3,128 research outputs found
Transverse energy production and charged-particle multiplicity at midrapidity in various systems from to 200 GeV
Measurements of midrapidity charged particle multiplicity distributions,
, and midrapidity transverse-energy distributions,
, are presented for a variety of collision systems and energies.
Included are distributions for AuAu collisions at ,
130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, CuCu collisions at
and 62.4 GeV, CuAu collisions at
GeV, UU collisions at GeV,
Au collisions at GeV, HeAu collisions at
GeV, and collisions at
GeV. Centrality-dependent distributions at midrapidity are presented in terms
of the number of nucleon participants, , and the number of
constituent quark participants, . For all collisions
down to GeV, it is observed that the midrapidity data
are better described by scaling with than scaling with . Also presented are estimates of the Bjorken energy density,
, and the ratio of to ,
the latter of which is seen to be constant as a function of centrality for all
systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010,
2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV
Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at
midrapidity. A wide p_T range is covered by measurements of nearly-real virtual
photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield
of the direct photons in d+Au collisions over the scaled p+p cross section is
consistent with unity. Theoretical calculations assuming standard cold nuclear
matter effects describe the data well for the entire p_T range. This indicates
that the large enhancement of direct photons observed in Au+Au collisions for
1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear
effects.Comment: 547 authors, 7 pages, 4 figures. Submitted to Phys. Rev. Lett.. Plain
text data tables for the points plotted in figures for this and previous
PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Nuclear Modification Factors for Hadrons At Forward and Backward Rapidities in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV
We report on charged hadron production in deuteron-gold reactions at
sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 <
eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 <
eta < -1.4, referred to as backward rapidity, and a transverse momentum range
p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold
collision centrality classes. We observe a suppression relative to binary
collision scaling at forward rapidity, sensitive to low momentum fraction (x)
partons in the gold nucleus, and an enhancement at backward rapidity, sensitive
to high momentum fraction partons in the gold nucleus.Comment: 330 authors, 6 pages text, 4 figures, REVTeX4. Published in Physical
Review Letters. Minor changes over previous version in response to referee
and editor comments, plus updating of references. Plain text data tables for
the points plotted in figures for this and previous PHENIX publications are
publicly available at http://www.phenix.bnl.gov/papers.htm
Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at sqrt(s_NN) = 200 GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has
measured electrons from heavy flavor (charm and bottom) decays for 0.3 < p_T <
9 GeV/c at midrapidity (|y| < 0.35) in Au+Au collisions at sqrt(s_NN) = 200
GeV. The nuclear modification factor R_AA relative to p+p collisions shows a
strong suppression in central Au+Au collisions, indicating substantial energy
loss of heavy quarks in the medium produced at RHIC. A large azimuthal
anisotropy, v_2, with respect to the reaction plane is observed for 0.5 < p_T <
5 GeV/c indicating non-zero heavy flavor elliptic flow. Both R_AA and v_2 show
a p_T dependence different from those of neutral pions. A comparison to
transport models which simultaneously describe R_AA(p_T) and v_2(p_T) suggests
that the viscosity to entropy density ratio is close to the conjectured quantum
lower bound, i.e., near a perfect fluid.Comment: v2 replaced Fig. 3 to fix an error in using a wrong theory curve; v3
minor changes in review process, including last 2 sentences of abstract. 422
authors, 58 institutions, 6 pages text, 3 figures, REVTeX4. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures available at http://www.phenix.bnl.gov/papers.htm
Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV
A comprehensive survey of event-by-event fluctuations of charged hadron
multiplicity in relativistic heavy ions is presented. The survey covers Au+Au
collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) =
22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision
centrality, transverse momentum range, and charge sign. After correcting for
non-dynamical fluctuations due to fluctuations in the collision geometry within
a centrality bin, the remaining dynamical fluctuations expressed as the
variance normalized by the mean tend to decrease with increasing centrality.
The dynamical fluctuations are consistent with or below the expectation from a
superposition of participant nucleon-nucleon collisions based upon p+p data,
indicating that this dataset does not exhibit evidence of critical behavior in
terms of the compressibility of the system. An analysis of Negative Binomial
Distribution fits to the multiplicity distributions demonstrates that the heavy
ion data exhibit weak clustering properties.Comment: 464 authors from 60 institutions, 17 pages, 12 figures, 1 table.
Submitted to Physical Review C. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Centrality dependence of charged hadron production in deuteron+gold and nucleon+gold collisions at sqrt(s_NN)=200 GeV
We present transverse momentum (p_T) spectra of charged hadrons measured in
deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four
centrality classes. Nucleon-gold collisions were selected by tagging events in
which a spectator nucleon was observed in one of two forward rapidity
detectors. The spectra and yields were investigated as a function of the number
of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A
comparison of charged particle yields to those in p+p collisions show that the
yield per nucleon-nucleon collision saturates with \nu for high momentum
particles. We also present the charged hadron to neutral pion ratios as a
function of p_T.Comment: 330 authors, 15 pages text, 16 figures, 3 tables. Submitted to Phys.
Rev. Lett. v2 has minor changes to reflect revisions during review process.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
High-pT pi^zero Production with Respect to the Reaction Plane in Au + Au Collisions at sqrt(s_NN) = 200 GeV
Measurements of the azimuthal anisotropy of high-\pT neutral pion neutral
pion production in Au+Au collisions at sqrt(s_NN) = 200 GeV by the PHENIX
experiment are presented. The data included in this paper were collected during
the 2004 RHIC running period and represent approximately an order of magnitude
increase in the number of analyzed events relative to previously published
results. Azimuthal angle distributions of pi^0s detected in the PHENIX
electromagnetic calorimeters are measured relative to the reaction plane
determined event-by-event using the forward and backward beam-beam counters.
Amplitudes of the second Fourier component (v_2) of the angular distributions
are presented as a function of pi^0 transverse momentum p_T for different bins
in collision centrality. Measured reaction plane dependent pi^0 yields are used
to determine the azimuthal dependence of the pi^0 suppression as a function of
p_T, R_AA (Delta phi,p_T). A jet-quenching motivated geometric analysis is
presented that attempts to simultaneously describe the centrality dependence
and reaction plane angle dependence of the pi^0 suppression in terms of the
path lengths of hypothetical parent partons in the medium. This set of results
allows for a detailed examination of the influence of geometry in the collision
region, and of the interplay between collective flow and jet-quenching effects
along the azimuthal axis.Comment: 344 authors, 35 pages text, RevTeX-4, 24 figures, 8 tables. Submitted
to Physical Review
Particle-species dependent modification of jet-induced correlations in Au+Au collisions at sqrt(s_NN) = 200 GeV
We report PHENIX measurements of the correlation of a trigger hadron at
intermediate transverse momentum (2.5<p_{T,trig}<4 GeV/c), with associated
mesons or baryons at lower p_{T,assoc}, in Au+Au collisions at sqrt(s_NN) = 200
GeV. The jet correlations for both baryons and mesons show similar shape
alterations as a function of centrality, characteristic of strong modification
of the away-side jet. The ratio of jet-associated baryons to mesons for this
jet increases with centrality and p_{T,assoc} and, in the most central
collisions, reaches a value similar to that for inclusive measurements. This
trend is incompatible with in-vacuum fragmentation, but could be due to
jet-like contributions from correlated soft partons which recombine upon
hadronization.Comment: 344 authors, 4 pages text, RevTeX, 4 figures. Submitted to Physical
Review Letters. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV
We present a new analysis of J/psi production yields in deuteron-gold
collisions at sqrt(s_NN) = 200 GeV using data taken by the PHENIX experiment in
2003 and previously published in [S.S. Adler et al., Phys. Rev. Lett 96, 012304
(2006)]. The high statistics proton-proton J/psi data taken in 2005 is used to
improve the baseline measurement and thus construct updated cold nuclear matter
modification factors R_dAu. A suppression of J/psi in cold nuclear matter is
observed as one goes forward in rapidity (in the deuteron-going direction),
corresponding to a region more sensitive to initial state low-x gluons in the
gold nucleus. The measured nuclear modification factors are compared to
theoretical calculations of nuclear shadowing to which a J/psi (or precursor)
break-up cross-section is added. Breakup cross sections of sigma_breakup =
2.8^[+1.7_-1.4] (2.2^[+1.6_-1.5]) mb are obtained by fitting these calculations
to the data using two different models of nuclear shadowing. These breakup
cross section values are consistent within large uncertainties with the 4.2 +/-
0.5 mb determined at lower collision energies. Projecting this range of cold
nuclear matter effects to copper-copper and gold-gold collisions reveals that
the current constraints are not sufficient to firmly quantify the additional
hot nuclear matter effect.Comment: 453 authors from 59 institutions, 15 pages, 13 figures, 5 tables.
Submitted to Physical Review C. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
- …
