319 research outputs found

    Gaussian processes for choosing laser parameters for driven, dissipative Rydberg aggregates

    Full text link
    To facilitate quantum simulation of open quantum systems at finite temperatures, an important ingredient is to achieve thermalization on a given time-scale. We consider a Rydberg aggregate (an arrangement of Rydberg atoms that interact via long-range interactions) embedded in a laser-driven atomic environment. For the smallest aggregate (two atoms), suitable laser parameters can be found by brute force scanning of the four tunable laser parameters. For more atoms, however, such parameter scans are too computationally costly. Here we apply Gaussian processes to predict the thermalization performance as a function of the laser parameters for two-atom and four-atom aggregates. These predictions perform remarkably well using just 1000 simulations, demonstrating the utility of Gaussian processes in an atomic physics setting. Using this approach, we find and present effective laser parameters for generating thermalization, the robustness of these parameters to variation, as well as different thermalization dynamics

    Flexible scheme to truncate the hierarchy of pure states

    Full text link
    The hierarchy of pure states (HOPS) is a wavefunction-based method which can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a 'good' truncation method, where by 'good' we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work we demonstrate the application of the 'nn-particle approximation' (nnPA) to HOPS. We also introduce a new approximation, which we call the 'nn-mode approximation' (nnMA). We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy. We show that truncation approximations can be used in combination to achieve convergence in two exemplary problems: absorption and energy transfer of molecular aggregates.Comment: 8 pages, 3 figure

    Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    Get PDF
    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids

    Suppression of quantum oscillations and the dependence on site energies in electronic excitation transfer in the Fenna-Matthews-Olson trimer

    Full text link
    Energy transfer in the photosynthetic complex of the Green Sulfur Bacteria known as the Fenna-Matthews-Olson (FMO) complex is studied theoretically taking all three subunits (monomers) of the FMO trimer and the recently found eighth bacteriochlorophyll (BChl) molecule into account. We find that in all considered cases there is very little transfer between the monomers. Since it is believed that the eighth BChl is located near the main light harvesting antenna we look at the differences in transfer between the situation when BChl 8 is initially excited and the usually considered case when BChl 1 or 6 is initially excited. We find strong differences in the transfer dynamics, both qualitatively and quantitatively. When the excited state dynamics is initialized at site eight of the FMO complex, we see a slow exponential-like decay of the excitation. This is in contrast to the oscillations and a relatively fast transfer that occurs when only seven sites or initialization at sites 1 and 6 is considered. Additionally we show that differences in the values of the electronic transition energies found in the literature lead to a large difference in the transfer dynamics

    An efficient method to calculate excitation energy transfer in light harvesting systems. Application to the FMO complex

    Full text link
    A master equation, derived from the non-Markovian quantum state diffusion (NMQSD), is used to calculate excitation energy transfer in the photosynthetic Fenna-Matthews-Olson (FMO) pigment-protein complex at various temperatures. This approach allows us to treat spectral densities that contain explicitly the coupling to internal vibrational modes of the chromophores. Moreover, the method is very efficient, with the result that the transfer dynamics can be calculated within about one minute on a standard PC, making systematic investigations w.r.t. parameter variations tractable. After demonstrating that our approach is able to reproduce the results of the numerically exact hierarchical equations of motion (HEOM) approach, we show how the inclusion of vibrational modes influences the transfer

    Entdeckung eines Pseudoausbruches mit Carbapenem-resistenten Acinetobacter baumannii

    Get PDF
    Am Nationalen Referenzzentrum für gramnegative Krankenhauserreger wurde im November und Dezember 2020 das gehäufte Auftreten von Isolaten des Acinetobacter baumannii-Komplex mit Carbapenemresistenz beobachtet. Der Beitrag beschreibt die in Kooperation mit dem Robert Koch-Institut durchgeführte Ausbruchsuntersuchung und die Aufklärung als Pseudoausbruch.Peer Reviewe

    Perspectives on weak interactions in complex materials at different length scales

    Get PDF
    Nanocomposite materials consist of nanometer-sized quantum objects such as atoms, molecules, voids or nanoparticles embedded in a host material. These quantum objects can be exploited as a super-structure, which can be designed to create material properties targeted for specific applications. For electromagnetism, such targeted properties include field enhancements around the bandgap of a semiconductor used for solar cells, directional decay in topological insulators, high kinetic inductance in superconducting circuits, and many more. Despite very different application areas, all of these properties are united by the common aim of exploiting collective interaction effects between quantum objects. The literature on the topic spreads over very many different disciplines and scientific communities. In this review, we present a cross-disciplinary overview of different approaches for the creation, analysis and theoretical description of nanocomposites with applications related to electromagnetic properties
    corecore