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Abstract: Substitution of high-priced fish species with inexpensive alternatives and 15 

mislabeling frozen-thawed fish fillets as fresh are two important fraudulent practices of 16 

concern in the seafood industry. This study aimed to develop multimode hyperspectral 17 

imaging techniques to detect substitution and mislabeling of fish fillets. Line-scan 18 

hyperspectral images were acquired from fish fillets in four modes, including reflectance 19 

in visible and near-infrared (VNIR) region, fluorescence by 365 nm UV excitation, 20 

reflectance in short-wave infrared (SWIR) region, and Raman by 785 nm laser excitation. 21 

Fish fillets of six species (i.e., red snapper, vermilion snapper, Malabar snapper, summer 22 

flounder, white bass, and tilapia) were used for species differentiation and frozen-thawed 23 
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red snapper fillets were used for freshness evaluation. All fillet samples were DNA tested 24 

to authenticate the species. A total of 24 machine learning classifiers in six categories (i.e., 25 

decision trees, discriminant analysis, Naive Bayes classifiers, support vector machines, k-26 

nearest neighbor classifiers, and ensemble classifiers) were used for fish species and 27 

freshness classifications using four types of spectral data in three different datasets (i.e., 28 

full spectra, first ten components of principal component analysis, and bands selected by 29 

sequential feature selection method). The highest accuracies were achieved at 100% using 30 

full VNIR reflectance spectra for the species classification and 99.9% using full SWIR 31 

reflectance spectra for the freshness classification. The VNIR reflectance mode gave the 32 

overall best performance for both species and freshness inspection, and it will be further 33 

investigated as a rapid technique for detection of fish fillet substitution and mislabeling. 34 

Keywords: Hyperspectral imaging; fish mislabeling; reflectance; fluorescence; Raman; 35 

machine learning. 36 

 37 

1. Introduction 38 

Fish authentication is a major concern for consumers, government agencies and the 39 

seafood industry. With increased global trade of fish, complex supply chains, and limited 40 

monitoring, there is a rising vulnerability for fish fraud in the marketplace. A large-scale 41 

survey by the nonprofit organization Oceana found that 21% of fish sold in fish markets, 42 

grocery stores, and restaurants across the United States was mislabeled on the basis of 43 

species (Warner, Roberts, Mustain, Lowell, & Swain, 2019). Additional forms of 44 

mislabeling include labeling frozen-thawed fish as “fresh”, misrepresentation of 45 

production method (farmed-raised/wild-caught, organic/conventional), and falsification of 46 
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geographical origin. Fish mislabeling is a form of economic deception, and also removes 47 

the ability for customers to make informed purchases based on conservation management 48 

practices for specific populations as well as potential health risks involved with certain fish 49 

(e.g., presence of heavy metals, toxins and antibiotic residues). After removing 50 

morphological indicators such as heads, tails, skins, and fins, many fish fillets are similar 51 

in appearance, which makes them a vulnerable target for economically-motivated fraud. In 52 

order to avoid economic deception, there is a need for rapid detection technologies for fish 53 

mislabeling and substitution that can be used onsite by seafood importers and distributors. 54 

These technologies would serve to improve the assessment of fish quality and 55 

authentication to meet the expectations of consumers.  56 

 Current techniques for detecting fish species with missing taxonomic features are 57 

mainly based on molecular methods (Hellberg & Morrissey, 2011). DNA barcoding is 58 

commonly used to identify fish species and it has been adopted by the U.S. Food and Drug 59 

Administration for testing regulatory fish samples (Handy, Deeds, Ivanova, Hebert, Hanner, 60 

Ormos, & Yancy, 2011). The DNA sequencing-based technique provides accurate 61 

identification of species through comparative analysis of sequence variation in a short 62 

fragment of the genome against an existing library of reference sequences (Hebert, 63 

Cywinska, Ball, & deWaard, 2003). But the entire process typically requires 1–2 days of 64 

laboratory work and data analysis to identify the species of a given sample. Hence this 65 

method is not utilized onsite at processing facilities. Real-time PCR is a rapid method for 66 

species identification that is increasingly portable (Naaum, Hellberg, Okuma, & Hanner, 67 

2019); however, it is a targeted method and cannot be used to simultaneously test for a 68 

wide range of species. Besides the molecular methods, traditional methods (e.g., 69 
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physicochemical analysis, sensory analysis, rheological methods, and electrical 70 

measurements) have also been used to evaluate fish and other seafoods (Hassoun & Karoui, 71 

2017). Despite high accuracies of these methods, they generally need expensive and 72 

complicated instruments and time-consuming sample preparation procedures, which 73 

prevents them from being used for rapid and high-throughput assessment of the aquatic 74 

products.  75 

Optical sensing techniques (e.g., spectroscopy and imaging) have been developed 76 

for quality evaluation of whole fish and fish fillet, which provide a simple, fast, low-cost, 77 

and nondestructive alternative to the conventional methods. Various spectroscopy 78 

techniques have been investigated, such as visible (VIS), near-infrared (NIR), mid-infrared 79 

(MIR), fluorescence, Raman, impedance, and nuclear magnetic resonance (NMR) (Ghidini 80 

& Zanardi, 2019). Example spectroscopy applications for fish include classification of fish 81 

species using NIR (Grassi, Casiraghi, & Alamprese, 2018), Raman (Rašković, Heinke, 82 

Rösch, & Popp, 2016), and NMR spectroscopy (Standal, Axelson, & Aursand, 2010), 83 

evaluation of fish freshness using VIS-NIR (Uddin, Okazaki, Turza, Yumiko, Tanaka, & 84 

Fukuda, 2005), fluorescence (Karoui, Thomas, & Dufour, 2006), MIR (Karoui, Lefur, 85 

Grondin, Thomas, Demeulemester, De Baerdemaeker, & Guillard, 2007), Raman 86 

(Velioğlu, Temiz, & Boyaci, 2015), and impedance spectroscopy (Fuentes, Masot, 87 

Fernández-Segovia, Ruiz-Rico, Alcañiz, & Barat, 2013), differentiation of farmed-raised 88 

and wild-caught fish using NIR (Ottavian, Facco, Fasolato, Novelli, Mirisola, Perini, & 89 

Barolo, 2012) and NMR spectroscopy (Rezzi, Héberger, Axelson, Moretti, Reniero, & 90 

Guillou, 2007), and identification of geographical origin of fish using NIR (Liu, Ma, Wang, 91 

Liu, Fan, & Cao, 2015) and NMR spectroscopy (Aursand, Standal, Praél, Mcevoy, Irvine, 92 
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& Axelson, 2009). External appearance of the whole fish (e.g., shape, color, and texture) 93 

has been utilized for species identification using machine vision and image processing 94 

techniques (Hu, Li, Duan, Han, Chen, & Si, 2012; White, Svellingen, & Strachan, 2006). 95 

Hyperspectral imaging (HSI) techniques have become a powerful tool to inspect 96 

food and agricultural products (Qin, Kim, Chao, Chan, Delwiche, & Cho, 2017), and they 97 

have been used for quality analysis of fish and other seafoods (Cheng & Sun, 2014). 98 

Example HSI applications for fish include mapping of fat and water content distribution 99 

(ElMasry & Wold, 2008), differentiation of fresh and frozen-thawed fish fillets (Cheng, 100 

Sun, Pu, Chen, Liu, Zhang, & Li, 2015a; Zhu, Zhang, He, Liu, & Sun, 2013), determination 101 

of microbial (Wu & Sun, 2013) and chemical spoilage (Cheng, Sun, Pu, & Zhu, 2015b), 102 

inspection of blood in fish muscle (Skjelvareid, Heia, Olsen, & Stormo, 2017), and 103 

detection of microplastics in intestinal tracts of fish (Zhang, Wang, Shan, Zhao, Zhang, 104 

Liu, & Wu, 2019). To our knowledge, reflectance measurement is the only hyperspectral 105 

imaging mode used for fish applications in the published studies, and it has been mainly 106 

carried out in visible and near-infrared (400–1000 nm) and near-infrared (900–1700 nm) 107 

wavelength ranges. Other HSI modes have not been explored, although the equivalent 108 

spectroscopy techniques (e.g., fluorescence and Raman) have demonstrated promising 109 

results for inspection of fish products.  110 

This study aimed to investigate the potential of multimode hyperspectral imaging 111 

techniques, including reflectance, fluorescence, and Raman, to detect substitution and 112 

mislabeling of fish fillets. Specific objectives were to: (1) collect multimode hyperspectral 113 

images from fish fillets of different species and different freshness conditions and (2) 114 

develop spectral processing and machine learning classification methods and compare their 115 
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performances to differentiate fish species and evaluate fish freshness. 116 

 117 

2. Materials and methods 118 

2.1. Multimode hyperspectral imaging systems 119 

Three in-house developed line-scan hyperspectral imaging systems were used to 120 

collect four types of image data from fish fillet samples: (1) reflectance images in visible 121 

and near-infrared (VNIR) region, (2) fluorescence images by 365 nm UV excitation, (3) 122 

reflectance images in short-wave infrared (SWIR) region, and (4) Raman images by 785 123 

nm laser excitation. Major components of the hyperspectral systems and parameters used 124 

for image acquisitions are summarized in Table 1. 125 

A VNIR hyperspectral system (Kim, Chao, Chan, Jun, Lefcourt, Delwiche, Kang, 126 

& Lee, 2011) was used to acquire both reflectance and fluorescence images. A 150 W 127 

quartz tungsten halogen lamp (Dolan Jenner, Boxborough, MA, USA) was used as the 128 

illumination source for reflectance imaging. The light was transported from the lamp 129 

enclosure via an optic fiber assembly to form two thin line lights that were arranged parallel 130 

to the transverse direction. In addition, two UV line lights, each with four 10 W 365 nm 131 

light-emitting diodes (LEDs) (LedEngin, San Jose, CA, USA), were used for fluorescence 132 

imaging. The detection unit consisted of a 23 mm focal length lens, an imaging 133 

spectrograph (Hyperspec-VNIR, Headwall Photonics, Fitchburg, MA, USA), and a 14-bit 134 

electron-multiplying charge-coupled-device (EMCCD) camera (Luca DL 604M, Andor 135 

Technology, South Windsor, CT, USA). The reflectance and fluorescence images were 136 

acquired in spectral regions of 419–1007 nm (125 bands) and 438–718 nm (60 bands), 137 

respectively.  138 
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Another similar hyperspectral system (Lee, Kim, Lohumi, & Cho, 2018) was used 139 

to acquire reflectance images in the SWIR region. The illumination was provided by a 140 

custom-designed two-unit lighting system, each with four 150 W gold-coated halogen 141 

lamps with MR16 reflectors. The detection unit included a 25 mm focal length lens and a 142 

hyperspectral camera including a 16-bit mercury cadmium telluride (MCT) array detector 143 

and an imaging spectrograph (Hyperspec-SWIR, Headwall Photonics, Fitchburg, MA, 144 

USA). The SWIR reflectance images were acquired in a wavelength range of 842–2532 145 

nm (287 bands). 146 

Raman images were acquired by a line-scan hyperspectral Raman system (Qin, 147 

Chao, Cho, Peng, & Kim, 2014). The system used a 30 W 785 nm line laser (OptiGrate, 148 

Oviedo, FL, USA) as the excitation source. A 45° 785 nm dichroic beamsplitter was used 149 

to project the laser normally on the sample surface, on which the laser line was 150 

approximately 200 mm long and 2 mm wide. The detection unit consisted of two 785 nm 151 

long-pass filters to block Rayleigh and anti-Stokes scattering signals, a 23 mm focal length 152 

lens, a Raman imaging spectrograph (ImSpector R10E, Specim, Oulu, Finland), and a 16-153 

bit CCD camera (iKon-M 934, Andor Technology, South Windsor, CT, USA). The system 154 

covered a wavenumber range of 103–2831 cm−1 (846 bands) with a spectral resolution of 155 

14 cm−1. 156 

 157 

2.2. Experimental samples and procedures 158 

Four fish fillets labeled as “snapper”, “flounder”, “white bass”, and “tilapia” were 159 

purchased from a local seafood market in Jessup, MD, USA. In addition, a total of 10 fish 160 

fillets labeled as “red snapper” were purchased from three online retailers. Red snapper 161 
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(Lutjanus campechanus) was used because it is a high-priced species and one of the most 162 

mislabeled fish in the United States (Warner, Roberts, Mustain, Lowell, & Swain, 2019). 163 

Other species were selected since they are commonly mislabeled as red snapper for higher 164 

retail prices. All 14 fillets were used for the fish species differentiation study. The fish 165 

freshness evaluation study was limited to the red snapper fillets authenticated with DNA 166 

barcoding (described in Section 2.3). The fillet samples were transported with ice packs to 167 

the USDA/ARS Environmental Microbial and Food Safety Laboratory and they were 168 

imaged immediately using the three aforementioned hyperspectral systems under a room 169 

temperature of ~20 °C. After imaging, the red snapper fillets were frozen in a −20 °C 170 

freezer for 24 h and then thawed in a 4 °C refrigerator for 24 h. The frozen-thawed samples 171 

were reimaged using the same three systems. The same freezing and thawing process was 172 

repeated for a second cycle, and the samples were imaged for the third time to finish the 173 

data acquisition. As a result, three sets of the hyperspectral images were collected from 174 

each red snapper fillet, including an “as received” (AR) image and two images 175 

corresponding to the two freeze-thaw cycles (FT1 and FT2). 176 

Each fillet was placed in a sample holder with a volume of 150×100×25 mm3. For 177 

the reflectance and fluorescence measurements, the sample holders were created by a 3D 178 

printer (Fortus 250mc, Stratasys, Eden Prairie, MN, USA) using production-grade black 179 

thermoplastic. For the Raman measurement, nickel plated aluminum containers were used 180 

to minimize signals from the sample holder. In each line-scan hyperspectral system, a linear 181 

motorized translation stage was used to move the sample incrementally across the scanning 182 

line of the imaging spectrograph, by which the system conducted image acquisition using 183 

a push-broom method. The lens-to-sample distance in each system was adjusted so that the 184 
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length of the instantaneous field of view (IFOV) of the camera was slightly longer than the 185 

length of the sample holder (150 mm). Under these settings, the spatial resolutions along 186 

the IFOV direction of all three systems were determined as 0.4 mm/pixel. Each fillet 187 

sample was scanned along the width direction (100 mm) of the sample holder using an 188 

incremental size of 0.4 mm to match the spatial resolution of the length direction. 189 

 190 

2.3. Fish species authentication with DNA barcoding 191 

All fillet samples were DNA tested for species authentication. Before imaging, a 192 

small piece of sample (~5 g) was removed from the interior of each fillet using a disposable 193 

scalpel and sterile forceps and then placed in a 50 mL sterile Falcon tube. The samples 194 

were immediately frozen at −80 °C for 24 h and then shipped overnight with ice to 195 

Chapman University for DNA-based identification. DNA was extracted from ~10 mg of 196 

each sample using the DNeasy Blood and Tissue Kit (Qiagen, Germantown, MD, USA), 197 

Spin-Column protocol, with modifications described in Handy, Deeds, Ivanova, Hebert, 198 

Hanner, Ormos, & Yancy (2011). All samples were lysed with a ThermoMixer C 199 

(Eppendorf, Hamburg, Germany) and DNA was eluted using 100 µl AE buffer (Qiagen). 200 

A reagent blank negative control was included with each set of DNA extractions. After 201 

extraction, the DNA in each sample was quantified using a Biophotometer Plus 202 

(Eppendorf). 203 

Full DNA barcoding of each DNA extract was performed as described in Moore, 204 

Handy, Haney, Pires, Perry, Deeds, & Yancy (2012). Samples that failed to be identified 205 

with full barcoding underwent mini-barcoding with the SH-E mini-barcode primers 206 

(Shokralla, Hellberg, Handy, King, & Hajibabaei, 2015) using the following reaction 207 
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mixture: 0.5 OmniMix® HS Lyophilized PCR Master Mix bead (Cepheid, Sunnyvale, CA, 208 

USA), 22.5 µl molecular-grade water, 0.50 µl each primer, and 2.0 µl DNA. The cycling 209 

conditions for mini-barcoding were as described in Shokralla, Hellberg, Handy, King, & 210 

Hajibabaei (2015). Integrated DNA Technologies (Coralville, IA, USA) synthesized all 211 

primers. Each set of reactions included a no-template control (NTC) with molecular-grade 212 

water in place of DNA. A Mastercycler nexus Gradient Thermal Cycler (Eppendorf) was 213 

used for PCR. 214 

PCR products were confirmed using 2.0% agarose E-Gels run on an E-Gel iBase 215 

(Invitrogen, Carlsbad, CA, USA) as described in Hellberg, Isaacs, & Hernandez (2019). 216 

All samples with confirmed PCR products were purified with ExoSAP-IT (Affymetrix, 217 

Santa Clara, CA, USA), then shipped to the GenScript facility (Piscataway, NJ, USA) for 218 

DNA sequencing. DNA sequences were assembled and edited using Geneious R7 219 

(Biomatters, Auckland, New Zealand) with quality parameters described in Pollack, 220 

Kawalek, Williams-Hill, & Hellberg (2018). Consensus sequences were identified based 221 

on the top species match in the Barcode of Life Database (BOLD) Animal Identification 222 

Request Engine (http://www.boldsystems.org/), Full Length Published Records. 223 

 224 

2.4. Spectral and image processing and machine learning classifications 225 

Fig. 1 summarizes the general data analysis procedures. Flat-field corrections were 226 

conducted on VNIR and SWIR reflectance images to convert original intensities in CCD 227 

counts to relative reflectance in percent. Similar corrections were also used for fluorescence 228 

images to obtain the relative fluorescence intensities (Kim, Chen, & Mehl, 2001). 229 

Fluorescence background in Raman images was removed by a baseline correction method 230 
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using adaptive iteratively reweighted penalized least squares (Zhang, Chen, & Liang, 2010). 231 

After preprocessing the four types of the hyperspectral images, a single-band image was 232 

selected for each sample at a wavelength/wavenumber (λm) with the maximum spectral 233 

intensity (i.e., VNIR reflectance, fluorescence, SWIR reflectance, or Raman) of the fish 234 

fillet, which was used to create a spatial mask to remove the sample background. Then all 235 

the fish pixels in the masked image at λm were grouped into 10×10 pixel windows to mimic 236 

point spectroscopy measurements. The mean (M) and standard deviation (STD) of the fish 237 

pixel intensities within each window were calculated and evaluated to remove regions with 238 

large variations. When 10% of the 100 pixels were beyond the range of M±2STD, the 239 

whole pixel window was excluded for further analysis. The 100 spectra extracted from 240 

each remaining window were averaged in the spatial domain while the full spectral 241 

resolution was maintained. All the mean spectra were used for machine learning 242 

classifications. This segmentation method generated four types of point spectral datasets 243 

for developing algorithms that can be adopted for future low-cost point spectroscopy 244 

systems for fish authentication.  245 

The four types of the spectral data were labeled using the DNA test results for the 246 

fish species and the freshness status for the red snapper fillets. The labeled data were input 247 

to the Classification Learner app in MATLAB (R2019a, MathWorks, Natick, MA, USA) 248 

to determine how well each spectral measurement can contribute to fish species and 249 

freshness evaluation. To reduce data dimensions and improve computational efficiencies, 250 

principal component analysis (PCA) and sequential feature selection (SFS) functions in 251 

MATLAB were used as feature extraction and selection methods respectively to create two 252 

subsets. One subset was the first ten components of the PCA and the other was a subset 253 
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with significant bands for each of the four types of the images. The SFS algorithm 254 

identified the bands that best classified fish species or freshness by sequentially selecting 255 

important features and removing irrelevant features until there was no improvement for the 256 

classification accuracy. The full spectra, the first ten PCA components, and the spectral 257 

data at selected bands were all used for the machine learning classifications, and the 258 

accuracies using the three datasets were compared. 259 

A total of 24 classifiers in six general categories (i.e., decision trees, discriminant 260 

analysis, Naive Bayes classifiers, support vector machines (SVMs), k-nearest neighbor 261 

(KNN) classifiers, and ensemble classifiers) were tested to assess the classification 262 

performance for each type of the spectral data. To simplify the evaluation of 263 

misclassification costs and model training, equal penalty was assigned to all species and 264 

freshness misclassifications and default hyperparameters in the MATALB Classification 265 

Learner app (e.g., maximum number of splits for a decision tree, box constraint level of an 266 

SVM, and distance metric of a KNN) were used for all 24 preset classifiers. Although the 267 

default hyperparameters may not be optimized for all the classifiers, they saved the training 268 

time and provided a quick and direct approach to compare accuracies of the different 269 

models, which was consistent with the purpose of this pilot study. Given the large sample 270 

sizes (≥ 5129 spectra in each classification, see Tables 2 and 3), two-fold cross-validation 271 

was used to minimize the overfitting problem and evaluate the generalization abilities and 272 

predictive accuracies of all the classification models. Each spectral dataset was randomly 273 

partitioned into two equal-size disjoint folds. A model was trained using out-of-fold data 274 

and the performance was assessed using in-fold data. The two folds were used as 275 

independent datasets for training and validation, respectively, which was conducted with a 276 
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goal of minimizing the classification error. The overall accuracy of each model was 277 

obtained by calculating the average error over the two folds. Details for the classification 278 

algorithms and hyperparameters can be found in MathWorks (2019). 279 

 280 

3. Results and discussion 281 

3.1. DNA test results 282 

The four fish fillets labeled by the local seafood market as “snapper”, “flounder”, 283 

“white bass”, and “tilapia” were identified by DNA barcoding as vermilion snapper 284 

(Rhomboplites aurorubens), summer flounder (Paralichthys dentatus), white bass (Morone 285 

chrysops), and tilapia (Oreochromis sp.), respectively. The DNA tests also confirmed that 286 

six “red snapper” fillets purchased from two online retailers (three from each) were 287 

correctly labeled. However, four fillets labeled by one online retailer as “red snapper” were 288 

identified as Malabar snapper (Lutjanus malabaricus), which was a real-life fish 289 

mislabeling case occurred during sample collections in this study. The samples identified 290 

as red snapper, vermilion snapper, Malabar snapper, summer flounder, white bass, and 291 

tilapia were used for the species classification study (Fig. 2a), and the six authenticated red 292 

snapper fillets were used for the freshness classification study. Fig. 2b shows an example 293 

red snapper fillet as received and after two freeze-thaw cycles. 294 

 295 

3.2. Hyperspectral images and spectra of fish fillets 296 

Fig. 3 shows four types of hyperspectral images acquired from a red snapper fillet. 297 

The four single-band images were extracted from the hyperspectral images at selected 298 

spectral peak positions to demonstrate the general pattern of a fish fillet in each imaging 299 
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type. The fillet surface appear more consistent in the VNIR and SWIR reflectance images 300 

than in the fluorescence and Raman images, revealing that the fluorescence and Raman 301 

signals may be more sensitive to the fish tissue variations than the VNIR and SWIR 302 

reflectance signals.  303 

An example of extracting spectra from the VNIR reflectance image of a red snapper 304 

fillet was demonstrated in Fig. 4. The single-band image at 699 nm, at which the fish tissue 305 

showed highest reflectance (Fig. 4b), was used to generate a mask image (Fig. 4a) to isolate 306 

the fillet from the background. After evaluating the pixel intensity variations for all 10×10 307 

pixel windows in the masked 699 nm image of the fillet, an average-window image was 308 

created, in which the total number of the remaining windows was determined as 463. Mean 309 

reflectance spectra calculated within each of the 463 windows are plotted in Fig. 4b. 310 

Mean spectra of red snapper and five other species commonly mislabeled as red 311 

snapper are plotted in Fig. 5. The VNIR reflectance spectra (Fig. 5a) show different patterns 312 

due to compositional variations of the fillets. The broad reflectance valley at 560 nm and 313 

two small valleys at 546 and 578 nm likely correspond with the absorption peaks of the 314 

heme pigments in the fish tissue, such as hemoglobin in the blood filled vessels and 315 

myoglobin in the muscle. The reduced reflectance at 636 nm is more evident in tilapia, red 316 

snapper, vermillion snapper, and moderately in white bass and appears to correspond with 317 

methemoglobin absorption regions. Main spectral features of the SWIR reflectance (Fig. 318 

5c) appear in the wavelength range of 900–1500 nm, and their spectral patterns exhibit 319 

more consistency than the VNIR reflectance spectra. Two major valleys were observed at 320 

984 and 1208 nm, which are associated with the first O-H stretching overtone of water and 321 
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the second C-H stretching overtone of fat, respectively. The variations in the SWIR 322 

reflectance intensities indicate different fat and water content for the different fish species. 323 

The fluorescence spectra (Fig. 5b) show distinctive differences, which could arise 324 

from different protein-protein interactions and collagen structures among the various 325 

species. It is interesting to find that the fluorescence intensities of red snapper are lower 326 

than all other five species in the whole spectral region. Major Raman peaks of the fillet 327 

samples can be assignable to the lipid component in the fish, and their vibrational modes 328 

and chemical bonds are marked in Fig. 5d. The Raman peaks near 734, 1451, and 1651 329 

cm−1 are characteristic of long chain unsaturated fatty acid components as free acids and/or 330 

esters. The peaks near 1311 cm−1 are associated with C-O stretching especially in C-O-C 331 

moieties, including in C-O-C=O sites. Wavenumbers of 636 and 1097 cm−1 are consistent 332 

with C-O stretching as in C-O-H and O-H twisting in C-O-H as would be present in free 333 

lipid fatty acids. Two peaks near 487 and 2305 cm−1 are attributed to phospholipids 334 

glycerol esters including phosphotidylcholines. More complicated vibrational modes 335 

between 800 and 1000 cm−1 correspond with out of plane bending of C-H especially 336 

adjacent to C=C sites. Wavenumbers are different depending on the number of double 337 

bonds in the particular lipid of interest. This demonstrates the lipids in the fish can have 338 

quite different unsaturated lipid composition.  339 

Fig. 6 shows mean spectra of red snapper fillets as received (AR) and after two 340 

freeze-thaw (FT) cycles. The overall patterns of the FT fillets are similar to those of the 341 

AR fillets for all four types of the spectra. In both VNIR (Fig. 6a) and SWIR (Fig. 6c) 342 

regions, the FT fillets exhibit lower reflectance intensities than the AR fillets, whereas the 343 

differences between the first (FT1) and the second (FT2) freeze-thaw cycles are not 344 
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significant. Such patterns were not observed in the fluorescence (Fig. 6b) and Raman (Fig. 345 

6d) spectra. Instead, the fluorescence and Raman spectra of the FT2 samples show some 346 

intensity changes from the AR and FT1 samples, and there is little difference between the 347 

AR and FT1 samples. The four types of the spectral signals can be affected by a broad 348 

range of factors, such as fish tissue damage, texture deterioration, protein denaturation, 349 

water holding capacity, muscle toughening, and lipid and heme pigment oxidation (Zhu, 350 

Zhang, He, Liu, & Sun, 2013). Previous studies on halibut (Zhu, Zhang, He, Liu, & Sun, 351 

2013) and grass carp (Cheng, Sun, Pu, Chen, Liu, Zhang, & Li, 2015a) found that frozen-352 

thawed fillets had higher reflectance than fresh fillets in the VNIR region, which is opposite 353 

the trend observed in the current study for reflectance measurements on the red snapper 354 

fillets. One possible reason is that during the freezing and thawing process, the red snapper 355 

generated more oxidized heme pigments than other fish species. The oxidized heme 356 

pigments would have resulted in a darker color and thus reduced reflectance for the frozen-357 

thawed red snapper samples. In this pilot study, we have not tested species other than red 358 

snapper for the effects of the freezing and thawing process on the spectral measurements. 359 

It remains for further investigation to ascertain whether the reflectance, fluorescence, and 360 

Raman spectral differences found in this study are consistent with other fish species and 361 

other variations of the freeze-thaw cycles. 362 

The bands selected by the SFS method for species and freshness classifications are 363 

marked in Fig. 5 and Fig. 6, respectively. For VNIR and SWIR reflectance spectra, the 364 

selected bands are mainly located in separated spectral absorption regions. All VNIR bands 365 

selected for the species classification are in the heme pigment absorption region (Fig. 5a). 366 

Three bands near water absorption were selected for the freshness classification in addition 367 
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to the three bands near heme pigment absorption (Fig. 6a). The SWIR bands selected for 368 

both species (Fig. 5c) and freshness (Fig. 6c) classifications are close to the water and fat 369 

absorption areas, except that one band was selected in the flat reflectance range near 2300 370 

nm. On the other hand, the selected bands in the fluorescence (Figs. 5b and 6b) and Raman 371 

(Figs. 5d and 6d) spectra are generally spread over the whole wavelength ranges. The bands 372 

were selected at spectral peaks, valleys, shoulders, and some flat baseline regions. These 373 

results suggest that the bands selected by the SFS method may or may not be directly linked 374 

to the physical features reflected by each type of the spectral data. 375 

 376 

3.3. Fish species classifications 377 

Numbers of mean spectra extracted from hyperspectral images of 14 fillet samples 378 

for species classifications are summarized in Table 2. Fig. 7 presents confusion matrices 379 

generated from the species classifications using linear SVM classifier with four types of 380 

the full spectral data. The correctly classified instances and true positive rates are marked 381 

in the diagonal of each matrix, whereas the misclassified instances and false negative rates 382 

are marked in the shaded grids outside the diagonal. The confusion matrices provide a 383 

visualization for the classification performance of each spectral data type and can help 384 

understand which species can be most easily confused using each of the spectral 385 

measurement modes. For the VNIR reflectance (Fig. 7a), tilapia and vermillion snapper 386 

were misclassified as red snapper with relatively high percentages (8.4% and 4.2%, 387 

respectively). There was no pattern of high misclassification for the fluorescence data (Fig. 388 

7b) considering all individual false negative rates were no larger than 1.2%. The SWIR 389 

reflectance spectra (Fig. 7c) had high false classifications (≥4.5%) for all the species except 390 
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for tilapia (0.9%). The highest false negative rate occurred for Malabar snapper, as 19.1% 391 

were misclassified as red snapper. Also, all five non-tilapia species were misclassified as 392 

tilapia with relatively high percentages (4.5–7.5%). Similar to the fluorescence data, 393 

individual false negative rates for the Raman spectra (Fig. 7d) were no larger than 1.2%, 394 

with one exception that 5.6% of Malabar snapper was misclassified as red snapper. For this 395 

particular example using the linear SVM classifier and the full spectral data, the overall 396 

classification accuracy was highest for fluorescence (99.4%), followed by VNIR 397 

reflectance (98.5%), Raman (97.6%), and SWIR reflectance (88.2%). Note that the 398 

discussions above were mainly based on the true positive and false negative rates as well 399 

as the overall accuracies. Other classification performance measures, such as positive 400 

predictive values (precisions) and false discovery rates (not used in this study), can also be 401 

calculated using the numbers of observations in the confusion matrices. 402 

Fig. 8 summarizes fish species classification results by 24 machine learning 403 

classifiers using four types of spectral data in three different datasets (i.e., full spectra, first 404 

ten components of PCA, and bands selected by SFS). Each data point in the figure is an 405 

overall accuracy for classifying the six fish species. As shown in the figure, different 406 

combinations of classifier, spectral type, and dataset result in different classification 407 

accuracies, which can help visualize the general trend and identify the best combination. 408 

For the full spectra (Fig. 8a), the VNIR reflectance data achieved two perfect classifications 409 

(100% accuracy) using linear discriminant and subspace discriminant classifiers. Linear, 410 

quadratic, and cubic SVMs gave high accuracies (97.6–99.5%) for the VNIR reflectance, 411 

fluorescence, and Raman data. Naive Bayes classifiers yielded the worst results (<80%) 412 

for all four types of the spectra. The accuracies using the PCA data (Fig. 8b) and the 413 
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selected bands (Fig. 8c) exhibited some similar patterns with those using the full spectra. 414 

High accuracies (98.1–100%) were also obtained for the VNIR reflectance and 415 

fluorescence data using the linear, quadratic, and cubic SVMs. Overall, the VNIR 416 

reflectance and fluorescence data provided the best performance for classifying the fish 417 

species. The accuracies using the Raman data were slightly lower and the SWIR reflectance 418 

data generally gave the lowest accuracies. These results can be attributed to the fact that 419 

spectral differences among the six fish species for the VNIR reflectance and fluorescence 420 

data are generally larger than those of the Raman and SWIR reflectance data (see Fig. 5). 421 

 422 

3.4. Fish freshness classifications 423 

Table 3 lists numbers of mean spectra extracted from hyperspectral images of six 424 

red snapper fillets for freshness classifications. The confusion matrices for classifying red 425 

snapper freshness using the linear SVM classifier with four types of the full spectral data 426 

are shown in Fig. 9. In VNIR reflectance (Fig. 9a) and Raman (Fig. 9d) datasets, 427 

classification was more accurate when the fish fillet underwent two freeze-thaw cycles 428 

compared to one cycle. For VNIR, Raman, and fluorescence (Fig. 9b), the as-received (AR) 429 

fillets were more easily misclassified as frozen-thawed fillets in the first cycle (FT1) rather 430 

than those in the second cycle (FT2). Also, for the VNIR and fluorescence data the FT1 431 

and FT2 samples tended to be misclassified as each other rather than as the AR samples. 432 

This is important because it suggests there is a progressive change in the fish tissue 433 

associated with the freeze-thaw process. In this pilot study, we have not undertaken more 434 

detailed comparisons for the duration and other variations of the freeze-thaw cycles. 435 

However, future research to explore the effects of these variations will be carried out. 436 
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Interestingly, the SWIR reflectance spectra (Fig. 9c) did not show the same progressive 437 

trend associated with freeze-thaw cycles observed for the VNIR and fluorescence data. A 438 

small portion of the AR samples (1.9%) were misclassified as the FT2 samples but not the 439 

FT1 samples. Also, the FT1 and FT2 samples were both misclassified as the AR samples 440 

without any misclassification among each other. The Raman results (Fig. 9d) showed a 441 

similar confusion pattern with those of the VNIR reflectance and fluorescence data, with 442 

one exception that the percentage of the FT1 misclassified as the AR (30.4%) was much 443 

higher than that of the FT1 misclassified as the FT2 (7.1%). For the example shown in Fig. 444 

9, the overall classification accuracy was highest for SWIR reflectance (95.5%) and VNIR 445 

reflectance (95.0%), followed by fluorescence (90.1%) and Raman (74.4%). 446 

The freshness classification results for the red snapper fillets are summarized in Fig. 447 

10. For the full spectra (Fig. 10a), the highest classification accuracy was 99.9%, which 448 

was achieved by the subspace discriminant classifier on the SWIR reflectance data. High 449 

accuracies (98.1–99.0%) were also obtained for the VNIR reflectance data when the linear 450 

and quadratic discriminant classifiers and the quadratic and cubic SVMs were used. The 451 

first ten components of PCA for the VNIR reflectance spectra generally gave higher 452 

accuracies than the other three types of the spectra for most of the 24 classifiers (Fig. 10b), 453 

with the highest accuracy obtained by the cubic SVM at 97.4%. The accuracies using the 454 

selected bands from the VNIR reflectance and fluorescence spectra (Fig. 10c) were 455 

generally lower than those using the full spectra and the PCA data. The SWIR reflectance 456 

data outperformed the other three types of the data even only three bands were selected for 457 

the classifications (see Fig. 6c), with the highest accuracy obtained by the quadratic SVM 458 

at 95.3%. Regardless of the classifiers and the datasets, the performance of the fluorescence 459 
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spectroscopy was moderate, and the Raman data generally yielded the lowest accuracies 460 

(<80%). These results demonstrated that the VNIR and SWIR reflectance modes seem 461 

more suitable for the fish freshness classification than the fluorescence and Raman modes. 462 

Water content change in the fish tissue is associated with the freezing and thawing process 463 

of the fillet samples. Both fluorescence and Raman signals have low sensitivity to changes 464 

in water content, which might be a reason for the relatively low classification accuracies 465 

for the two spectroscopy techniques.  466 

Considering fish species and freshness classifications together, the VNIR 467 

reflectance spectroscopy technique coupled with selected machine learning classifiers (e.g., 468 

discriminant analysis and SVM classifiers) demonstrated strong performance for both tasks. 469 

The next steps in this research will be to investigate the method further using a greater 470 

range of fish species and additional variations of the freeze-thaw cycles. Meanwhile, 471 

designing and building customized VNIR reflectance spectroscopy and imaging systems 472 

(e.g., handheld detection devices and online hyperspectral systems) suitable for industrial 473 

fish inspection applications are also planned. 474 

 475 

4. Conclusion 476 

This study presented multimode hyperspectral imaging techniques to inspect 477 

substitution and mislabeling for fish fillets. Four types of spectra (i.e., reflectance in visible 478 

and near-infrared region, fluorescence, reflectance in short-wave infrared region, and 479 

Raman) extracted from hyperspectral images of the fish fillets created sufficiently large 480 

datasets to train and validate machine learning classifiers for fish species and freshness 481 

classifications. Results from different combinations of machine learning classifier, spectral 482 
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type, and dataset provided an intuitive way to compare their performances and identify the 483 

best combination. The highest classification accuracies were achieved using selected 484 

machine learning classifiers to differentiate the fish species and evaluate the fish freshness 485 

using full reflectance spectra in the visible and near-infrared region and the short-wave 486 

infrared region, respectively. The reduced spectral datasets by principal component 487 

analysis and sequential feature selection methods generally yielded lower classification 488 

accuracies than the full datasets. The reflectance spectroscopy technique in visible and 489 

near-infrared region demonstrated its potential for simultaneous inspection of the fish 490 

species and freshness. This technique has high potential to be utilized in a low-cost point 491 

spectroscopy device for real-time authentication of the fish fillets. Future work will be 492 

conducted to validate the method using more fish species and additional variations of the 493 

freeze-thaw cycles. Alternative feature extraction and selection methods and 494 

hyperparameter optimization for the classification models will also be tested for future 495 

larger datasets. 496 

 497 

References 498 

Aursand, M., Standal, I. B., Praél, A., Mcevoy, L., Irvine, J., & Axelson, D. E. (2009). 499 

13C NMR pattern recognition techniques for the classification of Atlantic salmon 500 

(salmo salar L.) according to their wild, farmed, and geographical origin. Journal 501 

of Agricultural and Food Chemistry, 57, 3444–3451. 502 

https://doi.org/10.1021/jf8039268 503 

https://doi.org/10.1021/jf8039268


 23 

Cheng, J. & Sun, D. (2014). Hyperspectral imaging as an effective tool for quality 504 

analysis and control of fish and other seafoods. Trends in Food Science & 505 

Technology, 37(2), 78–91. https://doi.org/10.1016/j.tifs.2014.03.006 506 

Cheng, J., Sun, D., Pu, H., Chen, X., Liu, Y., Zhang, H., & Li, J. (2015a). Integration of 507 

classifiers analysis and hyperspectral imaging for rapid discrimination of fresh 508 

from cold-stored and frozen-thawed fish fillets. Journal of Food Engineering, 509 

161, 33–39. https://doi.org/10.1016/j.jfoodeng.2015.03.011 510 

Cheng, J., Sun, D., Pu, H., & Zhu, Z. (2015b). Development of hyperspectral imaging 511 

coupled with chemometric analysis to monitor K value for evaluation of chemical 512 

spoilage in fish fillets. Food Chemistry, 185, 245–253. 513 

http://dx.doi.org/10.1016/j.foodchem.2015.03.111 514 

ElMasry, G. & Wold, J. P. (2008). High-speed assessment of fat and water content 515 

distribution in fish fillets using online imaging spectroscopy. Journal of 516 

Agricultural and Food Chemistry, 56, 7672–7677. 517 

https://doi.org/10.1021/jf801074s 518 

Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M., & Barat, J. 519 

M. (2013). Differentiation between fresh and frozen-thawed sea bream (Sparus 520 

aurata) using impedance spectroscopy techniques. Innovative Food Science and 521 

Emerging Technologies, 19, 201–217. 522 

http://dx.doi.org/10.1016/j.ifset.2013.05.001 523 

Ghidini, S., Varrà, M. O., & Zanardi, E. (2019). Approaching authenticity issues in fish 524 

and seafood products by qualitative spectroscopy and chemometrics. Molecules, 525 

24, 1812. http://dx.doi.org/10.3390/molecules24091812 526 

https://doi.org/10.1016/j.tifs.2014.03.006
https://doi.org/10.1016/j.jfoodeng.2015.03.011
http://dx.doi.org/10.1016/j.foodchem.2015.03.111
https://doi.org/10.1021/jf801074s
http://dx.doi.org/10.1016/j.ifset.2013.05.001
http://dx.doi.org/10.3390/molecules24091812


 24 

Grassi, S., Casiraghi, E., & Alamprese, C. (2018). Handheld NIR device: A non-targeted 527 

approach to assess authenticity of fish fillets and patties. Food Chemistry, 243, 528 

382–388. https://doi.org/10.1016/j.foodchem.2017.09.145 529 

Handy, S. M., Deeds, J. R., Ivanova, N. V., Hebert, P. D. N., Hanner, R. H., Ormos, A., 530 

& Yancy, H. F. (2011). A single-laboratory validated method for the generation of 531 

DNA barcodes for the identification of fish for regulatory compliance. Journal of 532 

AOAC International, 94(1), 201–210. 533 

Hassoun, A. & Karoui, R. (2017). Quality evaluation of fish and other seafood by 534 

traditional and nondestructive instrumental methods: Advantages and limitations. 535 

Critical Reviews in Food Science and Nutrition, 57(9), 1976–1998. 536 

http://dx.doi.org/10.1080/10408398.2015.1047926 537 

Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological 538 

identifications through DNA barcodes, Proceedings of the Royal Society B: 539 

Biological Sciences, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 540 

Hellberg, R. S., Isaacs, R. B., & Hernandez, E. L. (2019). Identification of shark species 541 

in commercial products using DNA barcoding. Fisheries Research, 210, 81–88. 542 

https://doi.org/10.1016/j.fishres.2018.10.010 543 

Hellberg, R. S. & Morrissey, M. T. (2011). Advances in DNA-based techniques for the 544 

detection of seafood species substitution on the commercial market. Journal of the 545 

Association for Laboratory Automation, 16(4), 308–321. 546 

https://doi.org/10.1016/j.jala.2010.07.004 547 

Hu, J., Li, D., Duan, Q., Han, Y., Chen, G., & Si, X. (2012). Fish species classification by 548 

color, texture and multi-class support vector machine using computer vision. 549 

https://doi.org/10.1016/j.foodchem.2017.09.145
http://dx.doi.org/10.1080/10408398.2015.1047926
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1016/j.fishres.2018.10.010
https://doi.org/10.1016/j.jala.2010.07.004


 25 

Computers and Electronics in Agriculture, 88, 133–140. 550 

http://dx.doi.org/10.1016/j.compag.2012.07.008 551 

Karoui, R., Lefur, B., Grondin, C., Thomas, E., Demeulemester, C., De Baerdemaeker, J., 552 

& Guillard, A. S. (2007). Mid-infrared spectroscopy as a new tool for the 553 

evaluation of fish freshness. International Journal of Food Science & Technology, 554 

42, 57–64. http://dx.doi.org/10.1111/j.1365-2621.2006.01208.x 555 

Karoui, R., Thomas, E., & Dufour, E. (2006). Utilisation of rapid technique based on 556 

front-face fluorescence spectroscopy for differentiating between fresh and frozen-557 

thawed fish fillets. Food Research International, 39, 349–355. 558 

https://doi.org/10.1016/j.foodres.2005.08.007 559 

Kim, M. S., Chao, K., Chan, D. E., Jun, W., Lefcourt, A. M., Delwiche, S. R., Kang, S., 560 

& Lee, K. (2011). Line-scan hyperspectral imaging platform for agro-food safety 561 

and quality evaluation: System enhancement and characterization. Transactions of 562 

the ASABE, 54(2), 703–711. http://doi.org/10.13031/2013.36473 563 

Kim, M. S., Chen, Y., & Mehl, P. M. (2001). Hyperspectral reflectance and fluorescence 564 

imaging system for food quality and safety. Transactions of the ASAE, 44(3), 721–565 

729. http://doi.org/10.13031/2013.6099 566 

Lee, H., Kim, M. S., Lohumi, S., & Cho, B. (2018). Detection of melamine in milk 567 

powder using MCT-based short-wave infrared hyperspectral imaging system. 568 

Food Additives & Contaminants: Part A, 35(6), 1027–1037. 569 

https://doi.org/10.1080/19440049.2018.1469050 570 

Liu, Y., Ma, D., Wang, X., Liu, L., Fan, Y., & Cao, J. (2015). Prediction of chemical 571 

composition and geographical origin traceability of Chinese export tilapia fillets 572 

http://dx.doi.org/10.1016/j.compag.2012.07.008
http://dx.doi.org/10.1111/j.1365-2621.2006.01208.x
https://doi.org/10.1016/j.foodres.2005.08.007
http://doi.org/10.13031/2013.36473
http://doi.org/10.13031/2013.6099
https://doi.org/10.1080/19440049.2018.1469050


 26 

products by near infrared reflectance spectroscopy. LWT Food Science and 573 

Technology, 60, 1214–1218. https://doi.org/10.1016/j.lwt.2014.09.009 574 

MathWorks. (2019). Statistics and Machine Learning Toolbox User's Guide (Version 575 

11.5 for MATLAB R2019a). Natick, MA, USA: The MathWorks, Inc. 576 

Moore, M. M., Handy, S. M., Haney, C. J., Pires, G. S., Perry, L. L., Deeds, J. R., & 577 

Yancy, H. F. (2012). Updates to the FDA Single Laboratory Validated Method for 578 

DNA Barcoding for the Species Identification of Fish. FDA Laboratory 579 

Information Bulletin 4528. 580 

Naaum, A. M., Hellberg, R. S., Okuma, T. A., & Hanner, R. H. (2019). Multi-instrument 581 

evaluation of a real-time PCR assay for identification of Atlantic salmon: a case 582 

study on the use of a pre-packaged kit for rapid seafood species identification. 583 

Food Analytical Methods, 12, 2474–2479. https://doi.org/10.1007/s12161-019-584 

01584-7 585 

Ottavian, M., Facco, P., Fasolato, L., Novelli, E., Mirisola, M., Perini, M., & Barolo, M. 586 

(2012). Use of near-infrared spectroscopy for fast fraud detection in seafood: 587 

Application to the authentication of wild European sea bass (Dicentrarchus 588 

labrax). Journal of Agricultural and Food Chemistry, 60, 639–648. 589 

https://doi.org/10.1021/jf203385e 590 

Pollack, S. J., Kawalek, M. D., Williams-Hill, D. M., & Hellberg, R. S. (2018). 591 

Evaluation of DNA barcoding methodologies for the identification of fish species 592 

in cooked products. Food Control, 84, 297–304. 593 

https://doi.org/10.1016/j.foodcont.2017.08.013 594 

https://doi.org/10.1016/j.lwt.2014.09.009
https://doi.org/10.1007/s12161-019-01584-7
https://doi.org/10.1007/s12161-019-01584-7
https://doi.org/10.1021/jf203385e
https://doi.org/10.1016/j.foodcont.2017.08.013


 27 

Qin, J., Chao, K., Cho, B., Peng, Y., & Kim, M. S. (2014). High-throughput Raman 595 

chemical imaging for rapid evaluation of food safety and quality. Transactions of 596 

the ASABE, 57(6), 1783–1792. http://doi.org/10.13031/trans.57.10862 597 

Qin, J., Kim, M. S., Chao, K., Chan, D. E., Delwiche, S. R., & Cho, B. (2017). Line-scan 598 

hyperspectral imaging techniques for food safety and quality applications. Applied 599 

Sciences, 7(2), 125. https://doi.org/10.3390/app7020125 600 

Rašković, B., Heinke, R., Rösch, P., & Popp, J. (2016). The Potential of Raman 601 

spectroscopy for the classification of fish fillets. Food Analytical Methods, 9, 602 

1301–1306. http://dx.doi.org/10.1007/s12161-015-0312-6 603 

Rezzi, S., Giani, I., Héberger, K., Axelson, D. E., Moretti, V. M., Reniero, F., & Guillou, 604 

C. (2007). Classification of gilthead sea bream (Sparus aurata) from 1H NMR 605 

lipid profiling combined with principal component and linear discriminant 606 

analysis. Journal of Agricultural and Food Chemistry, 55, 9963–9968. 607 

https://doi.org/10.1021/jf070736g 608 

Shokralla, S., Hellberg, R. S., Handy, S. M., King, I., & Hajibabaei, M. (2015). A DNA 609 

mini-barcoding system for authentication of processed fish products. Scientific 610 

Reports, 5, 15894. https://doi.org/10.1038/srep15894 611 

Skjelvareid, M. H., Heia, K., Olsen, S.H., & Stormo, S. K. (2017). Detection of blood in 612 

fish muscle by constrained spectral unmixing of hyperspectral images. Journal of 613 

Food Engineering, 212, 252–261. 614 

http://dx.doi.org/10.1016/j.jfoodeng.2017.05.029 615 

Standal, I. B., Axelson, D. E., & Aursand, M. (2010). 13C NMR as a tool for 616 

authentication of different gadoid fish species with emphasis on phospholipid 617 

http://doi.org/10.13031/trans.57.10862
https://doi.org/10.3390/app7020125
http://dx.doi.org/10.1007/s12161-015-0312-6
https://doi.org/10.1021/jf070736g
https://doi.org/10.1038/srep15894
http://dx.doi.org/10.1016/j.jfoodeng.2017.05.029


 28 

profiles. Food Chemistry, 121, 608–615. 618 

http://dx.doi.org/10.1016/j.foodchem.2009.12.074 619 

Uddin, M., Okazaki, E., Turza, S., Yumiko,Y., Tanaka, M., & Fukuda,Y. (2005). Non-620 

destructive visible/NIR spectroscopy for differentiation of fresh and frozen-621 

thawed fish. Journal of Food Science, 70, C506–C510.  622 

http://dx.doi.org/10.1111/j.1365-2621.2005.tb11509.x 623 

Velioğlu, H. M., Temiz, H. T., & Boyaci, I. H. (2015). Differentiation of fresh and 624 

frozen-thawed fish samples using Raman spectroscopy coupled with chemometric 625 

analysis. Food Chemistry, 173, 283–290. 626 

http://dx.doi.org/10.1016/j.foodchem.2014.09.073 627 

Warner, K., Roberts, W., Mustain, P., Lowell, B., & Swain, M. (2019). Casting a Wider 628 

Net: More Action Needed to Stop Seafood Fraud in the United States. A report by 629 

Oceana. https://doi.org/10.31230/osf.io/sbm8h 630 

White, D. J., Svellingen, C., & Strachan, N. J. C. (2006). Automated measurement of 631 

species and length of fish by computer vision. Fisheries Research, 80, 203–210. 632 

https://doi.org/10.1016/j.fishres.2006.04.009 633 

Wu, D. & Sun, D. (2013). Potential of time series-hyperspectral imaging (TS-HSI) for 634 

non-invasive determination of microbial spoilage of salmon flesh. Talanta, 111, 635 

39–46. https://doi.org/10.1016/j.talanta.2013.03.041 636 

Zhang, Y., Wang, X., Shan, J., Zhao, J., Zhang, W., Liu, L., & Wu, F. (2019). 637 

Hyperspectral imaging based method for rapid detection of microplastics in the 638 

intestinal tracts of fish. Environmental Science & Technology, 53, 5151–5158. 639 

https://doi.org/10.1021/acs.est.8b07321 640 

http://dx.doi.org/10.1016/j.foodchem.2009.12.074
http://dx.doi.org/10.1111/j.1365-2621.2005.tb11509.x
http://dx.doi.org/10.1016/j.foodchem.2014.09.073
https://doi.org/10.31230/osf.io/sbm8h
https://doi.org/10.1016/j.fishres.2006.04.009
https://doi.org/10.1016/j.talanta.2013.03.041
https://doi.org/10.1021/acs.est.8b07321


 29 

Zhang, Z., Chen, S., & Liang, Y. (2010). Baseline correction using adaptive iteratively 641 

reweighted penalized least squares. Analyst, 135(5), 1138–1146. 642 

http://doi.org/10.1039/B922045C 643 

Zhu, F., Zhang, D., He, Y., Liu, F., & Sun, D. (2013). Application of visible and near 644 

infrared hyperspectral imaging to differentiate between fresh and frozen-thawed 645 

fish fillets. Food and Bioprocess Technology, 6(10), 2931–2937. 646 

https://doi.org/10.1007/s11947-012-0825-6 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

http://doi.org/10.1039/B922045C
https://doi.org/10.1007/s11947-012-0825-6


 30 

 664 

 665 

Fig. 1. Flowchart of spectral and image processing and machine learning classifications. 666 
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 (a) 684 

 685 
(b) 686 

 687 

Fig. 2. Pictures of fish fillet samples: (a) six types of fish used for the species differentiation 688 

study and (b) an example red snapper fillet used for the freshness evaluation study. 689 

 690 
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 691 

 692 

Fig. 3. Four single-band images extracted from hyperspectral data collected from a red 693 

snapper fillet. 694 
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 703 

(a) 704 

 705 
(b) 706 

 707 

Fig. 4. Extraction of spectra from a VNIR hyperspectral reflectance image of a red snapper 708 

fillet: (a) a mask image created using a single-band image at 699 nm and an average-709 

window image used to obtain mean spectra within each of the 10×10 pixel regions, and (b) 710 

mean reflectance spectra from 463 average windows.  711 
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(a) (b) 

   714 
(c) (d) 

   715 

Fig. 5. Mean spectra of six fish species: (a) VNIR reflectance, (b) fluorescence, (c) SWIR 716 

reflectance, and (d) Raman. Selected bands for fish species classifications are marked on 717 

each spectrum of the red snapper sample. 718 
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(a) (b) 

   728 
(c) (d) 

   729 

Fig. 6. Mean spectra of red snapper fillets as received (AR) and after two freeze-thaw 730 

cycles (FT1 and FT2): (a) VNIR reflectance, (b) fluorescence, (c) SWIR reflectance, and 731 

(d) Raman. Selected bands for fish freshness classifications are marked on each spectrum 732 

of the AR red snapper fillet. 733 
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             (a)               (b) 

  742 
              (c)               (d) 

  743 

Fig. 7. Confusion matrices for fish species classifications using linear support vector 744 

machines with full spectral data of (a) VNIR reflectance, (b) fluorescence, (c) SWIR 745 

reflectance, and (d) Raman. 746 
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(a) 751 

 752 
(b) 753 

 754 
(c) 755 

 756 

Fig. 8. Species classification accuracies for fillets from six types of fish by 24 machine 757 

learning classifiers using (a) full spectra, (b) first ten components of PCA, and (c) bands 758 

selected by SFS. 759 
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          (a)            (b) 

  761 
           (c)            (d) 

  762 

Fig. 9. Confusion matrices for freshness classifications of red snapper fillets (including as-763 

received (AR) and after two freeze-thaw cycles (FT1 and FT2)) using linear support vector 764 

machines with full spectral data of (a) VNIR reflectance, (b) fluorescence, (c) SWIR 765 

reflectance, and (d) Raman.  766 

 767 
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(a) 768 

 769 
(b) 770 

 771 
(c) 772 

 773 

Fig. 10. Freshness classification accuracies for as-received and frozen-thawed red snapper 774 

fillets by 24 machine learning classifiers using (a) full spectra, (b) first ten components of 775 

PCA, and (c) bands selected by SFS. 776 
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 777 

Table 1. Key components and settings of three line-scan hyperspectral imaging systems 778 

used to collect four types of image data from fish fillets. 779 

Components and 
settings 

Reflectance 
(VNIR) Fluorescence Reflectance 

(SWIR) Raman 

Light source Quartz tungsten 
halogen light 365 nm UV LEDs Gold-coated 

halogen light 785 nm line laser 

Imaging 
spectrograph 

Hyperspec-VNIR 
(Headwall) 

Hyperspec-VNIR 
(Headwall) 

Hyperspec-SWIR 
(Headwall) 

ImSpector R10E 
(Specim) 

Detector 14-bit EMCCD 
camera 

14-bit EMCCD 
camera 

16-bit MCT array 
detector 

16-bit CCD 
camera 

Focal length of 
lens 23 mm 23 mm 25 mm 23 mm 

Spectral range 419–1007 nm 438–718 nm 842–2532 nm 103–2831 cm−1 

Spatial resolution 
along IFOV 0.4 mm/pixel 0.4 mm/pixel 0.4 mm/pixel 0.4 mm/pixel 

Line-scan 
incremental size 0.4 mm 0.4 mm 0.4 mm 0.4 mm 

Scan number 280 280 350 260 

Exposure time 0.015 s 0.3 s 0.006 s 4.0 s 

Scan time 1 m 20 s 2 m 24 s 15 s 20 m 20 s 

Hypercube size 500×280×125 500×280×60 384×350×287 400×260×846 

 780 
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 782 

 783 

 784 
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 785 

Table 2. Numbers of fish fillet samples and mean spectra extracted from hyperspectral 786 

images used for species classifications. 787 

Fish species Fillet number Reflectance 
(VNIR) Fluorescence Reflectance 

(SWIR) Raman 

Red snapper 6 2401 2423 2976 2607 

Vermilion snapper 1 283 504 522 262 

Malabar snapper 4 1599 1517 1742 1471 

Summer flounder 1 316 516 519 278 

White bass 1 280 387 318 294 

Tilapia 1 250 345 331 334 

Total 14 5129 5692 6408 5246 

 788 
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 798 

Table 3. Numbers of red snapper fillet samples and mean spectra extracted from 799 

hyperspectral images used for freshness classifications. 800 

Red snapper Fillet number Reflectance 
(VNIR) Fluorescence Reflectance 

(SWIR) Raman 

As received (AR) 6 2401 2423 2976 2607 

After 1st freeze-
thaw cycle (FT1) 6 2332 2422 2948 2330 

After 2nd freeze-
thaw cycle (FT2) 6 2292 2506 2867 1739 

Total 6 7025 7351 8791 6676 

 801 
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