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1 Introduction

The spectrum of Kaluza-Klein (KK) excitations in flux vacua plays an important role

both in attempts to embed the Standard Model in String Theory and in the holographic

correspondence. In the spirit of holography, the seminal observation of Schwarz’s [1] and

the subsequent work of Bagger and Lambert [2–5] and, independently, of Gustavsson [6],

motivated Aharony, Bergman, Jafferis and Maldacena (ABJM) [7, 8] to propose a duality

between superconformal Chern-Simons (C-S) theories in d = 3 dimensions and String / M-

theory on AdS4.
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The duality has been thoroughly tested and extended to cases with lower supersym-

metry [9–14]. In particular the superconformal index has been matched both in the regime

k ≫ 1 (SO(2) singlets) [15, 16] and at finite k [17, 18]. A detailed analysis of the (BPS)

spectrum and the supermultiplet structure is however still incomplete. Aim of this note is to

fill in this gap and perform precision spectroscopy of 11-d supergravity on AdS4 × S7/Zk

or, equivalently, Type IIA on AdS4 × CP
3. We will also discuss higher spin symmetry

enhancement in the limit of vanishing ’t Hooft coupling in the boundary N = 6 Chern-

Simons theory.

The plan of the paper is as follows. After reviewing the ABJM model, presenting both

bulk and boundary vantage points, we will revisit KK reduction of 11-d supergravity on

S7 [19] and then perform the decomposition of SO(8) into SO(6)×SO(2) so as to derive the

KK excitations of N = 6 gauged supergravity [20], including states charged under SO(2)

that are expected to be dual to ‘monopole’ operators on the boundary [7, 8]. Since we rely

on group theory techniques which are not easily found in the available literature, we try to

make this part of the presentation as pedagogical as possible, also in view of applications

to other flux vacua with internal coset manifolds G/H. We then compare the resulting

bulk spectrum with the spectrum of gauge-invariant operators on the boundary. Finally we

compute the partition function of the boundary theory performing an orbifold projection

on the parent theory (k = 1, 2 cases) and examine the higher spin content of the theory.

Various appendices summarize useful SO(8) and SO(6) group theory formulae.

2 The ABJM model

The near-horizon geometry of a stack of N M2-branes is AdS4 × S7 with N units of F4

flux along AdS4 and as many units of its dual F7 along S7 [21]. The metric reads

ds211 =
1

4
L2ds2AdS + L2ds2S7 (2.1)

for later use, note that LAdS = L/2 with L the radius of S7 and henceforth the metrics of

the subspaces are for unit curvature radii.

ABJM have conjectured that 11-d supergravity on AdS4×S7/Zk, corresponding to the

near horizon geometry of N M2-branes at a C
4/Zk singularity, be dual to N = 6 C-S theory

in d = 3 with gauge group U(N)k×U(N)−k and opposite CS couplings k1 = k = −k2 [7, 8].

2.1 Supergravity description

The Type IIA solution corresponding to the ABJM model reads

ds2IIA = 4
ρ2

L2
dx · dx+ 4

L2

4ρ2
dρ2 + L2ds2

CP3 =
1

4
L2ds2AdS + L2ds2

CP3 (2.2)

where

L =

(
32π2N

k

)1/4

(2.3)
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is the curvature radius in string units. The string coupling, related to the VEV of the

dilaton, is given by

gs = L/k =

(
32π2N

k5

)1/4

(2.4)

Thus the perturbative Type IIA description should be valid for L≫ 1 and gs ≪ 1 i.e. for

N1/5 ≪ k ≪ N while λ = N/k is the ’t Hooft coupling of the boundary CS theory.

In the 11-d uplift, CP
3 becomes the base of a Hopf fibration S7 = CP

3
⋉ S1 whose

metric reads

ds2S7 = ds2
CP3 + (dτ + A)2 (2.5)

with dA = 2JCP3, the Kähler form on CP
3 normalized so that dV (CP

3) = J ∧ J ∧ J /6
and V (CP

3) = π3/6. The solution is supported by R-R fluxes

gsF2 = 2LJ , gsF4 = 6L3dV (AdS4) , gsF6 = 6L5dV (CP
3) (2.6)

In the ABJM model, corresponding to N = 6 C-S theory U(N)k × U(N)−k on the

boundary, B2 = 0. For fractional M2-branes, one has the ABJ model corresponding to

N = 6 C-S theory U(N)k × U(N + k − l)−k [22] on the boundary, B2 = J l/k, with

l = 1, . . . , k − 1. Boundary C-S theories with
∑

i ki 6= 0 and lower susy should be dual to

turning on a non-zero Romans mass (F0 6= 0) in the bulk Type IIA description [23–25].

The 11-d supergravity approximation should be valid in the double-scaling limit k →
∞, N → ∞ with λ = N/k fixed and large. The CFT description, to which we momentarily

turn our attention, should instead be valid when λ≪ 1, i.e. k ≫ N . As λ→ 0 higher spin

symmetry enhancement takes place as we will eventually see.

2.2 Boundary CFT description

N = 6 CS theories are conveniently constructed from N = 3 CS theories. The case N = 3

arises in turn from the N = 4 case obtained after dimensional reduction of N ′ = 2 in

d = 4. In this way, each vector multiplet includes an N = 2 ( i.e. N = 1′ in d = 4) chiral

multiplet in the adjoint Φ = Φat
a and couples to various hypers Q and Q̃ in real (reducible)

representations. Adding to the ‘standard’ N = 4 superpotential

W = Q̃ΦQ (2.7)

the CS term, giving a mass m = g2
Y M

k
4π to the vectors, and a CS superpotential

W =
k

8π
TrΦ2 (2.8)

breaks N = 4 to N = 3. Integrating out Φ yields

W =
4π

k
(Q̃taQ)(Q̃taQ) (2.9)
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The resulting N = 3 theory has no marginal susy preserving deformations [23–25]. In

the process R-symmetry is reduced to SO(3) ≈ SU(2) for N = 3 from the original SO(4)

of N = 4.

The case N = 6 is special. Starting with the N = 3 theory with G = U(N)k ×U(N)−k

and two pairs of hypers, Ar ∈ (N,N∗) and Bṁ ∈ (N∗,N) and integrating out Φ1 and Φ2

one gets

W =
2π

k
ǫrsǫṁṅTr(ArBṁAsBṅ) (2.10)

Since the manifest ‘flavour’ symmetry ofW under SU(2)×SU(2)×U(1)B does not commute

with R-symmetry SO(3) ≈ SU(2) under which A and B form doublets, the full theory

has a larger SU(4) ≈ SO(6) symmetry which is the R-symmetry of N = 6. To expose

the symmetry it is convenient to define Xi = (A1, A2, B
∗
1̇
, B∗

2̇
) and their conjugate X∗

i

that together transform as 4+1 + 4∗
−1 of SO(6) × SO(2). As we will momentarily see,

SO(2) ∼ U(1) acts as a baryonic symmetry. Further (super)symmetry enhancement to

N = 8 with SO(8) R-symmetry takes place for k = 1 and k = 2. The former corresponds

to compactification on S7 the latter to S7/Z2 (only ‘even’ spherical harmonics).

2.3 A quick look at the spectrum

The (ungauged) N = 6 supergravity multiplet consists of the graviton gµν , 6 gravitini ψi
µ,

16 graviphotons A
[ij]
µ and A0

µ, 26 dilatini λ[ijk] and λi, and 30 scalars φ[ijkl] and φ[ij]. The

latter parameterize the moduli space M = SO∗(12)/U(6). After ‘gauging’ SO(6) × SO(2)

a scalar potential is generated and the two sets of 150 scalars become ‘massive’ or rather

‘tachyonic’ i.e. (MLAdS)2 = −2, safely above the B-F bound (MLAdS)2 = −9/4.

Compactification of Type IIA supergravity on CP
3 was studied in [26]. KK excitations

with Q = 0, i.e. neutral wrt SO(2), were identified there. The non-perturbative spectrum,

contains various wrapped branes, including D0-branes that are charged wrt SO(2). The

latter correspond to 11-d KK modes along the compact circle that can be obtained by a

Zk projection of the M-theory compactification on S7. The dual to SO(2) charged states

are monopole operators on the boundary [8, 27, 28]. Although the fundamental fields

(Ar, Bṡ) are neutral wrt the diagonal U(1) that couples to A+
µ = A1

µ +A2
µ, the orthogonal

combination A−
µ = A1

µ − A2
µ acts as a baryonic symmetry. The corresponding current,

JB = ∗F+, is conserved thanks to Bianchi identities. Due to the CS coupling k
∫
A−∧F+,

configurations with A+ magnetic charge are electrically charged wrt A−. Alternatively

one can introduce a Lagrange multiplier τ for dF+ = 0 (on-shell kA− = dτ) and form

combinations einτ that can screen the baryonic charge of matter field composites. In

general one can consider magnetic monopoles charged under U(1)N ⊂ U(N) with H =

(Q1, . . . , QN ). Without loss of generality one can take Q1 ≥ Q2 ≥ . . . ≥ QN . Since

elementary fields have unit charges and transform in the fundamental of SU(N), these

monopole operators correspond to Young tableaux with kQi boxes in the ith row. For

k = 1, 2 dressing composite vector currents in the 6±2 and scalar operators in the 10±2

– 4 –
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and 10∗
∓2 (with ∆± = 1, 2) with charge 2 monopole operators is crucial to the enhancement

of supersymmetry to N = 8 with full SO(8) R-symmetry [8]. Monopole and anti-monopole

operators however appear in the spectrum even when k ≥ 3 and no (super)symmetry

enhancement takes place [27, 28].

Before concluding this preliminary look, let us note that out of the two U(1) in the

boundary CS theory only the Baryonic U(1)B = U(1)− is visible as a global symmetry,

whose Zk subgroup is gauged, in the bulk description. The fate of the other U(1) is a

sort of Higgs mechanism, under which AM → Aµ and CMNP → CµJab mix. Only the

combination kAµ + NCµ remains massless and couples to U(1)B while the orthogonal

combination NAµ − kCµ becomes massive by ‘eating’ the (pseudo)scalar β from B2 = βJ .

A 5-brane instanton is thus expected to mediate processes in which k D0-branes transform

into N D4-branes wrapped around CP 2 ⊂ CP
3 [22].

3 Compactification on S
7 revisited

For the later use let us briefly review the mass spectrum of the Freund-Rubin solution of

d = 11 supergravity on S7 [19, 29, 30]. The gravitino field as well as all the fermions are

set to zero, the AdS4 Riemann tensor and the three-form field strength are given by:

Rµνρσ = −4(gµρ(x)gνσ(x) − gµσ(x)gνρ(x)) (3.1)

Fµνρσ = 3
√

2
√

− det gµν(x)εµνρσ (3.2)

where ε0123 = −1. The metric and the three form field with mixed indices vanish:

gµα = Fµνρα = Fµναβ = Fµαβγ = 0 (3.3)

and also

Fαβγδ(y) = 0 (3.4)

Rαβ = −6gαβ(y) (3.5)

µ, ν, ρ = 0, . . . , 3 are d = 4 indices, α, β, γ = 1, . . . , 7 are internal indices.

Let us then consider fluctuations around the Freund-Rubin solution. The linearized

field equations are obtained by replacing the background fields in the d = 11 field equations

by background fields plus arbitrary fluctuations. An elegant and quite general method

to determine the complete mass spectrum on any coset manifold relies on generalized

harmonic expansion. In our case, one expands the fluctuations in a complete set of spherical

harmonics of S7 = SO(8)/SO(7). The coefficient functions of the spherical harmonics

correspond to the physical fields in d = 4. In order to diagonalize the linearized equations

– 5 –
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it turns out to be convenient to parameterize the fluctuations as follows:

gµν(x, y) = gµν(x) + hµν(x, y) (3.6)

hµν(x, y) = h′µν(x, y) − 1

2
gµν(x)h α

α (x, y) (3.7)

gαβ(x, y) = gαβ(x) + hαβ(x, y) (3.8)

gµα(x, y) = hµα(x, y) (3.9)

Aµνρ(x, y) = Aµνρ(x) + aµνρ(x, y) (3.10)

In particular the Weyl rescaled spacetime metric appears in (3.7) so as to put the d = 4

Einstein action in canonical form. The spherical harmonic expansions of the fluctuations

of the metric and of the antisymmetric tensor fields are given by:

h′(µν)(x, y) =
∑

HN1

µν (x)Y N1(y)

hµα(x, y) =
∑

BN7

µ (x)Y N7

α (y) +BN1

µ (x)DαY
N1(y)

h(αβ)(x, y) =
∑

φN27(x)Y N27

(αβ)(y) + φN7(x)D(αY
N7

β) (y) + φN1(x)D(αDβ)Y
N1(y)

h α
α (x, y) =

∑
πN1(x)Y N1(y)

Aµνρ(x, y) =
∑

aN1

µνρ(x)Y
N1(y)

Aµνα(x, y) =
∑

aN7

µν (x)Y N7

α (y) + aN1

µν (x)DαY
N1(y)

Aµαβ(x, y) =
∑

aN21

µ (x)Y N21

αβ (y) + aN7

µ (x)D[αY
N7

β]

Aαβγ(x, y) =
∑

aN35(x)Y N35

αβγ (y) + aN21(x)D[αY
N21

βγ] (y) (3.11)

All superscripts Nr (r = 1, 7, 21, 27, 35) have infinite range, since they should provide a

basis for arbitrary fields on the 7-sphere. The index r specifies the SO(7) representa-

tion of the corresponding spherical harmonic. For example, Y N35

αβγ is in the third rank

totally antisymmetric representation of SO(7) with dimension 35, while Y N27

(αβ) is in the

symmetric traceless 27-dimensional representation. Derivatives of Y ’s appear in the ex-

pansions since any tensor can be decomposed into its transverse and longitudinal parts.

After fixing all local symmetries which do not correspond to gauge invariances of the fi-

nal d = 4 theory and by choosing de Donder type, Dαh(αβ)(x, y) = 0, and Lorentz type,

Dαhαµ(x, y) = 0, conditions the last term in hµα and the last two terms in h(αβ) drop out.

To fix the local symmetries of the antisymmetric tensor fields we choose the Lorentz con-

ditions DαAαβγ(x, y) = DαAαβµ(x, y) = DαAαµν(x, y) = 0. As a consequence, also these

fields have only transverse harmonics aN1
µν (x) = aN7

µ (x) = aN21(x) = 0. Substituting the

resulting expansions into the d = 11 field equations, the coefficients of each independent

spherical harmonic yield the d = 4 field equations.

In the Einstein equation for Rµν only Y N1 spherical harmonics appear without deriva-

tives. Thus there is only one field equation, i.e. one KK tower, for traceless symmetric

tensors in AdS4.

– 6 –
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Spin Field SO(7) SO(8) 4(ML)2 ∆ ℓ

2+ h′(µν) N1 (ℓ, 0, 0, 0) ℓ(ℓ+ 6) ∆ = ℓ
2 + 3 ℓ ≥ 0

1−1 hµα N7 (ℓ, 1, 0, 0) ℓ(ℓ+ 2) ∆ = ℓ
2 + 2 ℓ ≥ 0

1−2 Aµνα N7 (ℓ− 2, 1, 0, 0) (ℓ+ 6)(ℓ+ 4) ∆ = ℓ
2 + 4 ℓ ≥ 2

1+ Aµαβ N21 (ℓ− 1, 0, 1, 1) (ℓ+ 2)(ℓ+ 4) ∆ = ℓ
2 + 3 ℓ ≥ 1

0+
1 Aµνρ N1 (ℓ+ 2, 0, 0, 0)∗ (ℓ+ 2)(ℓ− 4) ∆ = ℓ

2 + 1 ℓ ≥ 0

0+
2 hαα, h

′
λλ N1 (ℓ− 2, 0, 0, 0) (ℓ+ 10)(ℓ+ 4) ∆ = ℓ

2 + 5 ℓ ≥ 2

0+
3 h(αβ) N27 (ℓ− 2, 2, 0, 0) ℓ(ℓ+ 6) ∆ = ℓ

2 + 3 ℓ ≥ 2

0−1 Aαβγ N35 (ℓ, 0, 2, 0) (ℓ− 2)(ℓ+ 4) ∆ = ℓ
2 + 2 ℓ ≥ 0

0−2 Aαβγ N35 (ℓ− 2, 0, 0, 2) (ℓ+ 8)(ℓ+ 2) ∆ = ℓ
2 + 4 ℓ ≥ 2

Table 1. Bosonic KK towers after compactification on S7.

Examining the Einstein equation for Rαβ one can see that the vector fields BN7
µ are

massive and transversal, except for the lowest lying state corresponding to the Killing

vectors on S7. The spin-0 fields φN27 have a mass matrix ∆y + 12 (∆y is the Hodge-de

Rham operator). By a judicious gauge choice one can eliminate HN1 µ
µ in favour of πN1

namely HN1 µ
µ = 9

7π
N1 .

Collecting the coefficients of the spherical harmonics Y N7
α and DαY

N1 in the Einstein

equation for Rµα, one finds that the spin-1 spectrum consists of linear combinations of BN7
µ

and CN7
µ (from aN7

ρσ ) and that one can eliminate the divergence DµHN1
µν in favour of πN1 ,

aN1
ρστ except when Y N1 is a constant.

Similarly, inspecting the equations for p-form field strengths (p = 1, 2, 3, 4), one con-

cludes that field expansions in spherical harmonics can be chosen such that only the first

terms in the expansions survive with Y s being transversal and traceless.

In particular, from the three-form field strength equation one finds that aN1
µνρ =

εµνρλD
λσN1 . This implies that the divergence of HN1

µν is proportional to a gradient.

From the four-form field strength equation one gets an equation for �xσ
N1 . Taking the

trace of the equations for Rµν and Rαβ , an equation involving �xσ
N1 and �xH

N1µ
µ arises.

Resolving the mixing between aN1
µνρ and HN1µ

µ produces to independent combinations and

as many KK towers of scalars.

From the two-form field strength equation one finds DµaN7
µν = 0, which implies aN7

µν =

ε ρσ
µν DρC

N7
σ . Using one of the three-form field strength equations one finds that CN7

µ and

BN7
µ mix. Resolving the mixing one finds two KK towers, one of which starts with a

massless vector corresponding to the internal Killing vectors of S7.

After diagonalizing the bosonic field equations one obtains the mass spectrum sum-

marized in table 1. The resulting bosonic spectrum includes the massless graviton, 28

massless vectors of SO(8), corresponding to a combination of Bµ (in hµα) and Cµ (in

– 7 –
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Spin SO(8) 4(ML)2 ∆ ℓ

(3
2 )1 (ℓ, 0, 0, 1) (ℓ+ 2)2 ∆ = ℓ

2 + 5
2 ℓ ≥ 0

(3
2 )2 (ℓ− 1, 0, 1, 0) (ℓ+ 4)2 ∆ = ℓ

2 + 7
2 ℓ ≥ 1

(1
2 )1 (ℓ+ 1, 0, 1, 0)∗ ℓ2 ∆ = ℓ

2 + 3
2 ℓ ≥ 0

(1
2 )2 (ℓ− 1, 1, 1, 0) (ℓ+ 2)2 ∆ = ℓ

2 + 5
2 ℓ ≥ 1

(1
2 )3 (ℓ− 2, 1, 0, 1) (ℓ+ 4)2 ∆ = ℓ

2 + 7
2 ℓ ≥ 2

(1
2 )4 (ℓ− 2, 0, 0, 1) (ℓ+ 6)2 ∆ = ℓ

2 + 9
2 ℓ ≥ 2

Table 2. Fermionic KK towers after compactification on S7.

Aµνα), 35v scalars (∆ = 1) and 35s (∆ = 2) pseudoscalars with (MLAdS)2 = −2. In

the supergravity literature [19, 29, 30] masses of scalars are often shifted by −R/6 so

that (MLAdS)2 → (M̃LAdS)
2 = (MLAdS)2 + 2. The 70 (pseudo)scalars in the N = 8

supergravity multiplet are ‘massless’ in the sense that (M̃LAdS)
2 = 0. Moreover, there

are three families of scalars and two families of pseudoscalar excitations. Three of them

(0+
2 , 0+

3 and 0−2 ) contain only states with positive mass square and correspond to irrelevant

operators in the dual CFT. The remaining families 0+
1 and 0−1 contain states with posi-

tive, zero and negative mass squared corresponding to irrelevant, marginal and relevant

operators, respectively.

A similar analysis can be performed for fermionic fluctuations. In table 2 we summarize

the fermionic mass spectrum.

The KK spectrum does not include the states with ∗ for ℓ = −1, since they do not

propagate in the bulk but live on the conformal boundary of AdS4. They correspond

to the singleton representation of Osp(8|4) that consists of 8v bosons Xi with ∆ = 1
2 ,

(ML)2 = −5
4 and 8c fermions ψȧ with ∆ = 1, ML = 1

2 , both at the unitary bound.

The KK excitations on S7 can be put in one-to-one correspondence with ‘gauge-

invariant’ composite operators on the boundary. The dictionary for bosonic operators

schematically reads:

s = 2+ T i1...iℓ
µν,∆= ℓ

2
+3

= (∂µXi∂νX
i + ψ̄γµ∂νψ)Xi1 . . . Xiℓ (3.12)

s = 1−1 J
[ij]i1...iℓ
µ,∆= ℓ

2
+2

= (X [i∂µX
j] + ψ̄Γijγµψ)Xi1 . . . Xiℓ (3.13)

s = 1−2 J
[ij]i1...iℓ−2

µ,∆= ℓ

2
+4

= ∂µXi∂νX
iψ̄γνΓijψXi1 . . . Xiℓ−2 (3.14)

s = 1+ J
aḃi1...iℓ−1

µ,∆= ℓ

2
+3

= ψ̄Γjk∂µψ(XiΓ
ijk)aḃXi1 . . . Xiℓ−1 (3.15)

s = 0+
1 Φiji1...iℓ

∆= ℓ

2
+1

= XiXjXi1 . . . Xiℓ (3.16)

s = 0+
2 Φ

i1...iℓ−2

∆= ℓ

2
+5

= ∂µX
i∂νXiψ̄γ

µ∂νψXi1 . . . Xiℓ−2 (3.17)

s = 0+
3 Φ

[ij][kl]i1...iℓ−2

∆= ℓ

2
+3

= (ψ̄ΓijγµψX
[k∂µX l])Xi1 . . . Xiℓ−2 (3.18)

– 8 –
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s = 0−1 Φ
(ȧḃ)i1...iℓ
∆= ℓ

2
+2

= ψ̄ȧψḃXi1 . . . Xiℓ (3.19)

s = 0−2 Φ
(ab)i1...iℓ−2

∆= ℓ

2
+4

= (Γijkl)abXi∂
µXjψ̄Γkl∂µψX

i1 . . . Xiℓ−2 (3.20)

A similar dictionary can be compiled for fermions.

4 Polynomial representations for SO(8) and U(4)

In order to decompose KK harmonics on S7 = SO(8)/SO(7) into KK harmonics on CP
3 =

U(4)/U(3) × U(1), we will present the construction of arbitrary representations of SO(8)

in the space of polynomials of 12 variables. The latter are the coordinates of the subgroup

Z
SO(8)
+ generated by the raising operators of SO(8). We will then describe a technique which

allows to identify which of the above polynomials correspond to highest weight states of

representations of U(4) ⊂ SO(8). The method we use is quite standard in representation

theory of Lie groups (see e.g. chapter 16 of [31]).

It is convenient to start with SO(8,C) defined as the group of 8× 8 complex matrices

which leave invariant the quadratic form XTC(8)X, where X is a complex (column) vector

whose components will be enumerated as X1,X2,X3,X4,X 4̃,X 3̃,X 2̃,X 1̃ and C(8) is an

8 × 8 matrix with 1’s on SW-NE (anti)diagonal:

C
(8)
ij = C

(8)

ĩj̃
= 0, C

(8)

ij̃
= C

(8)

j̃i
= δij , i, j = 1, 2, 3, 4 (4.1)

By definition all matrices g ∈ SO(8) satisfy the condition gTC(8)g = C(8). Eventually,

in order to select the compact real form SO(8) of our interest, one should identify the

coordinates X ĩ with X̄i (bar means complex conjugate). A generic SO(8) matrix g can be

(uniquely) decomposed as (Gauss decomposition):

g = ζλz, (4.2)

where ζ ∈ Z−, z ∈ Z+, λ ∈ Λ with Z+ (Z−) being the subgroup of lower (upper) triangu-

lar matrices with 1’s on the diagonal and Λ is the subgroup of diagonal matrices (Cartan

subgroup). Let’s set λ = Diag(λ1, λ2, λ3, λ4, λ
−1
4 , λ−1

3 , λ−1
2 , λ−1

1 ). We will realize the irre-

ducible representations of the group SO(8) on some spaces of functions defined on it. In

particular, the role of the highest weight vector will be played by the function:

α(g) = λm1

1 λm2

2 λm3

3 λm4

4 (4.3)

where m1 ≥ m2 ≥ m3 ≥ |m4| (mi are either all integers or all half-integers) uniquely

characterize the irrep. The eigenvalues λi can be expressed in terms of the matrix elements

of g explicitly:

λp =
∆p

∆p−1
, p = 1, 2, 3, 4 (4.4)
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where ∆0 = 1 and ∆p, p = 1, 2, 3, 4 are the diagonal minors

∆p =

∣∣∣∣∣∣∣∣

g11 · · · g1p

... · · · ...

gp1 · · · gpp

∣∣∣∣∣∣∣∣
. (4.5)

Introducing the notation S− = ∆3√
∆4

, S+ =
√

∆4 (it is easy to see that S+,− polynomially

depend on the matrix elements of g) we can rewrite eq. (4.3) as

α(g) = ∆ℓ1
1 ∆ℓ2

2 S
ℓ3
− S

ℓ4
+ (4.6)

where ℓ1 = m1 −m2, ℓ2 = m2 −m3, ℓ3 = m3 −m4 and ℓ4 = m3 +m4 are non-negative

integers commonly referred as the Dynkin labels of the irrep. Consider the space Rα of all

linear combinations of the functions α(gg0), g0 ∈ SO(8). SO(8) is represented in Rα simply

by the right multiplication of the argument. As already mentioned the function α(g) plays

the role of the highest weight state. For any function f(g) ∈ Rα we have f(ζλz) = α(λ)f(z)

which shows that to restore its full g-dependence it is sufficient to only know the values

the function assumes on the subgroup Z+. This is why actually we get representation on a

space of functions of z, in fact polynomials due to the polynomial dependence on g of α(g)

mentioned earlier.

There is an elegant way to characterize this space of polynomials. Consider the four

raising generators corresponding to the simple roots

e1 = E12 − E2̃1̃; e2 = E23 − E3̃2̃

e− = E34 − E3̃4̃; e+ = E34̃ − E4̃3 (4.7)

where Epq denotes the 8 × 8 matrix whose only non-zero entry 1 is at the position (p, q).

Denote their left action on Rα by D1, D2, D−, D+. It is not difficult to prove that

Dℓ1+1
1 α(g) = 0

Dℓ2+1
2 α(g) = 0

Dℓ3+1
− α(g) = 0

Dℓ4+1
+ α(g) = 0. (4.8)

The key observation is that the same equations are valid also for arbitrary functions f ∈ Rα,

since they are all generated by α(g) through right multiplications which commute with left

multiplications. Below we will use a convenient explicit parametrization of Z+ ⊂ SO(8) in

terms of two 4 × 4 matrices η and a

η =





1 η12 η13 η14

0 1 η23 η24

0 0 1 η34

0 0 0 1




; a =





a14 a13 a12 0

a24 a23 0 −a12

a34 0 −a23 −a13

0 −a34 −a24 −a14




. (4.9)
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Let us further introduce the 8 × 8 matrices which in 2 × 2 block form read

z0 =

(
η 0

0 η̃

)
; z′ =

(
1 a

0 1

)
, (4.10)

where

η̃ =





1 −η34 −η24 + η23η34 −η14 + η12η24 + η13η34 − η12η23η34

0 1 −η23 −η13 + η12η23

0 0 1 −η12

0 0 0 1




. (4.11)

An arbitrary z ∈ Z+ can be (uniquely) represented as

z = z′z0. (4.12)

Left multiplication by raising generators (4.7) induces infinitesimal motion on the param-

eters a, η. A straightforward algebra shows that e.g.

(1 + ǫe1)z(a, η) = z(a+ δa, η + δη) +O(ǫ2), (4.13)

where the non-trivial variations are

δη12 = ǫ, δη13 = ǫη23, δη14 = ǫη24, δa13 = ǫa23, δa14 = ǫa24.

Similarly examining the remaining three generators we find

D1 = ∂η12
+ η23∂η13

+ a23∂a13
+ a24∂a14

D2 = ∂η23
+ η34∂η24

+ a13∂a12
+ a34∂a24

D− = ∂η34
+ a14∂a13

+ a24∂a23

D+ = ∂a34
. (4.14)

Thus any irreducible representation of SO(8) is realized on the space of polynomials of 12

variables a, η subject to the constraints

(∂η12
+ η23∂η13

+ a23∂a13
+ a24∂a14

)ℓ1+1 f(a, η) = 0

(∂η23
+ η34∂η24

+ a13∂a12
+ a34∂a24

)ℓ2+1 f(a, η) = 0

(∂η34
+ a14∂a13

+ a24∂a23
)ℓ3+1 f(a, η) = 0

(∂a34
)ℓ4+1 f(a, η) = 0. (4.15)

Note that the constant polynomial always satisfies (4.15) and corresponds to the high-

est weight state. Considering right multiplication it is not difficult to find explicit expres-

sions for the generators of SO(8) as operators acting on the space of polynomials. For our

later proposes let us specify how the diagonal part Λ ⊂ SO(8) is represented. Since

z(a, η)λ = λλ−1z(a, η)λ = λz(a′, η′), (4.16)
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where

a′ij = λ−1
j λ−1

i aij ; η′ij = λjλ
−1
i ηij (4.17)

we simply get

λ ◦ f(a, η) = λm1

1 λm2

2 λm3

3 λm4

4 f(a′, η′) (4.18)

Notice that the variable aij shifts the weights as mi → mi − 1, mj → mj − 1 while the

variable ηij shifts them as mi → mi − 1, mj → mj + 1.

Consider now the GL(4, C) ⊂ SO(8, C) subgroup whose off-diagonal blocks in 2 × 2

block notation are zero. This subgroup does not mix the coordinates Xi with X ĩ and after

restriction to the real sector it becomes the subgroup U(4) ⊂ SO(8).

In other words, for the reduction from S7 to S7/Zk or CP
3

⋉ S1 we are interested in,

the decomposition SO(8) → SO(6) × SO(2) is given by the embedding

8v(1, 0, 0, 0) → 4+1[0, 1, 0] + 4∗
−1[0, 0, 1] (4.19)

where (ℓ1, ℓ2, ℓ3, ℓ4) and [k, l,m] denote SO(8) and SO(6) Dynkin labels respectively. As a

result, for the Adjoint representation one has

28(0, 1, 0, 0) → 150[0, 1, 1] + 10[0, 0, 0] + 6+2[1, 0, 0] + 6−2[1, 0, 0] (4.20)

while

8s(0, 0, 0, 1) → 60[1, 0, 0] + 1+2[0, 0, 0] + 1−2[0, 0, 0] (4.21)

8c(0, 0, 1, 0) → 4−1[0, 1, 0] + 4∗
+1[0, 0, 1] (4.22)

for the spinorial representations.

Our goal is to identify the highest weight states of this subgroup inside the space

of polynomials of a given representation of SO(8). It is evident from the decomposi-

tion (4.12), (4.11) that the right action by the raising operators of GL(4) subgroup e1, e2,

e− (see eq. (4.7)) shifts the parameters η and leave the parameters a untouched. Thus, in

order to be a highest weight state, a polynomial, besides satisfying the equations (4.15)

should be independent of η. The indicator system for the highest weight states becomes

(a23∂a13
+ a24∂a14

)ℓ1+1 f(a) = 0

(a13∂a12
+ a34∂a24

)ℓ2+1 f(a) = 0

(a14∂a13
+ a24∂a23

)ℓ3+1 f(a) = 0

(∂a34
)ℓ4+1 f(a) = 0. (4.23)

Solving these equations one can fully decompose KK harmonics on S7 into KK harmonics

of CP
3 × S1 which is our next task.
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5 From S
7 to CP3 ⋉ S

1

S7 is a U(1) bundle over CP
3. The CP

3 solution of the d = 10 theory can be obtained from

the S7 solution of the d = 11 theory by Hopf fibration, i.e. keeping only U(1) invariant

states [26]. The compactification on CP
3 of the d = 10 theory yields a four dimensional

theory with N = 6 supersymmetry and with gauge group SO(6) × SO(2).

The truncation from S7 to CP
3

⋉ S1 cannot be thought of as spontaneous (su-

per)symmetry breaking and one has to really discard the states that are projected out

by Zk or SO(2) for k → ∞ even if it acts freely. In particular we will later check that no

Higgsing can account for the breaking of SO(8) to SO(6)× SO(2) but rather the coset vec-

tors are dressed with monopole operators and become massive for k 6= 1, 2 [7, 8, 22, 28, 32].

Let us start with the KK towers of bosons. Using the procedure described in the

previous section or otherwise, for scalar spherical harmonics with Dynkin labels (ℓ, 0, 0, 0)

one finds as independent polynomials {am
14 |m = 0, . . . , ℓ}. Thus the following decomposi-

tion holds:

N1 : (ℓ, 0, 0, 0) → ⊕[0, ℓ−m,m]ℓ−2m (5.1)

where the subscript is the SO(2) charge Q of the appropriate representation.

For vector spherical harmonics with SO(8) Dynkin labels (ℓ − 2, 1, 0, 0) one gets

{a12a
m
14, a24a

m
14, (a13a24 − a14a23)a

m
14, a

m
14 |m = 0, . . . , ℓ} as independent polynomials. The

SO(8) representation decomposes into SO(6) representations as:

N7 : (ℓ, 1, 0, 0) → ⊕[0, ℓ−m,m]ℓ−2m ⊕ [0, ℓ−m+ 1,m+ 1]ℓ−2m

⊕[1, ℓ−m,m]ℓ−2m−2 ⊕ [1, ℓ−m,m]ℓ−2m+2 (5.2)

One obtains the decomposition of the representation (ℓ − 2, 1, 0, 0) from the previous one

by shifting ℓ to ℓ− 2. In what follows we will simply omit the decompositions which differ

by shifts of the parameter ℓ.

For two-form spherical harmonics with SO(8) Dynkin labels (ℓ − 1, 0, 1, 1)

one finds {am
14, a23a

m
14, a34a

m
14, a23a34a

m
14, (a34a12 − a13a24)a

m
14, a23(a23a14 + a34a12 −

a13a24)a
m
14), a13a

n
14, a34a13a

n
14, (a34a12 − a13a24)a13a

n
14 |m = 0, . . . , ℓ − 1, n = 0, . . . , ℓ− 2}

as independent polynomials. One then finds the following decomposition:

N21 : (ℓ− 1, 0, 1, 1) → ⊕[0, ℓ−m,m]ℓ−2m−4 ⊕ [0, ℓ−m− 1,m+ 1]ℓ−2m+2

⊕[1, ℓ−m,m]ℓ−2m−2 ⊕ [1, ℓ−m− 1,m+ 1]ℓ−2m

⊕[0, ℓ−m,m]ℓ−2m ⊕ [0, ℓ −m− 1,m+ 1]ℓ−2m−2

⊕[1, ℓ− n− 2, n]ℓ−2n−4 ⊕ [2, ℓ− n− 2, n]ℓ−2n−2

⊕[1, ℓ− n− 2, n]ℓ−2n (5.3)

The decomposition of the KK towers corresponding to 0+
1 and 0+

2 can be found from the

decomposition of 2+ via appropriate shifts.
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For second rank symmetric traceless harmonics with Dynkin labels (ℓ − 2, 2, 0, 0) the

polynomials are: {am
14, a12a

m
14, a12(a23a14−a13a24)a

m
14, a

2
12a

m
14, a12a24a

m
14,a24a

m
14, a24(a23a14−

a13a24)a
m
14, (a13a24−a14a23)a

m
14, (a14a23−a13a24)

2am
14, a

2
24a

m
14, |m = 0, . . . , ℓ−2}. The SO(6)

representations decomposed from SO(8)’s are:

N27 : (ℓ− 2, 2, 0, 0) → ⊕[2, ℓ−m− 2,m]ℓ−2m+2 ⊕ [1, ℓ−m− 2,m]ℓ−2m

⊕[1, ℓ−m− 2,m]ℓ−2m−4 ⊕ [0, ℓ−m− 1,m+ 1]ℓ−2m−2

⊕[0, ℓ−m− 2,m]ℓ−2m−2 ⊕ [1, ℓ−m− 1,m+ 1]ℓ−2m

⊕[1, ℓ−m− 1,m+ 1]ℓ−2m−4 ⊕ [2, ℓ−m− 2,m]ℓ−2m−2

⊕[2, ℓ−m− 2,m]ℓ−2m−6 ⊕ [0, ℓ−m,m+ 2]q=ℓ−2m−2 (5.4)

For the three-form spherical harmonic with SO(8) Dynkin labels (ℓ, 0, 2, 0) one finds

{(am
14 + a23a

m
14 + a2

23a
m
14), a13(a

n
14 + a23a

n
14), a

2
13a

p
14 |m = 0, . . . , ℓ, n = 0, . . . , ℓ − 1, p =

0, . . . , ℓ− 2} polynomials. The representation (ℓ, 0, 2, 0) decomposes as:

N35 : (ℓ, 0, 2, 0) → ⊕[0, ℓ−m,m+ 2]ℓ−2m+2 ⊕ [0, ℓ−m+ 1,m+ 1]ℓ−2m

⊕[0, ℓ−m+ 2,m]ℓ−2m−2 ⊕ [1, ℓ− n− 1, n + 1]ℓ−2n

⊕[1, ℓ− n, n]ℓ−2n−2 ⊕ [2, ℓ− p− 2, p]ℓ−2p−2 (5.5)

For the three-form spherical harmonic with SO(8) Dynkin labels (ℓ− 2, 0, 0, 2) one has

{(am
14, (a14a23 + a12a34 − a13a24)a

m
14, (a12a34 − a13a24 + a14a23)

2am
14, a34a

m
14, a34(a24a13 −

a34a12 − a14a23)a
m
14, a

2
34a

m
14 |m = 0, . . . , ℓ− 2) and the following decomposition:

N ′
35 : (ℓ− 2, 0, 0, 2) → ⊕[0, ℓ−m− 2,m]ℓ−2m−2 ⊕ [0, ℓ−m− 2,m]ℓ−2m+2

⊕[1, ℓ−m− 2,m]ℓ−2m−4 ⊕ [1, ℓ−m− 2,m]ℓ−2m

⊕[2, ℓ−m− 2,m]ℓ−2m−2 ⊕ [0, ℓ−m− 2,m]ℓ−2m−6 (5.6)

Let us now consider the fermionic KK towers. There are two gravitini in the SO(8)

representations (ℓ, 0, 0, 1) and (ℓ− 1, 0, 1, 0).

For the SO(8) representation (ℓ, 0, 0, 1) one finds {am
14, (a14a23 + a12a34 −

a13a24)a
m
14, a34a

m
14 |m = 0, . . . , ℓ} as polynomials and the following decomposition holds

(ℓ, 0, 0, 1) → ⊕[0, ℓ−m,m]ℓ−2m+2 ⊕ [0, ℓ−m,m]ℓ−2m−2 ⊕ [1, ℓ−m,m]ℓ−2m (5.7)

For the SO(8) representation (ℓ − 1, 0, 1, 0) the independent polynomials are {am
14,

a23a
m
14, a13a

n
14 |m = 0, . . . , ℓ− 1, n = 0, . . . , ℓ− 2} and is decomposed as:

(ℓ− 1, 0, 1, 0) → ⊕[0, ℓ−m− 1,m+ 1]ℓ−2m ⊕ [0, ℓ −m,m]ℓ−2m−2

⊕[1, ℓ− n− 2, n]ℓ−2n−2 (5.8)

There are other fermions in the representations (ℓ+ 1, 0, 1, 0), (ℓ− 2, 0, 0, 1), (ℓ− 1, 1, 1, 0)

and (ℓ− 2, 1, 0, 1).
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For the SO(8) representation (ℓ − 1, 1, 1, 0) the polynomials have the

form {am
14, a23a

m
14, a23(a13a24 − a14a23)a

m
14, a24a

m
14, a13a24a

m
14, a23a24a

m
14, a12a

m
14,

a12a23a
m
14, a13a

n
14, a13(a13a24 − a23a14)a

n
14, a12a13a

n
14 |m = 0, . . . , ℓ − 1, n = 0, . . . , ℓ − 2}

and one has the following decomposition:

(ℓ− 1, 1, 1, 0) → ⊕[1, ℓ−m− 1,m+ 1]ℓ−2m+2 ⊕ [1, ℓ−m,m]ℓ−2m

⊕[1, ℓ−m,m]ℓ−2m−4 ⊕ [0, ℓ−m,m+ 2]ℓ−2m

⊕[1, ℓ−m− 1,m+ 1]ℓ−2m−2 ⊕ [0, ℓ−m+ 1,m+ 1]ℓ−2m−2

⊕[0, ℓ−m− 1,m+ 1]ℓ−2m ⊕ [0, ℓ−m,m]ℓ−2m−2

⊕[2, ℓ− n− 2, n]ℓ−2n ⊕ [2, ℓ− n− 2, n]ℓ−2n−4

⊕[1, ℓ− n− 2, n]ℓ−2n−2 (5.9)

Finally for the SO(8) representation (ℓ−2, 1, 0, 1) the polynomials have the form {am
14,

(a14a23 − a13a24)a
m
14, (a13a24 − a12a34 − a14a23)(a14a23 − a13a24)a

m
14, a12a

m
14, a12(a12a34 −

a13a24 + a14a23)a
m
14, a24a

m
14, a24(a12a34 − a13a24 + a14a23)a

m
14, a34a

m
14, a34(a13a24 −

a14a23)a
m
14, a34a24a

m
14, a34a12a

m
14 |m = 0, . . . , ℓ− 2} and the decomposition reads

(ℓ− 2, 1, 0, 1) → ⊕[1, ℓ−m− 2,m]ℓ−2m+2 ⊕ [1, ℓ−m− 2,m]ℓ−2m−2

⊕[1, ℓ−m− 2,m]ℓ−2m−6 ⊕ [0, ℓ−m− 2,m]ℓ−2m

⊕[0, ℓ−m− 2,m]ℓ−2m−4 ⊕ [0, ℓ−m− 1,m+ 1]ℓ−2m

⊕[0, ℓ−m− 1,m+ 1]ℓ−2m−4 ⊕ [2, ℓ−m− 2,m]ℓ−2m

⊕[2, ℓ−m− 2,m]ℓ−2m−4 ⊕ [1, ℓ−m− 1,m+ 1]ℓ−2m−2

⊕[1, ℓ−m− 2,m]ℓ−2m−2 (5.10)

The relevant SO(8) → SO(6) × SO(2) decomposition is given by the embed-

ding (4.19), (4.21), (4.22). In particular this implies

35v(2, 0, 0, 0) → 150[0, 1, 1] + 10+2[0, 2, 0] + 10∗
−2[0, 0, 2]

35c(0, 0, 2, 0) → 150[0, 1, 1] + 10∗
+2[0, 0, 2] + 10−2[0, 2, 0]

35s(0, 0, 0, 2) → 20′
0[2, 0, 0] + 6+2[1, 0, 0] + 6−2[1, 0, 0] +

10[0, 0, 0] + 1+4[0, 0, 0] + 1−4[0, 0, 0] (5.11)

that are necessary to analyze the spectrum of scalars.

The zero charge spectrum i.e. the states which constitute the KK spectrum of Type

IIA supergravity on CP
3 can be easily identified in the above decompositions. For com-

pleteness and comparison with the original literature [26], we collect the relevant formulae

in an appendix.

5.1 A closer look at the KK spectrum

As already observed, the Zk orbifold projection from S7 to S7/Zk ≈ CP
3

⋉ S1 cannot be

thought of as spontaneous (super)symmetry breaking. ‘Untwisted’ states that are projected
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out do not simply become ‘massive’ but are rather eliminated from the spectrum. In

particular in the large k limit only SO(2) singlets survive. It is amusing to observe that

only states with ℓ even on S7 give rise to neutral states. This suggests that the parent

theory could be either a compactification on S7 or on RP
7 = S7/Z2. Indeed both lead to

SO(8) gauged supergravity corresponding to the ‘massless’ multiplet

{gµν , 8ψµ, 28Aµ, 56λ, 35
+ + 35−ϕ} (5.12)

Massless scalars, corresponding to marginal operators with ∆ = 3 on the boundary,

only appear in higher KK multiplets, i.e. in the 840′ = (2, 0, 0, 2) and 1386 = (6, 0, 0, 0).

None of these can play the role of Stückelberg field for the 12 coset vectors in the 6+2 +6−2

of SO(8)/SO(6) × SO(2).

Indeed, using the group theory techniques described in section 4 or otherwise, the

decomposition of 840′ = (2, 0, 2, 0) under SO(8) → SO(6) × SO(2) reads

840vc(2, 0, 2, 0) → 84+4[0, 2, 2] + 70+2[0, 3, 1] + 70+2[0, 1, 3] + 64+2[1, 1, 1]

+840[0, 2, 2] + 450[1, 2, 0] + 450[1, 0, 2] (5.13)

+350[0, 4, 0] + 350[0, 0, 4] + 20′
0[2, 0, 0]

+84−4[0, 2, 2] + 70−2[0, 3, 1] + 70−2[0, 1, 3] + 64−2[1, 1, 1]

This means that the massless scalars in the 840vc(2, 0, 2, 0) cannot account for the ‘needed’

Stückelberg fields in the 6+2 + 6−2. Yet one can recognize massless scalars neutral under

SO(2) that survive in k → ∞ limit and transform non-trivially under SO(6). Turning

them on in the bulk, e.g. in domain-wall solutions, should trigger RG flows to theories

with lower supersymmetry on the boundary.

The same applies to the other massless scalars in the 1386(6, 0, 0, 0), the totally sym-

metric product of 6 8v → 4+1 + 4∗−1. The relevant decomposition reads

1386(6, 0, 0, 0) → 84+6[0, 6, 0] + 189+4[0, 5, 1] + 270+2[0, 4, 2]

+3000[0, 3, 3]

+84−6[0, 0, 6] + 189−4[0, 1, 5] + 270−2[0, 2, 4] (5.14)

Once again there are no 6+2 + 6−2. In this case, ‘neutral’ fields appear in the 300 repre-

sentation of SO(6).

In the KK spectrum, neutral (wrt to SO(2)) singlets (of SO(6)) appear in the decom-

position of 35s parity odd scalars 0−2 with M2L2
AdS = 10 that reads

35s(0, 0, 0, 2) → 20′
0[2, 0, 0] + 6+2[1, 0, 0] + 6−2[1, 0, 0]

+10[0, 0, 0] + 1+4[0, 0, 0] + 1−4[0, 0, 0] (5.15)

They correspond to boundary operators with dimension ∆ = 5. The only other neutral

singlets arise from the SO(8) singlet parity even scalar with M2L2
AdS = 18, i.e. ∆ = 6.
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Neither ones belongs in the supergravity multiplet.1 They correspond to the ‘stabilized’

complexified Kähler deformation J + iB and as such couple to the Type IIA world-sheet

instanton recently identified in [33]. Indeed the bosonic action schematically reads Swsi =∫
J + iB = L2/α′ since B = 0 in the ABJM model, while B = l/k with l = 1, . . . , k− 1 for

the ABJ model involving fractional M2-branes. Effects induced by world-sheet instantons

in Type IIA on CP
3 should be dual to the non-perturbative corrections discussed in [34]. It

may be worth to observe that in ‘ungauged’ N = 6 supergravity, arising from freely acting

asymmetric orbifolds of Type II superstrings on tori, world-sheet and other asymmetric

brane instantons [35, 36] should correct R4 terms very much as in their parents with

N = 8 local supersymmetry.

Other non-perturbative effects are induced by E5-brane instantons that should medi-

ate the process of annihilation of k D0-branes into N D4-branes wrapping CP 2 [7, 22]. In

order to determine the action of such an instanton it is worth recalling that the pseudo-

scalar mode B2 = β(x)J2(y) is eaten by the vector field AH
µ = kAD4

µ −NAD0
µ that becomes

massive. The complete E5-brane instanton action should be SE5 = L6/g2
s (α′)3 +iβ that in-

deed shifts under U(1)H gauge transformations and as such can compensate for the ‘charge’

violation in the above process as in similar cases with unoriented D-brane instantons [37].

6 Singleton, partition functions and higher spins

In this section, we would like to discuss the higher spin (HS) extension of N = 6 gauged

supergravity. Higher spin extensions of various supergravity theories in AdS4 have been

studied in [38–40] but to the best of our knowledge the case of N = 6 has been overlooked.

Let us start by briefly recalling some basic features of higher spin theories in AdS4.
2 In

the non supersymmetric case the HS algebra represents an extension of the conformal group

SO(3, 2) that admits two singleton representations D(1/2, 0) (free boson) and D(1, 1/2)

(free fermion). The two labels denote conformal dimension ∆ and spin s. Indeed the

maximal compact subgroup of SO(3, 2) is SO(3) × SO(2) ≈ SU(2) × U(1) while ‘Lorentz’

transformations and dilatations commute and generate SO(2, 1) × SO(1, 1) ⊂ SO(3, 2).

We will continue and call ∆ the dimension and s or j spin. In ‘radial’ quantization the

‘Hamiltonian’ H has eigenvalues ∆.

For later use let us collect here the partition functions of the two singletons that take

into account their conformal descendants i.e. non vanishing derivatives. For free bosons

such that ∂2X = 0 one has

ZB(q) = Trq2H =
q − q5

(1 − q2)3
=

q + q3

(1 − q2)2
(6.1)

1After gauging SO(8), the 70 scalars give rise to 35v(2, 0, 0, 0) and 35c(0, 0, 2, 0) which in turn de-

compose into 35v(2, 0, 0, 0) → 150[0, 1, 1] + 10+2[0, 2, 0] + 10
∗

−2[0, 0, 2] and 35c(0, 0, 2, 0) → 150[0, 1, 1] +

10
∗

+2[0, 0, 2] + 10−2[0, 2, 0].
2See e.g. [41–45] and references therein for recent reviews of both Vasiliev’s and geometric approaches.
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For free fermions 6∂Ψ = 0 one has

ZF (q) = Trq2H = 2
q2 − q4

(1 − q2)3
= 2

q2

(1 − q2)2
(6.2)

Combining nb = 8v free bosons and nf = 8c free fermions one finds the singleton represen-

tation of Osp(8|4) ⊃ SO(8) × SO(3, 2), whose Witten index reads

Z (q) = Tr(−)F q2H = 8vZB(q) − 8cZF (q) (6.3)

One can also keep track of the spin of the states in the spectrum by including a chemical

potential y = eiα (yJ3 = eiαJ3) and find

ZB(q, α) =
q(1 − q4)

(1 − q2)(1 − eiαq2)(1 − e−iαq2)
=

q(1 + q2)

(1 − 2q2 cosα+ q4)
(6.4)

ZF (q, α) =
q2(1 − q2)χ 1

2

(α)

(1 − q2)(1 − 2q2 cosα+ q4)
(6.5)

where

χ 1

2

(α) = 2 cos
α

2
= tr1/2e

iαJ3 (6.6)

is the character of the fundamental representation of the ‘Lorentz’ group SU(2).

Before switching to higher spins, notice that Zk acts on the singleton simply as

8v → 4ω + 4∗ω̄ 8c → 4ω̄ + 4∗ω 8s → 6 + ω2 + ω̄2 (6.7)

with ω = e2πi/k playing the role of chemical potential or rather fugacity for the SO(2) ≈
U(1)B charge Q commuting with SO(6) R-symmetry. One can introduce another three

chemical potentials βi or fugacities xi = eiβi in order to keep track of the three Cartan’s

of SO(6) ≈ SU(4). We refrain from doing so here.

6.1 Doubleton and higher spin gauge fields

Doubleton representations can be obtained as tensor products of two singletons [46–48].

D(1/2, 0) ⊗D(1/2, 0) = ⊕∞
s=0D(∆ = s+ 1, s) (6.8)

or

D(1, 1/2) ⊗D(1, 1/2) = D(∆ = 2, s = 0) + ⊕∞
s 6=0D(∆ = s+ 1, s) (6.9)

A consistent truncation, giving rise to minimal HS theories with even spins only, stems

from restricting to symmetric tensors for bosons

[D(1/2, 0) ⊗D(1/2, 0)]S = ⊕∞
k=0D(∆ = 2k + 1, s = 2k) (6.10)

or anti-symmetric for fermions

[D(1, 1/2) ⊗D(1, 1/2)]A = D(∆ = 2, s = 0) + ⊕∞
k 6=0D(∆ = 2k + 1, s = 2k) (6.11)
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Odd spin states appear in the product with opposite symmetry

[D(1/2, 0) ⊗D(1/2, 0)]A = ⊕∞
k=0D(∆ = 2k + 2, s = 2k + 1) (6.12)

for bosons and

[D(1, 1/2) ⊗D(1, 1/2)]S = ⊕∞
k=0D(∆ = 2k + 2, s = 2k + 1) (6.13)

for fermions. Generators of the HS symmetry algebra can be realized as polynomials of

bosonic oscillators yα, yα̇ = (yα)† satisfying [yα, yβ] = iεαβ and [yα̇, yβ̇] = iεα̇β̇.

The supersymmetric extensions require the introduction of fermionic oscillators ξi

with i = 1, . . . ,N , satisfying {ξi, ξj} = δij . The resulting HS superalgebra denoted by

shsE(N|4) contains Osp(N|4) whose bosonic generators span SO(3, 2) ∼= Sp(4, R) (confor-

mal group) and SO(N ) R-symmetry [38–40].

In particular for N = 8, with SO(8) R-symmetry, Osp(8|4) is the maximal finite

dimensional subalgebra of the HS gauge algebra shsE(8|4), which is a Lie superalgebra.

The relevant super-singleton consists in3

D̂N=8 = D(1/2, 0;8v) ⊕D(1, 1/2;8c) (6.14)

The (graded) symmetric product of two singletons [D̂N=8 ⊗ D̂N=8]Ŝ yields

{[D(1/2, 0;8v) ⊕D(1, 1/2;8c)] ⊗ [D(1/2, 0;8v) ⊕D(1, 1/2;8c)]}Ŝ =

D(1, 0;1 + 35v) ⊕D(2, 0;1 + 35c) ⊕k D
(
k +

3

2
, k +

1

2
;8s + 56s

)

⊕k 6=0D(2k + 1, 2k;1 + 35v + 1 + 35c) ⊕k D(2k + 2, 2k + 1;28 + 28) (6.15)

It is reassuring to recognize above the ‘massless’ states of N = 8 gauged supergravity

on AdS4. The remaining states with spin s ≤ 2 belong to the ‘short’ Konishi multiplet

and a ‘semishort’ multiplet with spin ranging from 2 to 6 [49–51]. Holography allows to

relate AdS compactifications of supergravity and superstring theories to singleton field

theories on the 3-d boundary. As a first step, these field theories can be constructed on

the boundary of AdS as free superconformal theories. A remarkable property of singletons

is that the symmetric product of two super-singletons gives an infinite tower of massless

higher spin states. In the limit λ→ 0, all higher spin states become massless. After turning

on interactions, a pantagruelic Higgs mechanism, named Grande Bouffe in [52–55], takes

place. All but a handful of HS gauge fields become massive after ‘eating’ lowest spin states.

The boundary counterpart of this phenomenon is the appearance of anomalous dimensions

for HS currents and their superpartners. One should keep in mind that genuinely massive

states are already present in the spectrum at λ→ 0 and arise in the product of three and

more singletons.

3Different conventions for the SO(8) representations of bosons and fermions appear in the literature

which are related to the present one, chosen for compatibility with our previous analysis, by SO(8) triality.
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Interacting theories for massless HS gauge fields, thus only describing the doubleton,

have been proposed by Vasiliev [41, 44] that capture some aspects of the holographic

correspondence in the extremely stringy (high AdS curvature) regime. Only vague glimpses

of an interacting theory incorporating the Grande Bouffe have been offered so far [52–55].

Barring these subtle issues, let us discuss how to perform a Zk projection of the spec-

trum giving rise to an N = 6 HS supergravity in AdS4. In the limit k → ∞ only SO(2)

singlets survive

{[D(1/2, 0;8v ) ⊕D(1, 1/2;8c)]}⊗2
Ŝ

SO(2)singlets =

D(1, 0;1 + 15) ⊕D(2, 0;1 + 15) ⊕k D
(
k +

3

2
, k +

1

2
;6 + 6 + 10 + 10∗

)

⊕s 6=0D(s+ 1, s;1 + 15 + 1 + 15) (6.16)

where indicated in bold-face are the surviving representations of the SO(6) R-symmetry.

Candidate bosonic HS operators on the boundary in the 1 + 15 of SO(6) are

Jµ1...µs

i
j = Xi∂µ1

∂µ2
. . . ∂µs

X̄j + Ψ̄iγµ1
∂µ2

. . . ∂µs
Ψj + . . . (6.17)

where dots stand for symmetrization and subtraction of the traces and the coefficients of

the linear combination are to be chosen appropriately.

At finite k and λ, states with SO(2) charges Q = kn survive. One can exploit orbifold

technique to deduce the ‘free’ spectrum.4

The partition function or rather Witten index for the super-singleton of OSp(8|4) reads:

Z =
8q

(1 + q)2
(6.18)

the Zk projection reads

ZZk =
1

k

k−1∑

r=0

Z(r)
(6.19)

where

Z(r)
=

(4ωr + 4ω̄r)q

(1 + q)2
(6.20)

with ω = e2πi/k. Clearly ZZk = 0 since Σk−1
r=0ω

r = 0.

A non-trivial spectrum arises from the doubleton partition function. Prior to the Zk

projection one has

Z =
1

2
(Z2 (q) + Z (q2)) = 4q2(8(1 + q)−4 + (1 + q2)−2) (6.21)

for the (graded) symmetric doubleton, giving rise to precisely the spectrum of hs(8|4)
discussed above.

4Although k is finite, one can take k ≫ N , so that λ ≪ 1, in order to identify states that eventually

become massive.
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s\h 0 1 2 3

0 70 1+1
1
2 56 8

1 28 28
3
2 8 56

2 1 70 1
5
2 56 8

3 28 28
7
2 8 56

4 1 70 1

. . . . . . . . .

Table 3. N = 8 hs(8|4) ⊃ Osp(8|4).

Performing the Zk projection on the symmetric doubleton one finds

ZZk =
1

2k

∑

r

(Z(r)
(q, ω)2 + Z(r)

(q2, ω2))

= 4q2

[

4

(

1 +
∑

r

ω2r + ω̄2r

2k

)

(1 + q)−4 +
∑

r

ω2r + ω̄2r

2k
(1 + q2)−2

]

(6.22)

for the (graded) symmetric doubleton, giving rise to precisely the ‘massless’ HS gauge fields

of hs(6|4) for k 6= 2 and hs(8|4) for k = 1, 2, as expected ZHS = Z ! Indeed

ZHS =
36(q2 + q4) + 72

∑
s=2k 6=0 Fs(q) + 56

∑
s=2k+1 Fs(q) − 64

∑
s=k+ 1

2

Fs(q)

(1 − q2)3

(6.23)

with Fs(q) = (2s + 1)q2(s+1) − (2s − 1)q2(s+1)+2 taking into account the presence of null

descendants for conserved spin s currents of dimension ∆ = s + 1. The relevant charac-

ters read

X∆=s+1
s =

q2∆(2s + 1) − q2(∆+1)(2s − 1)

(1 − q2)3
=

q2∆[χs(α) − q2χs−1(α)]

(1 − q2)(1 − 2q2 cosα+ q4)
(6.24)

up to some SO(8) multiplicity d
SO(8)
(ℓ,...) . Character formulae for Osp(N|4) unitary irreducible

representations can be found in [56].

The situation is summarized in the following tables, where s denotes spin and h the

‘string’ level.
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s\h 0 1 2 3

0 15+15 1+1
1
2 10 + 10∗ + 6 6

1 15+1 15+1
3
2 6 10 + 10∗ + 6

2 1 15+15 1
5
2 10 + 10∗ + 6 6

3 15+1 15+1
7
2 6 10 + 10∗ + 6

4 1 15+15 1
9
2 10 + 10∗ + 6 6

5 15+1 15+1
11
2 6 10 + 10∗ + 6

6 1+1 15+15

. . . . . . . . .

Table 4. SO(2) neutral HS for N = 6: hs(6|4) ⊃ Osp(6|4).

The decomposition into charged sectors reads

Z =
1

(1 − q2)(1 − 2q2 cosα+ q4)

{
[
10
(
ω2 + ω2

c

)
+ 16

] (
q2 + q4

)
χ0(y)

+
∑

j∈1,3,...

[
12
(
ω2 + ω2

c

)
+ 32

] [
χj(y)q

2(j+1) − χj−1(y)q
2(j+1)+2

]

+
∑

j∈2,4,...

[
20
(
ω2 + ω2

c

)
+ 32

] (
χj(y)q

2(j+1) − χj−1(y)q
2(j+1)+2

)

−
∑

j∈1/2,3/2,...

16(ω + ωc)
2
(
χj(y)q

2(j+1) − χj−1(y)q
2(j+1)+2

)}
. (6.25)

6.2 Tripletons and higher n-pletons

For higher multipletons one has to resort to Polya theory [52–55]. Consider a set of ‘words’

A,B, . . . of n ‘letters’ chosen within the alphabet {ai} with i = 1, . . . p. When p → ∞,

let us denote by Z1(q) the single letter ‘partition function’. Let also G be a group action

defining the equivalence relation A ∼ B for A = gB with g an element of G ⊂ Sn. Elements

g ∈ Sn can be divided into conjugacy classes [g] = (1)b1 . . . (n)bn , according to the numbers

{bk(g)} of cycles of length k. Polya theorem states that the set of inequivalent words are
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s\h 0 1 2

0 (10 + 10∗)±2

1
2 15±2 1±2

1 6±2 6±2

3
2 1±2 15±2

2 (10 + 10∗)±2

5
2 15±2 1±2

3 6±2 6±2

7
2 1±2 15±2

4 (10 + 10∗)±2

. . . . . . . . .

Table 5. Charged HS for N = 6: hs(8|4)/hs(6|4) ⊃ Osp(8|4)/Osp(6|4).

generated by the formula

ZG
n =

1

|G|
∑

g∈G

n∏

k=1

Z1(q
k)bk(g) (6.26)

In particular, for the cyclic group G = Zn, conjugacy classes are [g] = (d)n/d for each

divisor d of n. The number of elements in a given conjugacy class labelled by d is given

by Eulers totient function E(d), equal to the number of integers relatively prime to d. For

d = 1 one defines E(1) = 1.

ZZn

n =
1

n

∑

d|n
E(d)Z1(q

d)n/d (6.27)

For the full symmetric group one has

ZSn

n =
1

n!

∑

nr:
P

r
rnr=n

n!∏
r r

nrnr!

∏

r

Z1(q
r)nr (6.28)

Let us consider the product of three singletons.

Z3 = Z × × → Z + Z + Z (6.29)

There are thus three kinds of tri-pletons.

The totally symmetric tripleton is coded in the partition function

Z =
1

6
(Z3 (u) + 3Z (u)Z (u2) + 2Z (u3)) (6.30)

where u collectively denotes the ‘fugacities’ q, y = eiα, ω ≈ t, . . ..
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For the cyclic tripleton one has

Zcycl = Z + Z =
1

3
(Z3 (u) + 2Z (u3)) (6.31)

For totally anti-symmetric tripletons one finds

Z = Zcycl −Z =
1

6
(Z3 (u) + 2Z (u3) − 3Z (u)Z (u2) (6.32)

while for mixed symmetry, incompatible with the cyclicity of the trace, one eventually finds

Z = Z3 (u) − 1

3
Z3 (u) − 2

3
Z (u3) =

2

3
(Z3 (u) −Z (u3)) (6.33)

Recalling the singleton partition function

Z (q, α, ω) =
(4ω + 4∗ω̄)q(1 + q2)

(1 − 2q2 cosα+ q4)
−

(4ω̄ + 4∗ω)q2χ 1

2

(α)

(1 − 2q2 cosα+ q4)

=
4(ω + ω̄)q

(1 − 2q2 cosα+ q4)
[1 + q2 − χ 1

2

(α)q] (6.34)

where ω = e2πi/k and χ 1

2

(α) = tr1/2 exp(iαJ3), one eventually finds

Z =
1

6

(
43(ω + ω̄)3q3(1 + q2 − qχ 1

2

(α))3

(1 − 2q2 cosα+ q4)3
+

3
4(ω + ω̄)q4(ω2 + ω̄2)q2(1 + q2 − qχ 1

2

(α))(1 + q4 − q2χ 1

2

(2α))

(1 − 2q2 cosα+ q4)(1 − 2q4 cosα+ q8)
+

2
4(ω3 + ω̄3)q3(1 + q6 − q3χ 1

2

(3α))

(1 − 2q6 cosα+ q12)

)
(6.35)

for the totally symmetric tripleton. Let us analyze the spectrum arising in this case. Except

for the 1/2 BPS states, we will consider later on, only ‘massive’ representations above the

unitary bound, whose characters read

X∆ 6=s+1
s =

q2∆χs(α)

(1 − q2)(1 − 2q2 cosα+ q4)
→α→0

q2∆(2s + 1)

(1 − q2)3
(6.36)

appear in the decomposition

Z (q, α, ω) =
∑

s,∆,Q

c(s,∆, Q)
q2∆χs(α)ωQ

(1 − q2)(1 − 2q2 cosα+ q4)
(6.37)

Indeed it is easy to see that no current like (twist τ = 1) fields appear beyond the double-

ton, since the twist

τ = ∆ − s =
nX

2
+ n∂ + nΨ − n∂ − nΨ

2
=
nX

2
+
nΨ

2
> 1 (6.38)

whenever nX + nΨ > 2.
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Using orthogonality of the SU(2) characters

1

π

∫ 2π

0
χs(α)χs′(α) sin2 α

2
dα = δ2s+1,2s′+1 (6.39)

one can decompose the partition function according to

∑

Q,∆

c(s,∆, Q)ωQq2∆

(1 − q2)
=

1

π

∫ 2π

0
(1 − 2q2 cosα+ q4) sin2 α

2
χs(α)Z (q, α, ω)dα (6.40)

It is clear that only states with charge Q = ±3,±1 are present in the tri-pleton

spectrum. Setting y = eiα, for states with Q = ±1 one finds

ZQ=±1 =

∞∑

k=0

[
(40 + 256k)q4k+3 + (104 + 256k)q4k+5

]
χ2k(y)

−
[
(104 + 256k)q4k+4 + (152 + 256k)q4k+6

]
χ2k+ 1

2

(y)

+
[
(152 + 256k)q4k+5 + (216 + 256k)q4k+7

]
χ2k+1(y)

−
[
(216 + 256k)q4k+6 + (296 + 256k)q4k+8

]
χ2k+ 3

2

(y) (6.41)

these states are always projected out by Zk since ±1 6= nk. For states with Q = ±3 one

finds instead

ZQ=±3 =
∞∑

k=0

[[
(20 + 256k)q12k+3 + (40 + 256k)q12k+5

]
χ6k(y)

−
[
(40 + 256k)q12k+4 + (44 + 256k)q12k+6

]
χ6k+ 1

2

(y)

+
[
(44 + 256k)q12k+5 + (68 + 256k)q12k+7

]
χ6k+1(y)

−
[
(68 + 256k)q12k+6 + (104 + 256k)q12k+8

]
χ6k+ 3

2

(y)

+
[
(104 + 256k)q12k+7 + (124 + 256k)q12k+9

]
χ6k+2(y)

−
[
(124 + 256k)q12k+8 + (132 + 256k)q12k+10

]
χ6k+ 5

2

(y)

+
[
(132 + 256k)q12k+9 + (152 + 256k)q12k+11

]
χ6k+3(y)

−
[
(152 + 256k)q12k+10 + (188 + 256k)q12k+12

]
χ6k+ 7

2

(y)

+
[
(188 + 256k)q12k+11 + (212 + 256k)q12k+13

]
χ6k+4(y)

−
[
(212 + 256k)q12k+12 + (216 + 256k)q12k+14

]
χ6k+ 9

2

(y)

+
[
(216 + 256k)q12k+13 + (236 + 256k)q12k+15

]
χ6k+5(y)

−
[
(236 + 256k)q12k+14 + (276 + 256k)q12k+16

]
χ6k+ 11

2

(y)
]
. (6.42)

These states survive only for k = 3, i.e. Z3 projection. It is amusing to observe how the

number of representations of given spin s = 6k+ n
2 grows with k at the rate 256k for any n.
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This is due to the possible distributions of derivatives among three fields up to symmetries

and total derivatives and to the structure of higher spin supermultiplets [56, 57].

For higher multi-pletons the analysis is similar. It is clear that only states with charge

Q = ±n,±(n− 2), . . . are present in the n-pleton spectrum. In particular Q = 0 states are

only present when n is even as already observed. We defer a detailed analysis to the future.

For the time being let us only display the partition functions for the cyclic tetrapleton

Z4,cycl =
1

4
(Z (q)4 + Z2 (q2) + 2Z (q4)) (6.43)

and for the totally symmetric tetrapleton

Z =
1

4!
(Z4 (q) + 6Z2 (q)Z (q2) + 3Z2 (q2) + 8Z (q3)Z (q) + 6Z (q4))

(6.44)

The Zk projection on n-pletons reads

ZZk

n =
1

k

∑

r

Z(r)
n (q, ωr) (6.45)

and corresponds to keeping only states with Q = kn i.e. integer multiples of k.

6.3 KK excitations

Let us now focus on the KK excitations, which deserve a separate treatment. One can

indeed write down the single-particle partition function on S7, decompose it into super-

characters and identify the SO(2) charge sectors, relevant for the subsequent Zk projection

i.e. compactification on CP
3.

Introducing a chemical potential for the charge Q (tQ), the super-character of an ultra-

short 1/2 BPS representation of Osp(8|4) reads:

X 1/2BPS
ℓ (q, t) =

t−2−ℓq2+ℓ

6(1 − t2)5(1 + q)3

[
ℓ3
(
−1 + t2

)2
(−1 + q)3 (6.46)

×
(
t6+2ℓ(t2 − q)2 − (−1 + t2q)2

)
− 6ℓ2(−1 + t2)(−1 + q)2

×
(
t6+2ℓ(t2 − q)2(−3 + 2t2 + q) + (2 + t2(−3 + q))(−1 + t2q)2

)

+6t6+2ℓ(t2 − q)2(−35 + q(35 + (−9 + q)q) + 2t4(−5 + q2)

+t2(35 + q(−13 + (−7 + q)q))) − (2(−5 + q2)

+t4(−35 + q(35 + (−9 + q)q)) + t2(35 + q(−13 + (−7 + q)q)))

×6(−1 + t2q)2 − ℓ(−1 + q)

(
t6+2ℓ(t2 − q)2(−107 + (70 − 11q)q

+t4(−47 + (−2 + q)q) − 2t2(−71 + q(22 + q))) + (−1 + t2q)2

×(47 − (−2 + q)q + 2t2(−71 + q(22 + q)) + t4(107 + q(−70 + 11q)))

)]
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For ℓ = 0, corresponding to the gauged supergravity multiplet, there is further shorten-

ing (null descendants) due to the presence of conserved ‘currents’ i.e. stress-tensor, SO(8)

vector currents and 8s supercurrents. Taking this into account one finds the following

super-character

X 1/2BPS
ℓ=0 (q) =

1

(1 − q2)3

[
(10t2 + 15 + 10t−2)q2 −

2(15t2 + 10 + 6 + 10 + 15t−2)q3 +

(10t2 + 15 + 10t−2 + 3(6t2 + 15 + 1 + 6t−2))q4 −
4(t2 + 6 + t−2)q5 − (6t2 + 15 + 1 − 5 + 6t−2)q6 +

2(t2 + 6 + t−2)q7 − 3q8
]

(6.47)

the denominator takes into account derivatives (descendants). Quite remarkably this for-

mula coincides with the previous one when ℓ = 0.

After some algebra, putting t = 1, one finds

X 1/2BPS
ℓ=0 (q) =

q2(3q3 − 7q2 − 7q + 35)

(1 + q)3
(6.48)

a factor (1−q)2 cancels between numerator and denominator meaning that not only nb = nf

and the sum with ∆1 vanishes but also the sum with ∆2 should vanish. This should be

related to the absence of quantum corrections to the negative vacuum energy, i.e. cosmo-

logical constant in the bulk.

The 1/2 BPS partition function is given by

ZN=8
1/2BPS =

∑

ℓ

X 1/2BPS
ℓ =

35q2

(1 − q2)2
(6.49)

The simplicity of the result is due to ‘miraculous’ cancellations between bosonic and

fermionic operators with the same scaling dimensions in different KK multiplets i.e. with

different ℓ’s. This does not happen in AdS5/CFT4 holography, whereby (protected) bosonic

operator have integer dimensions and (protected) fermionic operators have half-integer di-

mensions [42, 43, 52–57].

In order to perform the Zk projection it is useful to decompose into SO(2) charge

sectors according to

ZN=8→N=6
1/2BPS (q, t) =

q2[(1 + q6)P2(t) − (q + q5)P3(t) + (q2 + q4)P4(t) − q3P5(t)]

(1 − qt)4(1 − qt−1)4(1 + q)2
(6.50)

where

P2(t) = 10t+2 + 15 + 10t−2

P3(t) = 20t+3 + 10t+2 + 64t+1 + 22 + 64t−1 + 10t−2 + 20t−3
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P4(t) = 15t+4 + 8t+3 + 104t+2 + 48t+1 + 175 + 48t−1 + 104t−2 + 8t−3 + 15t−4

P5(t) = 4t+5 + 2t+4 + 64t+3 + 40t+2 + 196t+1 + 88 +

+196t−1 + 40t−2 + 64t−3 + 2t−4 + 4t−5 (6.51)

Depending on the choice of k one can recognize the surviving 1/2 BPS states as those

with Q = kn. In formulae one has to replace t with ωr and sum over r = 0, . . . , k − 1.

7 Conclusions

We have re-analyzed the KK spectrum of d = 11 supergravity on S7 and S7/Zk. The

latter includes monopole operators dual to charged states in Type IIA on CP
3. To this end

we have presented some group theoretic methods for the decomposition of the SO(8) into

SO(6) × SO(2) valid also for other cosets [58–60] where resolution of the mixing among

various fluctuations should be possible on the basis of symmetry arguments. In particular,

massless vectors associated to Killing vectors in generic flux vacua with isometries have

been recently discussed in [61].

We have then considered higher spin symmetry enhancement. We have displayed

the partition functions for singletons, doubletons and tripletons and discussed in details

higher spin fields and 1/2 BPS states corresponding to KK excitations of N = 6 gauged

supergravity. It would be worth pursuing the analysis to higher n-pletons and to cases with

lower supersymmetry, yet based on internal coset manifolds.
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A Dimension formulae for SO(8)

General formula

d
SO(8)
(ℓ1,ℓ2,ℓ3,ℓ4)

=
1

4320
× (1 + ℓ1)(1 + ℓ2)(1 + ℓ3)(1 + ℓ4)

(2 + ℓ1 + ℓ2)(2 + ℓ2 + ℓ3)(2 + ℓ2 + ℓ4)
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(3 + ℓ1 + ℓ2 + ℓ3)(3 + ℓ1 + ℓ2 + ℓ4)(3 + ℓ2 + ℓ3 + ℓ4)

(4 + ℓ1 + ℓ2 + ℓ3 + ℓ4)(5 + ℓ1 + 2ℓ2 + ℓ3 + ℓ4) (A.1)

Specific cases (KK harmonics)

d
SO(8)
(ℓ,0,0,0) =

1

360
(1 + ℓ)(2 + ℓ)(3 + ℓ)2(4 + ℓ)(5 + ℓ) ↔ YN1

d
SO(8)
(ℓ,1,0,0) =

1

60
(1 + ℓ)(3 + ℓ)(4 + ℓ)2(5 + ℓ)(7 + ℓ) ↔ YN7

d
SO(8)
(ℓ,0,1,1) =

1

24
(1 + ℓ)(2 + ℓ)(4 + ℓ)2(6 + ℓ)(7 + ℓ) ↔ YN21

d
SO(8)
(ℓ,2,0,0) =

1

18
(1 + ℓ)(4 + ℓ)(5 + ℓ)2(6 + ℓ)(9 + ℓ) ↔ YN27

(A.2)

d
SO(8)
(ℓ,0,2,0) = d

SO(8)
(ℓ,0,0,2) =

1

36
(1 + ℓ)(2 + ℓ)(3 + ℓ)(5 + ℓ)(6 + ℓ)(7 + ℓ) ↔ YN35

d
SO(8)
(ℓ,0,1,0) = d

SO(8)
(ℓ,0,0,1) =

1

90
(1 + ℓ)(2 + ℓ)(3 + ℓ)(4 + ℓ)(5 + ℓ)(6 + ℓ)

d
SO(8)
(ℓ,1,1,0) = d

SO(8)
(ℓ,1,0,1) =

1

18
(1 + ℓ)(3 + ℓ)(4 + ℓ)(5 + ℓ)(6 + ℓ)(8 + ℓ)

B Zero charge states

In this appendix we list states with Q = 0 in the KK towers of S7 after the decomposition

of SO(8) into SO(6) × SO(2).

Bosons:

(ℓ, 0, 0, 0)ℓ≥0 →
[
0,
ℓ

2
,
ℓ

2

]
(B.1)

(ℓ, 1, 0, 0)ℓ≥0 →
[
0,
ℓ

2
,
ℓ

2

]
+

[
0,
ℓ

2
+ 1,

ℓ

2
+ 1

]

+

[
1,
ℓ

2
+ 1,

ℓ

2
− 1

]
+

[
1,
ℓ

2
− 1,

ℓ

2
+ 1

]
(B.2)

(ℓ− 1, 0, 1, 1)ℓ≥1 →
[
0,
ℓ

2
+ 2,

ℓ

2
− 2

]
+

[
0,
ℓ

2
− 2,

ℓ

2
+ 2

]
+

[
1,
ℓ

2
+ 1,

ℓ

2
− 1

]

+

[
1,
ℓ

2
− 1,

ℓ

2
+ 1

]
+

[
0,
ℓ

2
,
ℓ

2

]
+

[
0,
ℓ

2
,
ℓ

2

]

+

[
1,
ℓ

2
,
ℓ

2
− 2

]
+

[
1,
ℓ

2
− 2,

ℓ

2

]
+

[
2,
ℓ

2
− 1,

ℓ

2
− 1

]
(B.3)

(ℓ− 2, 2, 0, 0)ℓ≥2 →
[
2,
ℓ

2
− 3,

ℓ

2
+ 1

]
+

[
1,
ℓ

2
− 2,

ℓ

2

]
+

[
1,
ℓ

2
,
ℓ

2
− 2

]
(B.4)

+

[
0,
ℓ

2
,
ℓ

2

]
+

[
0,
ℓ

2
− 1,

ℓ

2
− 1

]
+

[
1,
ℓ

2
− 1,

ℓ

2
+ 1

]

+

[
1,
ℓ

2
+1,

ℓ

2
−1

]
+

[
2,
ℓ

2
−1,

ℓ

2
−1

]
+

[
2,
ℓ

2
+1,

ℓ

2
−3

]
+

[
0,
ℓ

2
+1,

ℓ

2
+1

]
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(ℓ, 0, 2, 0)ℓ≥0 →
[
0,
ℓ

2
− 1,

ℓ

2
+ 3

]
+

[
0,
ℓ

2
+ 1,

ℓ

2
+ 1

]
+

[
0,
ℓ

2
+ 3,

ℓ

2
− 1

]

+

[
1,
ℓ

2
− 1,

ℓ

2
+ 1

]
+

[
1,
ℓ

2
+ 1,

ℓ

2
− 1

]
+

[
2,
ℓ

2
− 1,

ℓ

2
− 1

]
(B.5)

(ℓ− 2, 0, 0, 2)ℓ≥2 →
[
0,
ℓ

2
− 1,

ℓ

2
− 1

]
+

[
0,
ℓ

2
− 3,

ℓ

2
+ 1

]
+

[
1,
ℓ

2
,
ℓ

2
− 2

]

+

[
1,
ℓ

2
− 2,

ℓ

2

]
+

[
2,
ℓ

2
− 1,

ℓ

2
− 1

]
+

[
0,
ℓ

2
+ 1,

ℓ

2
− 3

]
(B.6)

Fermions:

(ℓ, 0, 0, 1)ℓ≥0 →
[
0,
ℓ

2
− 1,

ℓ

2
+ 1

]
+

[
0,
ℓ

2
+ 1,

ℓ

2
− 1

]
+

[
1,
ℓ

2
,
ℓ

2

]
(B.7)

(ℓ− 1, 0, 1, 0)ℓ≥1 →
[
0,
ℓ

2
− 1,

ℓ

2
+ 1

]
+

[
0,
ℓ

2
+ 1,

ℓ

2
− 1

]
+

[
1,
ℓ

2
− 1,

ℓ

2
− 1

]
(B.8)

(ℓ− 1, 1, 1, 0)ℓ≥1 →
[
1,
ℓ

2
− 2,

ℓ

2
+ 2

]
+ 2

[
1,
ℓ

2
,
ℓ

2

]
+

[
1,
ℓ

2
+ 2,

ℓ

2
− 2

]
(B.9)

+

[
0,
ℓ

2
,
ℓ

2
+ 2

]
+

[
0,
ℓ

2
+ 2,

ℓ

2

]
+

[
0,
ℓ

2
− 1,

ℓ

2
+ 1

]

+

[
0,
ℓ

2
+1,

ℓ

2
−1

]
+

[
2,
ℓ

2
−2,

ℓ

2

]
+

[
2,
ℓ

2
,
ℓ

2
−2

]
+

[
1,
ℓ

2
−1,

ℓ

2
−1

]

(ℓ− 2, 1, 0, 1)ℓ≥2 →
[
1,
ℓ

2
− 3,

ℓ

2
+ 1

]
+ 2

[
1,
ℓ

2
− 1,

ℓ

2
− 1

]
+

[
1,
ℓ

2
+ 1,

ℓ

2
− 3

]

+

[
0,
ℓ

2
− 2,

ℓ

2

]
+

[
0,
ℓ

2
,
ℓ

2
− 2

]
+

[
0,
ℓ

2
− 1,

ℓ

2
+ 1

]

+

[
0,
ℓ

2
+1,

ℓ

2
−1

]
+

[
2,
ℓ

2
−2,

ℓ

2

]
+

[
2,
ℓ

2
,
ℓ

2
−2

]
+

[
1,
ℓ

2
,
ℓ

2

]
(B.10)

C Generating functions for SO(8) representations

The generating function for multiplicities of the scalar spherical harmonics on S7 is given by

FN1
(q) =

1 + q

(1 − q)7
(C.1)

The coefficient of qℓ gives the dimension of the SO(8) representation with Dynkin la-

bel (ℓ, 0, 0, 0).

The generating function for vector spherical harmonics with SO(8) Dynkin label (ℓ−
1, 1, 0, 0) reads:

FN7
(q) =

(28 − 36q + 35q2 − 21q3 + 7q4 − q5)q

(1 − q)7
(C.2)

For two-form spherical harmonics with SO(8) Dynkin label (ℓ−1, 0, 1, 1) the generating

function is:

FN21
(q) =

(56 − 42q + 22q2 − 7q3 + q4)q2

(1 − q)7
(C.3)
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For second rank symmetric traceless harmonics the SO(8) Dynkin index is (ℓ, 2, 0, 0)

and the generating function is given by the following formula:

FN27
(q) =

4(75 − 175q + 203q2 − 133q3 + 47q4 − 7q5)q2

(1 − q)7
(C.4)

Finally, for three-form spherical harmonics with SO(8) Dynkin label (ℓ− 1, 0, 2, 0) (or

(ℓ− 1, 0, 0, 2)) one has

FN35
(q) =

(35 − 21q + 7q2 − q3)q2

(1 − q)7
(C.5)

Let us complete the description with the spectrum of spinor spherical harmonics.

For gravitini with Dynkin labels (ℓ, 0, 0, 1)ℓ≥0 and (ℓ − 1, 0, 1, 0)ℓ≥1 , the generating

function is:

Fgravitini(q) =
8q

(1 − q)7
(C.6)

For spinors with Dynkin labels (ℓ− 1, 1, 1, 0)ℓ≥1 and (ℓ− 2, 1, 0, 1)ℓ≥2 one has

Fspinor(q) =
8q2(20 − 35q + 35q2 − 21q3 + 7q4 − q5)

(1 − q)7
. (C.7)

D Generating functions for SO(6) representations

In this appendix we present the decomposition of the SO(8) generating functions under

SO(6) × SO(2). Below a factor of (1 − qt−1)−4(1 − qt)−4 is always understood.

For (ℓ, 0, 0, 0) one has:

F̂graviton(q) = 1 − q2 (D.1)

For (ℓ, 1, 0, 0) one has:

F̂gb1(q, t) = 6t2 − 4tq − 4t3q + q2 + t4q2

F̂gb2(q, t) = 1 − q2 (D.2)

F̂gb3(q, t) = 15 + 36q2 − 4q3t−3 − 4t3q3 + 16q4 + q6 + (16q2 + 6q4)t−2 +

t2(16q2 + 6q4) − (24q + 24q3 + 4q5)t−1 − t(24q + 24q3 + 4q5)

F̂gb4(q, t) = 6t−2 − 4qt−3 − 4qt−1 + q2 + q2t−4
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For (ℓ− 1, 0, 1, 1) one has:

F̂1
gb(q, t) = 4t3q − 6t2q2 − t4q2 + 4tq3 − q4

F̂2
gb(q, t) = 4tq − q2 − 6t2q2 + 4t3q3 − t4q4

F̂3
gb(q, t) = −35q2 + 4t3q3 − 16q4 − 6q4t−2 − q6 − t2(16q2 + 6q4) +

(24q3 + 4q5)t−1 + t(20q + 24q3 + 4q5)

F̂4
gb(q, t) = −35q2 + 4q3t−3 − 16q4 − 6t2q4 − q6 − (16q2 + 6q4)t−2 +

t(24q3 + 4q5) + (20q + 24q3 + 4q5)t−1 (D.3)

F̂5
gb(q, t) = 4qt−1 − q2 − 6q2t−2 + 4q3t−3 − q4t−4

F̂6
gb(q, t) = 4qt−3 − q2t−4 − 6q2t−2 + 4q3t−1 − q4

F̂7
gb(q, t) = 6t2q2 − 4tq3 − 4t3q3 + q4 + t4q4

F̂8
gb(q, t) = 6q4t−2 + 6t2q4 − q2(20q + 4q3)t−1 − tq2(20q + 4q3) +

q2(20 + 15q2 + q4)

F̂9
gb(q, t) = 6q2t−2 − 4q3t−3 − 4q3t−1 + q4 + q4t−4

For (ℓ− 2, 2, 0, 0) one has:

F̂1
sc1(q, t) = 6t2q4 + 6t6q4 − t3q2(20q + 4q3) − t5q2(20q + 4q3) +

t4q2(20 + 15q2 + q4)

F̂2
sc1(q, t) = 6t2q2 − 4tq3 − 4t3q3 + q4 + t4q4

F̂3
sc1(q, t) = 6q2t−2 − 4q3t−3 − 4q3t−1 + q4 + q4t−4

F̂4
sc1(q, t) = −1 + 4qt−1 + 4tq − q2 − 6q2t−2 − 6t2q2 + 4q3t−3 + 4t3q3 −

q4t−4 − t4q4

F̂5
sc1(q, t) = q2 − q4

F̂6
sc1(q, t) = −36q2 − 16q4 − 6q4t−2 − 6t6q4 − q6 − t2(6 + 32q2 + 12q4) +

t(24q + 28q3 + 4q5) + t3(24q + 28q3 + 4q5) + (24q3 + 4q5)t−1 +

t5(24q3 + 4q5) − t4(36q2 + 16q4 + q6)

F̂7
sc1(q, t) = −36q2 − 16q4 − 6q4t−6 − 6t2q4 − q6 − (6 + 32q2 + 12q4)t−2 +

(24q3 + 4q5)t−5 + t(24q3 + 4q5) + (24q + 28q3 + 4q5)t−3 +

(24q + 28q3 + 4q5)t−1 − (36q2 + 16q4 + q6)t−4

F̂8
sc1(q, t) = 6q4t−2 + 6t2q4 − q2(20q + 4q3)t−1 − tq2(20q + 4q3) +

q2(20 + 15q2 + q4)

F̂9
sc1(q, t) = 6q4t−6 + 6q4t−2 − q2(20q + 4q3)t−5 − q2(20q + 4q3)t−3 +

q2(20 + 15q2 + q4)t−4

F̂10
sc1(q, t) = −15 − 156q2 − 176q4 − 15q4t−4 − 15t4q4 − 31q6 +

(60q3 + 24q5)t−3 + t3(60q3 + 24q5) − (90q2 + 106q4 + 16q6)t−2 −
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t2(90q2 + 106q4 + 16q6) + (60q + 184q3 + 84q5 + 4q7)t−1 +

t(60q + 184q3 + 84q5 + 4q7) (D.4)

For (ℓ, 0, 2, 0) one has:

F̂1
sc2(q, t) = −4t3q + 15q2 − 4q3t−1 + q4 + t2(10 + 6q2) − t(20q + 4q3)

F̂2
sc2(q, t) = 15 + 36q2 − 4q3t−3 − 4t3q3 + 16q4 + q6 + (16q2 + 6q4)t−2 +

t2(16q2 + 6q4) − (24q + 24q3 + 4q5)t−1 − t(24q + 24q3 + 4q5)

F̂3
sc2(q, t) = −4qt−3 + 15q2 − 4tq3 + q4 + (10 + 6q2)t−2 − (20q + 4q3)t−1

F̂4
sc2(q, t) = 4t3q3 − 6q4t−2 − t2q(16q + 6q3) + q(24q2 + 4q4)t−1 +

tq(20 + 24q2 + 4q4) − q(35q + 16q3 + q5) (D.5)

F̂5
sc2(q, t) = 4q3t−3 − 6t2q4 − q(16q + 6q3)t−2 + q(20 + 24q2 + 4q4)t−1 +

tq(24q2 + 4q4) − q(35q + 16q3 + q5)

F̂6
sc2(q, t) = 6q4t−2 + 6t2q4 − q2(20q + 4q3)t−1 − tq2(20q + 4q3) +

q2(20 + 15q2 + q4)

For (ℓ− 2, 0, 0, 2) one has:

F̂1
sc3(q, t) = t4(q2 − q4)

F̂2
sc3(q, t) = q2 − q4

F̂3
sc3(q, t) = (q2 − q4)t−4

F̂4
sc3(q, t) = 6t2q2 − 4tq3 − 4t3q3 + q4 + t4q4 (D.6)

F̂5
sc3(q, t) = 6q2t−2 − 4q3t−3 − 4q3t−1 + q4 + q4t−4

F̂6
sc3(q, t) = 6q4t−2 + 6t2q4 − q2(20q + 4q3)t−1 − tq2(20q + 4q3) +

q2(20 + 15q2 + q4)

For (ℓ, 0, 0, 1) one has:

F̂1
gr1(q, t) = t2(1 − q2)

F̂2
gr1(q, t) = t−2(1 − q2) (D.7)

F̂3
gr1(q, t) = 6 − 4qt−1 − 4tq + q2t−2 + t2q2

For (ℓ− 1, 0, 1, 0) one has:

F̂1
gr2(q, t) = 4tq − 6q2 − t2q2 + 4q3t−1 − q4t−2

F̂2
gr2(q, t) = 4qt−1 − 6q2 − q2t−2 + 4tq3 − t2q4 (D.8)

F̂3
gr2(q, t) = 6q2 − 4q3t−1 − 4tq3 + q4t−2 + t2q4

For (ℓ− 1, 1, 1, 0) one has:

F̂1
f1(q, t) = 4t5q3 − 6q4 − t4q(16q + 6q3) + tq(24q2 + 4q4) +

t3q(20 + 24q2 + 4q4) − t2q(35q + 16q3 + q5)
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F̂2
f1(q, t) = 4q3t−1 − 6t4q4 − q(16q + 6q3) + tq(20 + 24q2 + 4q4) +

t3q(24q2 + 4q4) − t2q(35q + 16q3 + q5)

F̂3
f1(q, t) = 4q3t−5 − 6q4 − q(16q + 6q3)t−4 + q(20 + 24q2 + 4q4)t−3 +

q(24q2 + 4q4)t−1 − q(35q + 16q3 + q5)t−2

F̂4
f1(q, t) = −15q4t−2 − 10t4q4 + q(56q2 + 24q4)t−1 + t3q(40q2 + 20q4) −

t2q(60q + 80q3 + 15q5) − q(74q + 90q3 + 16q5) + tq(36 + 120q2 + 60q4 + 4q6)

F̂5
f1(q, t) = 4tq3 − 6q4t−4 − q(16q + 6q3) + q(24q2 + 4q4)t−3 +

q(20 + 24q2 + 4q4)t−1 − q(35q + 16q3 + q5)t−2

F̂6
f1(q, t) = −10q4t−4 − 15t2q4 + tq(56q2 + 24q4) + q(40q2 + 20q4)t−3 −

q(60q + 80q3 + 15q5)t−2 − q(74q + 90q3 + 16q5) +

q(36 + 120q2 + 60q4 + 4q6)t−1

F̂7
f1(q, t) = 4tq − 6q2 − t2q2 + 4q3t−1 − q4t−2

F̂8
f1(q, t) = 4qt−1 − 6q2 − q2t−2 + 4tq3 − t2q4

F̂9
f1(q, t) = 6q4 + 6t4q4 − tq2(20q + 4q3) − t3q2(20q + 4q3) +

t2q2(20 + 15q2 + q4)

F̂10
f1(q, t) = 6q4 + 6q4t−4 − q2(20q + 4q3)t−3 − q2(20q + 4q3)t−1 +

q2(20 + 15q2 + q4)t−2

F̂11
f1(q, t) = 6q2 − 4q3t−1 − 4tq3 + q4t−2 + t2q4 (D.9)

Finally, for (ℓ− 2, 1, 0, 1) one has:

F̂1
f2(q, t) = 6t4q2 − 4t3q3 − 4t5q3 + t2q4 + t6q4

F̂2
f2(q, t) = 6q2 − 4q3t−1 − 4tq3 + q4t−2 + t2q4

F̂3
f2(q, t) = 6q2t−4 − 4q3t−5 − 4q3t−3 + q4t−6 + q4t−2

F̂4
f2(q, t) = t2(q2 − q4)

F̂5
f2(q, t) = (q2 − q4)t−2

F̂6
f2(q, t) = 4tq + 4t3q − 6q2 − 6t4q2 + 4q3t−1 + 4t5q3 −

q4t−2 − t6q4 − t2(1 + q2)

F̂7
f2(q, t) = 4qt−3 + 4qt−1 − 6q2 − 6q2t−4 + 4q3t−5 + 4tq3 −

q4t−6 − t2q4 − (1 + q2)t−2

F̂8
f2(q, t) = 6q4 + 6t4q4 − tq2(20q + 4q3) − t3q2(20q + 4q3) +

t2q2(20 + 15q2 + q4)

F̂9
f2(q, t) = 6q4 + 6q4t−4 − q2(20q + 4q3)t−3 − q2(20q + 4q3)t−1 +

q2(20 + 15q2 + q4)t−2

F̂10
f2(q, t) = −6 − 32q2 − 12q4 − 6q4t−4 − 6t4q4 + (24q3 + 4q5)t−3 +
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t3(24q3 + 4q5) + (24q + 28q3 + 4q5)t−1 + t(24q + 28q3 + 4q5) −
(36q2 + 16q4 + q6)t−2 − t2(36q2 + 16q4 + q6)

F̂11
f2(q, t) = 6q2 − 4q3t−1 − 4tq3 + q4t−2 + t2q4 (D.10)
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