classifiers in six categories (i.e., decision trees, discriminant analysis, Naive Bayes classifiers, support vector machines, k-nearest neighbor classifiers, and ensemble classifiers) were used for fish species and freshness classifications using four types of spectral data in three different datasets (i.e., full spectra, first ten components of principal component analysis, and bands selected by sequential feature selection method). The highest accuracies were achieved at 100% using full VNIR reflectance spectra for the species classification and 99.9% using full SWIR reflectance spectra for the freshness classification. The VNIR reflectance mode gave the overall best performance for both species and freshness inspection, and it will be further investigated as a rapid technique for detection of fish fillet substitution and mislabeling

    Simulated Annealing-Based Hyperspectral Data Optimization for Fish Species Classification: Can the Number of Measured Wavelengths Be Reduced?

    Get PDF
    Relative to standard red/green/blue (RGB) imaging systems, hyperspectral imaging systems offer superior capabilities but tend to be expensive and complex, requiring either a mechanically complex push-broom line scanning method, a tunable filter, or a large set of light emitting diodes (LEDs) to collect images in multiple wavelengths. This paper proposes a new methodology to support the design of a hypothesized system that uses three imaging modes—fluorescence, visible/near-infrared (VNIR) reflectance, and shortwave infrared (SWIR) reflectance—to capture narrow-band spectral data at only three to seven narrow wavelengths. Simulated annealing is applied to identify the optimal wavelengths for sparse spectral measurement with a cost function based on the accuracy provided by a weighted k-nearest neighbors (WKNN) classifier, a common and relatively robust machine learning classifier. Two separate classification approaches are presented, the first using a multi-layer perceptron (MLP) artificial neural network trained on sparse data from the three individual spectra and the second using a fusion of the data from all three spectra. The results are compared with those from four alternative classifiers based on common machine learning algorithms. To validate the proposed methodology, reflectance and fluorescence spectra in these three spectroscopic modes were collected from fish fillets and used to classify the fillets by species. Accuracies determined from the two classification approaches are compared with benchmark values derived by training the classifiers with the full resolution spectral data. The results of the single-layer classification study show accuracies ranging from ~68% for SWIR reflectance to ~90% for fluorescence with just seven wavelengths. The results of the fusion classification study show accuracies of about 95% with seven wavelengths and more than 90% even with just three wavelengths. Reducing the number of required wavelengths facilitates the creation of rapid and cost-effective spectral imaging systems that can be used for widespread analysis in food monitoring/food fraud, agricultural, and biomedical applications

    Flow of physiological fluids in microchannels: the sedimentation effect

    No full text
    Microfluidic devices are becoming one of the most promising new tools for diagnostic applications and treatment of several chronic diseases. Hence, it is increasingly important to investigate the rheological behaviour of physiological fluids in microchannels. The main purpose of the present experimental work is to investigate the flow of two different physiological fluids frequently used in microfluidic devices. The working fluids were physiological saline (PS) and dextran 40 (Dx40) containing about 6% of sheep red blood cells (RBCs), respectively. The capillaries were placed horizontally on a slide glass and the flow rate of the working fluids was kept constant by using a syringe pump. By means of a camera the images were taken and transferred to the computer to be analysed. Generally, the results show that PS and Dx40 have different flow behaviour due to the sedimentation of the RBCs
    corecore