19,062 research outputs found

    Identifying short motifs by means of extreme value analysis

    Full text link
    The problem of detecting a binding site -- a substring of DNA where transcription factors attach -- on a long DNA sequence requires the recognition of a small pattern in a large background. For short binding sites, the matching probability can display large fluctuations from one putative binding site to another. Here we use a self-consistent statistical procedure that accounts correctly for the large deviations of the matching probability to predict the location of short binding sites. We apply it in two distinct situations: (a) the detection of the binding sites for three specific transcription factors on a set of 134 estrogen-regulated genes; (b) the identification, in a set of 138 possible transcription factors, of the ones binding a specific set of nine genes. In both instances, experimental findings are reproduced (when available) and the number of false positives is significantly reduced with respect to the other methods commonly employed.Comment: 6 pages, 5 figure

    Anti-Fall: A Non-intrusive and Real-time Fall Detector Leveraging CSI from Commodity WiFi Devices

    Full text link
    Fall is one of the major health threats and obstacles to independent living for elders, timely and reliable fall detection is crucial for mitigating the effects of falls. In this paper, leveraging the fine-grained Channel State Information (CSI) and multi-antenna setting in commodity WiFi devices, we design and implement a real-time, non-intrusive, and low-cost indoor fall detector, called Anti-Fall. For the first time, the CSI phase difference over two antennas is identified as the salient feature to reliably segment the fall and fall-like activities, both phase and amplitude information of CSI is then exploited to accurately separate the fall from other fall-like activities. Experimental results in two indoor scenarios demonstrate that Anti-Fall consistently outperforms the state-of-the-art approach WiFall, with 10% higher detection rate and 10% less false alarm rate on average.Comment: 13 pages,8 figures,corrected version, ICOST conferenc

    Precision Spectroscopy and Higher Spin symmetry in the ABJM model

    Get PDF
    We revisit Kaluza-Klein compactification of 11-d supergravity on S^7/Z_k using group theory techniques that may find application in other flux vacua with internal coset spaces. Among the SO(2) neutral states, we identify marginal deformations and fields that couple to the recently discussed world-sheet instanton of Type IIA on CP^3. We also discuss charged states, dual to monopole operators, and the Z_k projection of the Osp(4|8) singleton and its tensor products. In particular, we show that the doubleton spectrum may account for N=6 higher spin symmetry enhancement in the limit of vanishing 't Hooft coupling in the boundary Chern-Simons theory.Comment: 44 page

    New HErschel Multi-wavelength Extragalactic Survey of Edge-on Spirals (NHEMESES)

    Full text link
    Edge-on spiral galaxies offer a unique perspective on the vertical structure of spiral disks, both stars and the iconic dark dustlanes. The thickness of these dustlanes can now be resolved for the first time with Herschel in far-infrared and sub-mm emission. We present NHEMESES, an ongoing project that targets 12 edge-on spiral galaxies with the PACS and SPIRE instruments on Herschel. These vertically resolved observations of edge-on spirals will impact on several current topics. First and foremost, these Herschel observations will settle whether or not there is a phase change in the vertical structure of the ISM with disk mass. Previously, a dramatic change in dustlane morphology was observed as in massive disks the dust collapses into a thin lane. If this is the case, the vertical balance between turbulence and gravity dictates the ISM structure and consequently star-formation and related phenomena (spiral arms, bars etc.). We specifically target lower mass nearby edge-ons to complement existing Herschel observations of high-mass edge-on spirals (the HEROES project). Secondly, the combined data-set, together with existing Spitzer observations, will drive a new generation of spiral disk Spectral Energy Distribution models. These model how dust reprocesses starlight to thermal emission but the dust geometry remains the critical unknown. And thirdly, the observations will provide an accurate and unbiased census of the cold dusty structures occasionally seen extending out of the plane of the disk, when backlit by the stellar disk. To illustrate the NHEMESES project, we present early results on NGC 4244 and NGC 891, two well studies examples of a low and high-mass edge-on spiral.Comment: 3 pages, 4 figures, to appear in the proceedings of IAU 284, "The Spectral Energy Distribution of Galaxies", (SED2011), 5-9 September 2011, Preston, UK, editors, R.J. Tuffs & C.C.Popescu (v2 updated metadata

    Hierarchy of general invariants for bivariate LPDOs

    Full text link
    We study invariants under gauge transformations of linear partial differential operators on two variables. Using results of BK-factorization, we construct hierarchy of general invariants for operators of an arbitrary order. Properties of general invariants are studied and some examples are presented. We also show that classical Laplace invariants correspond to some particular cases of general invariants.Comment: to appear in J. "Theor.Math.Phys." in May 200

    Simple model for quantum general relativity from loop quantum gravity

    Full text link
    New progress in loop gravity has lead to a simple model of `general-covariant quantum field theory'. I sum up the definition of the model in self-contained form, in terms accessible to those outside the subfield. I emphasize its formulation as a generalized topological quantum field theory with an infinite number of degrees of freedom, and its relation to lattice theory. I list the indications supporting the conjecture that the model is related to general relativity and UV finite.Comment: 8 pages, 3 figure

    Evidence for spin liquid ground state in SrDy2_2O4_4 frustrated magnet probed by muSR

    Full text link
    Muon spin relaxation (ÎĽ\muSR) measurements were carried out on SrDy2_2O4_4, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctuations are present from T=300T=300 K down to 20 mK. The coexistence of short range magnetic correlations and fluctuations at T=20T=20 mK indicates that SrDy2_2O4_4 features a spin liquid ground state. Large longitudinal fields affect weakly the muon spin depolarization, also suggesting the presence of fast fluctuations. For a longitudinal field of ÎĽ0H=2\mu_0H=2 T, a non-relaxing asymmetry contribution appears below T=6T=6 K, indicating considerable slowing down of the magnetic fluctuations as field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in Journal of Physics: Conference Series (JPCS
    • …
    corecore