208 research outputs found

    Characterizing Broadband Seismic Noise in Central London

    Get PDF
    Recordings made at five broadband seismometers, deployed in central London during the summer of 2015, reveal the wideband nature (periods, T, of between 0.01 and 100 s) of anthropogenic noise in a busy urban environment. Temporal variations of power spectral density measurements suggest transportation sources generate the majority of the noise wavefield across the entire wideband, except at the secondary microseismic peak (220 s) which are recorded across the city. We record a unique set of signals 30m above a subway (London Underground) tunnel interpreted as a short-period dynamic component, a quasi-static response to the train moving underneath the instrument, and a very long period (T>30 s) response to air movement around the tunnel network. A low-velocity clay and sand overburden tens of metres thick is shown to amplify the horizontal component wavefield at T ∼1 s, consistent with properties of the London subsurface derived from engineering investigations. We provide tabulated median power spectral density values for all stations, to facilitate comparison with any future urban seismic deployments

    Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery

    Get PDF
    We assess the feasibility of monitoring the landmass of Great Britain with satellite Synthetic Aperture Radar (SAR) imagery, by analysing ERS-1/2 SAR and ENVISAT IS2 Advanced SAR (ASAR) archive data availability, geometric distortions and land cover control on the success of (non-)interferometric analyses. Our assessment both addresses the scientific and operational question of whether a nationwide SAR-based monitoring of ground motion would succeed in Great Britain, and helps to understand controlling factors and possible solutions to overcome the limitations of undertaking SAR-based imaging of the landmass. This is the first time such a nationwide assessment is performed in preparation for acquisition and processing of SAR data in the United Kingdom, and any other country in the world. Analysis of the ERS-1/2 and ENVISAT archives reveals potential for multi-interferogram SAR Interferometry (InSAR) for the entirety of Britain using ERS-1/2 in descending mode, with 100% standard image frames showing at least 20 archive scenes available. ERS-1/2 ascending and both ENVISAT modes show potential for non-interferometric and single-pair InSAR for the vast majority of Britain, and multi-interferogram only for 13% to 38% of the available standard frames. Based on NEXTMap® Britain Digital Terrain Model (DTM) we simulate SAR layover, foreshortening and shadow to the ERS-1/2 and ENVISAT Lines-Of-Sight (LOS), and quantify changes of SAR distortions with variations in mode, LOS incidence angles and ground track angles, local terrain orientation, and the effect of scale due to the input DTM resolution. The simulation is extended to the ~ 230,000 km2 landmass, and shows limited control of local topography on the radar terrain visibility. According to the 50 m to 5 m DTM-based simulations, ~ 1.0–1.4% of Great Britain could potentially be affected by shadow and layover in each mode. Only ~ 0.02–0.04% overlapping between ascending and descending mode distortions is found, this indicating the negligible proportion of the landmass that cannot be monitored using either imaging mode. We calibrate the CORINE Land Cover 2006 (CLC2006) using Persistent Scatterer (PS) datasets available for London, Stoke-On-Trent, Newcastle and Bristol, to quantify land cover control on the PS distribution and characterise the CLC2006 classes in terms of the potential PS density they could provide. Despite predominance of rural land cover types, we predict potential for over 12.8 M monitoring targets for each acquisition mode using a set of image frames covering the entire landmass. We validate our assessment by processing with the Interferometric Point Target Analysis (IPTA) 55 ERS-1/2 SAR scenes depicting South Wales between 1992 and 1999. Although absolute differences between predicted and observed target density are revealed, relative densities and rankings among the various CLC2006 classes are found constant across the calibration and validation datasets. Rescaled predictions for Britain show potential for a total of 2.5 M monitoring targets across the landmass. We examine the use of the topographic and land cover feasibility maps for landslide studies in relation to the British Geological Survey's National Landslide Database and DiGMapGB mass movement layer. Building upon recent literature, we finally discuss future perspectives relating to the replication of our feasibility assessment to account for higher resolution SAR imagery, new Earth explorers (e.g., Sentinel-1) and improved processing techniques, showing potential to generate invaluable sources of information on land motions and geohazards in Great Britai

    Landslide characterization using P- and S-wave seismic refraction tomography: the importance of elastic moduli

    Get PDF
    In the broad spectrum of natural hazards, landslides in particular are capable of changing the landscape and causing significant human and economic losses. Detailed site investigations form an important component in the landslide risk mitigation and disaster risk reduction process. These investigations usually rely on surface ob- servations, discrete sampling of the subsurface, and laboratory testing to examine properties that are deemed representative of entire slopes. Often this requires extensive interpolations and results in large uncertainties. To compliment and extend these approaches, we present a study from an active landslide in a Lias Group clay slope, North Yorkshire, UK, examining combined P- and S-wave seismic refraction tomography (SRT) as a means of providing subsurface volumetric imaging of geotechnical proxies. The distributions of seismic wave velocities determined fromSRT at the study site indicated zones with higher porosity and fissure density that are interpreted to represent the extent and depth of mass movements and weathered bedrock zones. Distinguishing the lithological units was facilitated by deriving the Poisson's ratio fromthe SRT data as saturated clay and partially saturated sandy silts showed distinctively different Poisson's ra- tios. Shear and Young's moduli derived from the SRT data revealed the weak nature of the materials in active parts of the landslide (i.e. 25 kPa and 100 kPa respectively). The SRT results are consistent with intrusive (i.e. cone penetration tests), laboratory, and additional geoelectrical data from this site. This study shows that SRT forms a cost-effective method that can significantly reduce uncertainties in the conceptual ground model of geotechnical and hydrological conditions that govern landslide dynamics

    Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations

    Get PDF
    The mechanical performance of Dual Phase (DP) and Complex Phase (CP) steels was investigated by SEM analysis, tensile testing, Forming Limit Curve investigation and flange formability testing. The alloys of interest were Dual Phase (DP) untempered, Dual Phase (DP) tempered and Complex Phase (CP) steels. Phase content analysis showed that the distribution of the ferrite and martensite phases was the same for the two DP alloys, but the grain size and condition (tempered/untempered) for the martensite islands was much different in the two alloys. In the tempered DP steel, the smaller grain size for the martensite and the tempering process resulted in increased elongation, more formability and ability to form a flange (flangeability). In CP steels the soft ferrite phase is replaced by harder bainite, yielding a bainitic-martensitic microstructure. Bainite reduced the total elongation of the alloy during tensile testing, reduced the formability (especially under plane strain conditions) of the alloy but improved the flangeability of the alloy. Under flanging conditions, CP steels deformed to higher strains, at tighter radii with minimum springback. Microstructural inspections at the outer radius of the flanged specimens revealed that in CP steels bainite deforms similarly to martensite, therefore the strain partitioning is smaller in CP steels in comparison to DP steels. Plastic deformation in CP steels upon flanging occurs with the formation of strong slip bands in both martensite and bainite. In contrast, the martensite and ferrite grains in DP steels deform quite differently leading to strong strain localisations. Void nucleation and cracking occurred at the martensite islands or within the soft ferrite phase next to the martensite islands. In CP steels no voids or damage was observed within the matrix. A special case study was done with a thicker and stronger alloy, a Martensitic 1400 steel to reveal the flangeability limits for advanced high strength steels. Neither cracks nor damage were observed visually on the flanged specimens. However SEM observations at the outer radius of the flanged samples revealed significant void growth at inclusion sites and cracks nucleating within the matrix adjacent to the inclusions.Publisher Statement: This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/)</p

    Assessing climate effects on railway earthworks Using MASW

    Get PDF
    Many parts of the UK’s rail network were constructed in the mid‐19th century long before the advent of modern construction standards. Historic levels of low investment, poor maintenance strategies and the deleterious effects of climate change have resulted in critical elements of the rail network being at significant risk of failure. The majority of failures which have occurred over recent years have been triggered by extreme weather events. Advance assessment and remediation of earthworks is, however, significantly less costly than dealing with failures reactively. It is therefore crucial that appropriate approaches for assessment of the stability of earthworks are developed, so that repair work can be better targeted and failures avoided wherever possible. This extended abstract briefly discusses some preliminary results from an ongoing geophysical research project being carried out in order to study the impact of climate or seasonal weather variations on the stability of a century old railway embankment on the Gloucestershire Warwickshire steam railway line in Southern England

    Landslide characterization using P- and S-wave seismic refraction tomography — The importance of elastic moduli

    Get PDF
    © 2016 In the broad spectrum of natural hazards, landslides in particular are capable of changing the landscape and causing significant human and economic losses. Detailed site investigations form an important component in the landslide risk mitigation and disaster risk reduction process. These investigations usually rely on surface observations, discrete sampling of the subsurface, and laboratory testing to examine properties that are deemed representative of entire slopes. Often this requires extensive interpolations and results in large uncertainties. To compliment and extend these approaches, we present a study from an active landslide in a Lias Group clay slope, North Yorkshire, UK, examining combined P- and S-wave seismic refraction tomography (SRT) as a means of providing subsurface volumetric imaging of geotechnical proxies. The distributions of seismic wave velocities determined from SRT at the study site indicated zones with higher porosity and fissure density that are interpreted to represent the extent and depth of mass movements and weathered bedrock zones. Distinguishing the lithological units was facilitated by deriving the Poisson's ratio from the SRT data as saturated clay and partially saturated sandy silts showed distinctively different Poisson's ratios. Shear and Young's moduli derived from the SRT data revealed the weak nature of the materials in active parts of the landslide (i.e. 25 kPa and 100 kPa respectively). The SRT results are consistent with intrusive (i.e. cone penetration tests), laboratory, and additional geoelectrical data from this site. This study shows that SRT forms a cost-effective method that can significantly reduce uncertainties in the conceptual ground model of geotechnical and hydrological conditions that govern landslide dynamics

    Multiscale characterisation of the mechanical properties of austenitic stainless steel joints

    Get PDF
    A multiscale investigation was pursued in order to obtain the strain distribution and evolution during tensile testing both at the macro- and micro-scale for a diffusion bonded 316L stainless steel. The samples were designed for the purpose to demonstrate that the bond line properties were equal or better than the parent material in a sample geometry that was extracted from a larger component. The macroscopic stress-strain curves were coupled to the strain distributions using a camera-based 2D – Digital Image Correlation system. Results showed significant amount of plastic deformation predominantly concentrated in shear bands which were extended over a large region, crossing through the joint area. Yet it was not possible to be certain whether the joint has shown significant plastic deformation. In order to obtain the joints’ mechanical response in more detail, in situ micromechanical testing was conducted in the SEM chamber that allowed areas of 1x1 mm2 and 50x50 mm2 to be investigated. The size of the welded region was rather small to be accurately captured from the camera based DIC system. Therefore a microscale investigation was pursued where the samples were tested within an SEM chamber. Low magnification SEM imaging was utilised in order to cover a viewing area of 1 mm×1 mm while high magnification SEM imaging was employed to provide evidence of the occurrence of plastic deformation within the joint, at an area of just 50 μm×50 μm. The strain evolution over the microstructural level, within the joint and at the base material was obtained. The local strains were highly non-homogeneous through the whole test. Final failure occurred approximately 0.2 mm away from the joint. Large local strains were measured within the joint region, while SEM imaging showed that plastic deformation occurs via the formation of strong slip bands, followed by the activation of additional slip systems upon further plastic deformation which end up in additional slip bands to form on the surface. Plastic deformation occurred by slip and twinning mechanisms. Upon necking, significant out of plane deformations and slip deformation mechanisms were observed which suggested that plastic deformation was also happening at the last stages of damage evolution for the specific alloy. This was also evident from the large difference between the 600 MPa UTS stress value and the low stress values before final failure (which in many cases was below 30 MPa)

    Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites.

    Get PDF
    We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C6H16N)2PbI4, and dodecylammonium (DA) lead iodide, (C12H28N)2PbI4, by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA2PbI4. DFT simulations of the HA2PbI4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters
    corecore